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Spatially Balanced Sampling

Agricultural and environmental surveys

In agricultural and environmental surveys the main feature of
the population is to be geo-referenced.

4

In these circumstances, usually the units exhibit spatial
dependence between them.

4

Therefore, it is important to consider the spatial distribution of
the units as information for selecting samples.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: Set-up

* Finite population U ={1,...,N}.
 Set of g auxiliary variables, X = {xl,...,xq}.

 Set of h coordinates, commonly obtained by the geo-
coding of each unit and usually with h =2, C={c,,...,c,}.

* Response variable y..
* Target of inference t, = 2, < V-

From the matrix C it is always possible derive, according to
any distance function, a matrix that specifies how far all the
pairs of units in the populationare D, ={d,;; i = 1,....N, j = 1,
..,N}L
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Spatially Balanced Sampling: Set-up

A finite population is a collection of a finite number of identifiable
objects or units.

U = {1,2,...,k,...,N}

A sampling design, p(s), is a probability distribution on Q
(collection of all possible samples ) that satisfies:

p(s) =0, all s €Q,
Y p(s)=1
Q

where s is the outcome of a random variable S.

R. Benedetti & F. Piersimoni Concepts




Spatially Balanced Sampling: Set-up

First-order inclusion probability:

m, =Pr(k€S)=Pr(l, =1)= E p(s)

sk

Second-order inclusion probability:

mw, =Pk &I ES)=Pr(I I =1)= E p(s)

sa3k&l
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Spatially Balanced Sampling: Set-up

HT estimator for the population total 7 = EUyk is:

The estimator tHT is unbiased for = EUyk

~No
X

An unbiased estimator of VHT(fHT) is given by:

N—’

Vir (L) = E ESAkl)v/k)v/l where Akl - Akl /nkl
represents the expanded A value, for all k,/ €U . Alternatively

AGRED 1(% M)ykyl
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Spatially Balanced Sampling: Set-up

Alternative formula for the variance of estimator 7,
obtained when p(s) is a fixed size sampling design

Yates and Grundy (1953), and Sen (1953):

. n 1 -
VYGS(tHT) - VarYGS(tHT) - _EEEUAkl(yk B y1)2

R. Benedetti & F. Piersimoni Concepts



Spatially Balanced Sampling: Model-Based

In the design-based approach, the uncertainty is ensured by p(s), while in the
superpopulation approach, the randomness is provided from the model §. For
this reason, this approach is also called model-based survey sampling.

Using the superpopulation approach, we estimate the population total as
follows. The population total, t, can be decomposed into:

t=zsyk+zgyk=tys+tyg

In other words, the population total is the sum of the sample total fy and the

corresponding non-sample total ty_ . Obviously, after the sample has been

drawn, the sum of the sample total ty is known, and the estimation problem is

N

reduced to predicting f given ¢ . Given the superpopulation model §, the aim
Vs Vg
is to choose the best predictorfy_ of fy_ , and a sample s, so that we minimize the

sample error, [—t= fy_ -1

N yS

R. Benedetti & F. Piersimoni Concepts




Spatially Balanced Sampling: Model-Based

/N

The best predictor 7 is the member of the acceptable predictors that has the
smallest value of Eg (f — t)2 ‘S . Besides, we aim to choose s that minimizes
E, [(f _ t)z ‘S] across the set of all possible s that are practical and satisfy the
resource constraints. The optimal predictor ( ¢ ) and optimal sample (s)

constitute the optimal strategy for t under the assumed superpopulation model €.

R. Benedetti & F. Piersimoni Concepts



Spatially Balanced Sampling: Model-Based

Consider an un-sampled location z,. The main aim of geostatistics is to predict y(z,).
It would seem reasonable to estimate y(z,) using a weighted average of the values
at observed locations y(z)), i=1,2,..,n, with weights given by some decreasing
function of the distance between the unobserved and observed sites. So, the
predictor of y(z,) can be defined as:

H(z) =3 2x(z,)

A simple and popular spatial prediction method is kriging. This method uses a
model of spatial continuity, or dependence.

The main purpose of kriging is to optimally determine the weights A.. A
predictor is defined by first constructing a function that measures the loss
sustained by using j(z,) as a predictor of y(z,). The squared loss function is
most often used in practical applications.

Generally, the theory aims at finding estimators that minimize the average loss.

In this case, the loss can be expressed in terms of the mean squared prediction
error (MSPE) as:

R. Benedetti & F. Piersimoni Concepts




Spatially Balanced Sampling: Model-Based

E[y(z,) - 3(z,)]

Kriging computes the best linear unbiased predictor (BLUP), j(z,) , based on a
stochastic model of the spatial dependence defined by the expectation, u(z),
and covariance function, C(h), of the random field.

R. Benedetti & F. Piersimoni Concepts



Spatially Balanced Sampling: Model-Based

Consider a continuous variable. A spatial model that satisfies the first-order
Markov property

Pr{y(zi)‘y(zj),j ED, | = i} _ Pr{y(zi)‘y(zj),j EN(i), j = i}

is the auto-normal or conditional autoregressive model (CAR, Besag 1974 ). It
assumes that the conditional density functions of each random variable with
respect to the others is Gaussian and can be expressed as:

Pledble )] - Pledble ) svs - -

= (27101.2 )_1/2 exp {— 2(175

where p = E(}/(z/.)) ,and ¢, denote spatial dependence parameters that

are only non-zero if z.e M7 .

R. Benedetti & F. Piersimoni Concepts



Spatially Balanced Sampling: Model-Based

From these definitions it follows that:

E[y(zi)‘y(zj),j eEN(), ] = i] = Uu, +;cl.j(y(zj)—uj)

and:

Var [y(zi)‘y(zj),j EN(),j= i] = Giz




Spatially Balanced Sampling: Model-Based

Let ¢« N(O,ozl) , Where g(d.) is the variable associated with site z. A random
field is said to be Gaussian SAR (Whittle 1954) if:

¥(z) = 1+ Db [9(z) -] +e(z,)

i=j
where b;=0. In a matrix notation model, the above equation can be written
as:

(I-B)(y-u)=¢
If Var(e)=o’l Y is multivariate normal such that:

y o MWV(u,02 [(I -B)'d-B")" ])
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Spatially Balanced Sampling

Some thoughts about X and C in spatial surveys.

* |If Uis a list of regularly or irregularly shaped polygons defined
ad hoc, Cis always available and X can be constructed
summarizing within each polygon a classification of remotely
sensed data (unless an overlay of C with a cadaster is possible).

* |If Uis a list of points, X can be only represented by a design
matrix of codes of a land use classification of remotely sensed

data.

* If Uis a list of economic or social units, Cis rarely obtainable (it
depends on the availability of accurate cadastral maps) and
should be made by a map of polygons representing parcels of
land used by each holding, while X is usually filled with
administrative data sources.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling

Consider the two following samples obtained by SRSWOR

The p(s) of these two samples are exactly the same, p(S) = 1/C(N,n)

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling

Spatially Balanced Samples
How to take into account the spatial information while designing

a sample?

Spatially balanced samples: samples well-spread over the
population of interest. In this way, it could be possible capture
the spatial heterogeneity of the population.

Some theoretical motivations:

* Yates-Grundy-Sen formulation of the HT variance.
* Anticipated Variance.

* Lemma decomposition.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: motivation A

The variogram (or semi variogram) y,(h) whose shape is a valuable
information to choose on how and to what extent the variance of y is or not a
function of the distance between the statistical units.

1
* Yates-Grundy-Sen formulation of the HT variance: nij
2
Yy
( HT) =__2 2(” Elﬂf)
zEU]EU jT ﬂ:
>h
Semivariogram Range
1 Y(h) j
S Var[y(@-y(z+ )] = () —>
L
Nugget T Distance (h)
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Spatially Balanced Sampling: motivation B

We wish to derive a model that relates each y, with the X observed in past
surveys or other data sources. We assume that our prior knowledge on the
finite population can be viewed as if it were a sample from an infinite
superpopulation and that a model & defines its characteristics. To design a
survey, we should thus search for the optimal anticipated variance (AV) of the
estimator of the population total. This can be defined as the variance of the
random variable (# — %) under both the design and the model

~ ~ 2 ~ 2
AV (i -1)=E, {E [(t ~1) ]} - [Eg {E (7- t)}]
A typical assumption is a linear model that relates a target y and an auxiliary x

Ve =X, B+e,
E.(g)=0

)=0

Ve(&) =0,
E.(g8)=0,0p0, k=l

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: motivation B

Anticipated Variance

X; is a vector of auxiliary variables, [ is a vector of
coefficient regression, p; is the autocorrelation
coefficient and E,, Var,, and Cov,, denote,

respectively, expectation, variance and covariance
with respect to the model.

The Anticipated Variance (Isaki and Fuller 1982) of

HT estimator under the model is (Grafstrom and Tille
2013)

i -
AV(?HT—t)=ES (E&_Exk) i +220k01pkl”kl_”k”z

kEs kEs IEs ﬂ:kﬂ:l
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Spatially Balanced Sampling: motivation B

Uncertainty can be splitted into two terms:

2
E. Xi_ Exi)'ﬁ] can be reduced through the use of

balanced sampling (Deville and Tille 2004)

2. Y oo Ty~ be reduced exploiti ial
. 0.0, can be reduced exploiting spatia

i,jeu ﬂinj

information —> if p; decrease with respect to distance
between units, then selecting units far apart reduces this
term

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: motivation C

The decomposition lemma
states that (Knottnerus, 2003, p. 87):

o =VS(§S)+nT_IES(S§,S)

It can be seen that the HT estimator can be more efficient by setting the first-order
inclusion probabilities in such a way that y,/mt, is approximately constant and/or by
defining a design p(s) that increases the expected within sample variance. The
intuitive explanation for this is that if a sample s contains as much information as
possible, the uncertainty in the estimation process is clearly reduced to zero. This
consideration suggests that we should find a rule that makes the probability p(s) of
selecting a sample s proportional, or more than proportional, to its variance S2.
This variance is unknown, because it is relative to the target, unobserved variable
y. Thus, this is a purely theoretical topic unless we can find auxiliary information for

S.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: motivation C

Decomposition Lemma

This consideration suggests that we should find a rule that
makes the probability p(s) of selecting a sample s
proportional, or more than proportional, to its variance S2.
This variance is unknown, because it is relative to the target,
unobserved variable y. Thus, this is a purely theoretical topic
unless we can find auxiliary information for s.

When dealing with spatially distributed populations, a
promising candidate for this rule is the distance between
units, as evidenced in spatial interpolation literature (Ripley
1981, Cressie 1993). This is because it is often highly related
to the variance of variables observed on a set of geo-
referenced units.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Spatially Balanced Sampling: practical

motivations

There could be a lot of different reasons why it is appropriate to
select samples which are spatially well distributed:

1. vy has a linear or monotone spatial trend,

2. there is spatial autocorrelation, i.e. close units have data
more similar than distant units;

3. the y shows to follow zones of local stationarity of the mean
and/or of the variance, i.e. a spatial stratification exists in
observed phenomenon;

4. the units of the population have a spatial pattern which can
be clustered, i.e. the intensity of the units varies across the
study region.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Index of Spatial Balance

The Voronoi polygon for unit k of a generic sample s includes all the
population units closer to k than to any other unit in the sample. Let

W= a
k icvP(k)

be the sum of the inclusion probabilities of the units in the k-th
Voronoi polygon VP(k). Then, for any sample unit, we will have an
expected value E(v,)=1. Additionally, all the v,s should be close to 1
for a spatially balanced sample (Steven and Olsen 2004). Thus, the
index V(v,) (the variance of the v,) can be used as a measure of the
spatial balance of a sample. Obviously, a lower value of V(v,) implies
a good spatially balanced sample.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



* Balanced Sampling CUBE

* Systematic Sampling

* Maximal Stratification

* Optimal Sampling Designs

* DUST design

* Sampling Plans that Exclude Adjiacent Units

* Generalized Random Tessellation Sampling (GRTS)
 Spatially Correlated Poisson Sampling (SCPS)

* Local Pivotal Method (LPM)
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The Balanced Sampling and Cube Method

Which is the “best” sample ?

Which is the “best” sample ?

OK, we like the position in the middle, but why ?

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

Select samples with the important property :
Edkxkj =Ty, =1, = Ex,q. Vi=1l..,q

kEs keU

Note that many sampling designs can be viewed as particular cases
of balanced sampling. For example, stratified sampling can also be
defined as a design respecting the constraint :

Edk(pkh = E(pkh =N,,Vh=1..H

kEs keUu

Where ¢,,s are indicator variables equal to 1 if the unit k is in the
stratum h, and O otherwise.

The algorithm consists of two main procedures: the flight and
landing phases. During the first phase, the constraints are always
exactly satisfied. The objective is to randomly round-off almost all
the s to 0 or 1. The landing phase addresses the fact that the
constraint cannot always be exactly satisfied.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

1. - Generate a vector u(?)={u(f)}#0, not necessarily random, such that u(?)
belongs to the kernel! of A (i.e., ker(A)) and u(£)=0 if m(¢) is an integer.
2. - Compute the largest values of Ai(r) and Ax(¥) (A, and A, ) such that
O<n(t)+A:(Hu(r)<1 and O<mr(7)-A(H)u(?)<1, obviously A,(#)>0 and A,(£)>0. *
3. : Compute the next ; using °

- m(t)+ A;u(t) with probability 6(z) 11
S 7(t)- Au(t) with probability 1-8(7)

-

mwwhgmé(t)=ﬂ.;/(kl*+/l;) ¥

The three steps are iterated until we cannot perform Step 1. In the flight phase,
finding a vector in ker(A) can be quite computationally expensive. To overcome
this - difficulty, Chauvet and Tillé (2006) developed a faster algorithm - for
implementing the three steps. The idea consists of replacing A with a smaller
matrix B, where B is a sub-matrix of A containing only g+1 columns of A. *

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

Following Tillé (2011), we can summarize the main features of
balanced sampling as follows:

* |t increases the accuracy of the HT estimator, because its variance
depends only on the regression residuals of the variable of
interest by the balancing variables.

* |t protects against large sampling errors, because the most
unfavorable samples have a null probability of being selected.

* It protects against a misspecification of the model within a model-
based inference.

* |t can ensure that the sample sizes in planned domains are not too
small, or even equal to zero. By adding the indicator variables of
the planned domains to the list of balanced auxiliaries, we can fix
the sample size for each domain.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

Constraint on the 1st moment =

Assume a linear spatial trend

g2 4 6 8101214

Constraint on the 1st and 2nd
moments =

assume a quadratic
spatial trend

Constraint on a Penalized Spline that fit the
spatial trend (Breidt and Chauvet, 2012)

R. Benedetti, F. Piersimoni, F. Pantalone
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The Balanced Sampling and Cube Method

> library (sampling)
> n <- 100
> N <= 1000
> set.seed (200694)
> par (mar=c(1,1,1,1), xaxs="1i",yaxs="1")
> plot (framepop$xc, framepopS$yc,
+ axes=F, cex=0.5,pch=19,
+ x1lim=c(0,1),ylim=c(0,1))
> box ()
> set.seed (200694)
> pik <= rep(n/N,N)
> X <- as.matrix (cbind (framepops$xc, framepop$Syc))
> bal <- samplecube (X, pik, comment=TRUE, method=1)

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

BEGINNING OF THE FLIGHT PHASE

The matrix of balanced variable has 2 wvariables and 1000 wunits
The size of the inclusion probability vector is 1000

The sum of the inclusion probability vector is 100

The inclusion probability vector has 1000 non-integer elements
Step 1

BEGINNING OF THE LANDING PHASE

At the end of the flight phase, there remain 2 non integer
probabilities

The sum of these probabilities is 0.6969337

This sum is non-integer

The linear program will consider 3 possible samples
The mean cost is 0.0003727694

The smallest cost is 0.0001680449

The largest cost is 0.0006208612

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

The cost of the selected sample 1is
0.0006208612

QUALITY OF BALANCING

TOTALS HorvitzThompson estimators
Relatilve deviation

1 494.0807 492 .2101
-0.3773813

2 494 .8565 4960.1754
0.2065137

>sum (bal)

[1] 105

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



The Balanced Sampling and Cube Method

>set.seed (200694)

>X <- as.matrix (cbind(pik, framepopSxc, framepop
Syc))

>ball <- samplecube (X, pik, comment=TRUE, method=1)
BEGINNING OF THE FLIGHT PHASE

QUALITY OF BALANCING SR ij(g’
TOTALS HorvitzThompson estimators H f_.?éﬁ”' R ?:
Relative deviation :QEE?@fQQQ% SR P":,
pik 100.0000 100.0000 [ o P@ 00T S L T
1.406875e-12 e S T RS Ty
2 494.0807 £91.0461 g @ e ok T
~6.141966e-01 ARt '&;g"@@- S
3 494.8565 495.9795  p. % IR A
2.269404e-01 ST ame e e
>sum (ball) 'é@%Q:;st..ﬁE@‘. : :?%
(1] 100 T e DB
>framebal <- framepop[ball==1, ] et 2T T ©

>points (framebal$xc, framebalSyc, pch=1l, cex=2)
>sbi (ds, rep(n/N,N), (1:1000) [ball==1])
[1] 0.3242424

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019
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Systematic Sampling

Systematic sampling has a long tradition in survey sampling.
When zépplied to a list frame of individuals or families, it can be
referred to as the every r-th rule. The main parameter of the
method is r, which is the number of units between each unit
selected from the sample, according to a given ordering of the
population. The randomization principle is typically retained by
using a random starting point and a fixed interval r.

This scheme is a widely used technique in survey samplin
because of its simplicity, particularly when the units are selecte
with equal probability, but also with probabilities proportional to
an auxiliary size measure.

Systematic sampling is also a common design for spatially
distributed populations. If the ordering uses the coordinate
system that geo-codes the population frame, it has the
additional advantage that it has a good spatial coverage. It is an
efficient method for sampling autocorrelated populations.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Systematic Sampling

Disadvantages

* Because all the second-order probabilities are equal to
zero within each step r, there is no unbiased method for
estimating the sampling variance.

* The ratio N/n is not typically an integer, so it is often
impossible to find a step r that is suitable for finding
exactly n sampling units. This practical difficulty may
become relevant when the selection should be repeated
in groups of homogeneous units of the population, or in
spatial frames where we need at least a pair (r,, r,) of step
parameters (one for each dimension).

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Systematic Sampling

set.seed (200694)
startx <- sample(1l:5,1)
starty <- sample(l:5,1)
datasys <- matrix(0,2500, 3)
init <= 0
for (xc in seqg(0.01,0.99,0.02))
{
for (yc in seg(0.01,0.99,0.02))
{
init <- init + 1
datasys[init,1] <- xcC
datasys[init, 2] <- yc
datasys[init,3]=ifelse((abs((xc %% 0.1)-(startx/50-0.01))
+abs ((yc %% 0.1)-(starty/50-0.01)) < 0.001),1,0)

+ + + + + + + + + + V V V V V V
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Systematic Sampling

yaxs="1")

1]
axes=F, cex=0.5,
pch=19,x1im=c (0, 1)
(1 1n seqg(0.1,0.9,0.1))

plot (datasys|, ,datasys |,

for
{
abline (h=i, 1lty=2, 1lwd=2)
abline (v=1i,1lty=2, 1lwd=2)
}
points (datasys[datasys/[,
==1,11],

3]

,pch=1, cex=2)

V. + + V. + + 4+ + V + + V + V

par (mar=c(1,1,1,1), xaxs="i",

21,

datasys[datasys|,

yylim=c (0, 1))

3]
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Maximal Stratification

An intuitive way to produce samples that are well spread over
the population, widely used by practitioners, is to stratify the
units of the population on the basis of their location.

A maximal stratification, i.e. partitioning the study in as many
strata as possible and selecting one or two units per stratum.
The basic principle is to extend the use of systematic sampling to
two or more dimensions. The problems arising from such a
fragmentation of the population is often reflected in the
following unfavorable issues:

* If we allocate less than a fixed threshold (say T,) to a generic
stratum h, we typically have n, =T, with a consequent fictitious
increase of the sample size.
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Maximal Stratification

* If the effective number of observed units r, in a stratum is
less than 2 because of non-responses, it is no longer
possible to estimate the variability and accuracy of the
sample. If r,=0, it is not even possible to produce point
estimates.

* |t is difficult to manage panel rotations or more general
sample coordination (between multiple surveys) in an
under-represented stratum.

In these cases, little can be done unless we accept solutions
that are not methodologically desirable, but that introduce
as few bias as possible. A practical solution is the posterior
aggregation of similar strata.
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Maximal Stratification

library(sampling)
library (survey)

n <- 100

N <- 1000
set.seed(160964)

framepop <- data.frame (1id 1:N,
xc = runif(N), yc = runif (N))

yobs<- (exp ( (framepopSxc-0.5) *2) +texp ( (framepopSyc-0.5) *2))

vV V 4+ V V V V V V

yobs <- 100-((yobs-min (yobs) )/ (max (yobs-
+ min(yobs))))*100+ (rnorm(N)+5) *5

> globs <- sample(l1:3,N,replace=T)
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Maximal Stratification

> g20bs <- as.numeric (cut (yobs,quantile (yobs,probs =
+ seqg(0, 1, 0.2))))

> gZ2o0bs[is.na(g2o0bs)] <- 1

>framepop<-cbind (framepop, strataid?2

-+ = floor (framepopSxc*10) *10
+ + floor (framepopSyc*10))
>table (framepopS$Sstrataid?)

>set.seed (200694)

>str <- strata (framepop, "strataid2",size=rep(1l,100),
+ method="srswor")

>str <- getdata (framepop,str)

>table (strSstrataid?)
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0.5,
1,1ty
1,1ty

c(1,1,1,1),

xaxs="1",yaxs="1")
> plot (framepopS$Sxc, framepoS$yc,

strSxc

(

=F, cex

19, x1im

=c(0,1))

(1 1n seq(0.1,0.9,0.1))
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Some references

Some references about Maximal Stratification & Systematic Sampling.

6B?r,e;o(ljt FJ (1995). Markov chain designs for one-per-stratum sampling. Survey Methodology, 21:

* Brewer KRW (1963) A model of systematic sampling with unequal probabilities. Australian
Journal of Statistics, 5: 5-13.

e Christman MC (2000). A review of quadrat-based sampling of rare, geographicallg clustered
populations. Journal of Agricultural, Biological, and Environmental Statistics, 5: 168-201.

* Dunn R, Harrison A (1993). Two-dimensional systematic sampling of land use. Applied statistics,
42:585-601.

* Zhang LC (2008). On some common practices of systematic sampling. Journal of Official
Statistics, 24: 557— 5609.

Text Books
* Cochran WG (1977). Sampling Techniques. John Wiley & Sons, Inc., New York.
* Fuller WA (2009). Sampling statistics. John Wiley & Sons, Inc., Hoboken, New Jersey.

. SérEdaI CE, Swensson B, Wretman J (1992). Model assisted survey sampling. Springer, New
York.

R. Benedetti, F. Piersimoni, F. Pantalone BaNoCoSS 2019



Optimal Designs

Sampling schemes for spatial units can be reasonably treated by
introducing a suitable model of spatial dependence within a model-
based. However under this assumption the concern consist
necessarily in finding the sample configuration that is the best
representative of the whole population and leads to define our
selection as a combinatorial optimization problem (Benedetti and
Palma 1995). If we define a model §: E.(Y) = X

Var.(Y)=V
We can choose the sample s that minimize the MSE of the model-
based prediction :

min{Varg (é — H) =y (Vﬁ + XEAEIX;I) Yy}

S

Usually it is the sample that maximize the distance between units.
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Optimal Designs: Some References

e Benedetti R, Palma D (1995). Optimal sampling designs for dependent spatial units.
Environmetrics, 6: 101-114.

* Delmelle EM (2013). Spatial sampling. In: Fischer MM, Nijkamp P (eds) Handbook of regional
science, Springer, Berlin, pp. 1385-1399.

* Ver Hoef JM (2002) Sampling and geostatistics for spatial data. Ecoscience 9:152-161

* Ver Hoef JM (2008), Spatial methods for plot-based sampling of wildlife populations,
Environmental and Ecological Statistics 15:3-13

 Wang JF, Stein A, Gao BB, Ge, Y (2012). A review of spatial sampling. Spatial Statistics, 2:
1-14.
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Sampling Plans that Exclude Adjacent Units

If there exists some ordering of the units, and contiguous units
are antic(ijoated to provide similar data, Hedayat et al. (1988b)
suggested that more information could be obtained if the
sample avoids pairs of contiguous units. It is interesting to note
that this feature is considered so important that it was
suggested by Hedayat et al. (1988b) as a practical solution. In
fact, they observe that

“if in any observed sample contiguous (or close to each other in
some sense) units occur, they may be collapsed into a single unit
with the corresponding response as the average observed
response over these units. An estimate of the unknown
parameter is then made on the basis of such a reduced sample”.

The basic design was suggested by Hedayat et al. (1988a) and
called balanced sampling design excluding contiguous units
(BSEC). It is a fixed size n design where m,, = O if the units k and /
are contiguous, and all other mr, s are equal to an appropriate
constant.
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Sampling Plans that Exclude Adjacent Units

A theoretical comparison of the variance of this design with the
classical benchmark represented by SRS shows that, when using
the HT estimator for the total, BSEC represents a better strategy
if and oPIy if

P> - ~

where p, is the first-order circular serial correlation coefficient
between the units and is given by

0= (ve—14,) (Ve —/aty)/NG2

keu

It is interesting to note that a similar role is pIaYVedvby the sample
autocorrelation coefficient defined as P5 = Criecv YeY)/S; , where C
is the covariance and S is the variance of the survey variable y.
Using the decomposition, this can be shown to have the bounds
(Knottnerus 2003, p. 89)

—Lspvsl
n-1 "7
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DUST design

Arbia (1993) was inspired by purely model-based assumptions
on the dependence of the stochastic process that generates the
data, according to the algorithm types identified by Tillé (2006).
Arbia (1993) suggested a draw-by-draw scheme called the
dependent areal units sequential technique (DUST). The
properties of DUST can be also analyzed within a design-based
framework, because it respects the randomization principle.

The main argument for this method was that

“it is intuitively clear that, when we have a clue of the spatial
correlation structure underlying the spatial phenomenon to be
sampled, it is desirable to exploit this information in the sampling
design. In this way we could avoid duplicate information partly
contained in areas already sampled and we can economize
sampling costs without loosing reliability of the estimates”
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DUST design

The DUST algorithm starts by randomly selecting a unit k. Then,
at every step t<n, the algorithm updates the selection
pr:oballoilities of any other unit (/) of the population according to
the rule

o) =g (1 — A )

where A is a tuning parameter used to control the distribution of
the samEIe over the study region, and d,, is a measure of
distance between unit k and /.

This algorithm, or at least the sampling design that it implies, can
easily be interpreted and analyzed in a design-based perspective,
with particular reference to a detailed empirical assessment of
the first and second-order inclusion probabilities because they
are theoretically unknown.

Problem : are the obtained 7,” equal to the design z,? NO
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DUST design

> DUST <- function (matraux,nsamp,bdis=2,nrepl=1)
+ |

+ selez<-matrix (0, nsamp*nrepl, 2)

+ npo<-nrow (matraux)

+ dis<-as.matrix (dist (matraux))

+ dis<-l-exp(-bdis* (dis))

+ for (cc in 1l:nrepl)

+ {

-+ psel<-rep (1/npo, npo)

+ for (jJ in l:nsamp)

+ {

+ selez[ (cc-1)*nsamp+j,1l]<-cc

+ selez[ (cc-1) *nsamp+],2]<-sample (1:npo,1l,prob=psel)
+ psel=psel*dis[selez[ (cc-1) *nsamp+j,2], ]

+ psel=psel/sum(psel)

+ }

+ }

+ selez

+ )
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DUST design

> n <= 100

> N <= 1000

> set.seed (200094)

> X <- cbind (framepop$xc, framepops$yc)
> DUSTsel <- DUST(X,n,bdis=10) Voo R ORI
> O,

[1 :

nrow (DUSTsel) égé%.;zgi g'%'
] 100 B e D O
>sbi (ds, rep(n/N,N),DUSTsel[,2]) &.. "Eéﬁ' .
[1] 0.2830303 AT L

>par (mar:C(l,l,l,l) , XaXS:"i", @.‘Q ....-'-.:.0..... g .. . .:~ @'.. . &

NP s 3 ., * . . * *%e *

+ anS:Hi") ..o.o ®”; o? (‘9. N .@ )
- .@

>plot (framepopSxc, framepopSyc, Eg,”;tjzi.lf; ;x:‘g.?.=°2,.
+ axes=F, cex=0.5,pch=19, '3.é ?1L ‘ot A
+ xlim=c (0,1),ylim=c(0,1)) ..
>points (framepop$xc[DUSTsel[,2]], - : .
+ framepopS$yc[DUSTsell[,2]1], :%:m: o 5t{§.u.'m'-§fl
+ pch=1, cex=2) N Yoy o 7

>box () %
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Generalized Random Tessellation Sampling

* Idea: map two-dimensional spatial population into one-
dimensional population while preserving some spatial order.

e Sampling mechanism:

1. the sampling units are sorted according to a recursive,
hierarchical randomization process, which tries to preserve
the spatial relationship of the units;

2. the sampling units are ordered by means of a function /,
which maps the two-dimensional space of the population
|n0’|cé|) one-dimensional space, then defining an ordered spatial
address;

3. the one-dimensional space of units (i.e. a line) obtained by
the previous steps is then divided into a number of equal-
length segments. This division depends on the request on
the requested sample size, since one unit is selected
randomly from each segment (hence, the line is divided in 7z
segments).
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Generalized Random Tessellation Sampling
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Generalized Random Tessellation Sampling

Example, Equal probabilities .

Step 1 Step 2 Step 3 Step 4
aie | ® (31 ?/FZ/ n\| |(o | @ Tez | n
1 1 t
O | e l )3$ 3 | 1| 14 9L 130 | 14 /
ol o o | \22. | Al 2| e 42>
NEIGIK]

|
e

2 4
® o Km 41
g

e Step I: Frame: Large lakes: blue; Small lakes: pink; Randomly place grid over the
region

12 13 22 23 32 34 41 43 44
—— ]

e Step 2: Sub-divide region and randomly assign numbers to sub-regions

e Step 3: Sub-divide sub-regions; randomly assign numbers independently to each new
sub-region; create hierarchical address. Continue sub-dividing until only one lake per
cell.

* Step 4: Identify each lake with cell address; assign each lake length 1; place lakes on
line in numerical cell address order.
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Generalized Random Tessellation Sampling

Example, Unequal probabilities 7

= « Assume want large lakes to be twice as
< | /0\1’2//?\ likely to be selected as small lakes
3% 33 1'30 i 1; / « Instead of giving all lakes same unit
length, give large lakes twice unit
ZZHI5-2 (e 42> length of small lakes
» e « To select 5 sites divide line length by 5
¢ @ j/ (11/5 units); randomly select a starting

point within first interval; select 4

additional sites at intervals of 11/5

units

12132223 32 34 41 4344 « Same process is used for points and
areas (using random points in area)

12 13 22 23 32 34 41 43 44
e ———

12132223 32 34 41 4344
(o —— ]
| | | |
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Generalized Random Tessellation Sampling

Advantages

 Spatial balance.

* |t can be used for sampling point, linear features and not
contiguous phenomena.

 Possibility to sample with unequal probability.

* Practical and can be applied even in problematic
situations like poor frame information and irregular space
pattern.
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Generalized Random Tessellation Sampling

Disadvantages

Only applicable over units with a pair of coordinates (.
Possibility to lose some spatial relationship during the use of .

Reference

Reference: Steven and Olsen 2004.

R package

spsurvey (Kincaid and Olsen 2016).
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Some references

Some references about GRTS.

e Barabesi L, Franceschi S (2011). Sampling properties of spatial total estimators under
Tessellation Stratified Designs. Environmetrics, 22: 271-278.

e Stevens DL Jr (1997). Variable density grid-based sampling designs for continuous spatial
population. Environmetrics, 8: 167-195.

» Stevens DL Jr, Olsen AR (1999). Spatially restricted surveys over time for aquatic resources.
Journal of Agricultural, Biological, and Environmental Statistics, 4: 415-428.

e Stevens DL Jr, Olsen AR (2003). Variance estimation for spatially balanced samples of
environmental resources. Environmetrics, 14: 593-610.

« Stevens DL Jr, Olsen AR (2004). Spatially balanced sampling of natural resources. Journal of
the American Statistical Association, 99: 262-278
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Spatially Correlated Poisson Sampling

It is difficult to modify the second-order inclusion
probabilities while preserving fixed z,. Bondesson and
Grafstrom (2011) extended Sampford’s method to
address this issue by defining a procedure that appears
to be only in one dimension, but that actually explores
two dimensions of spatial units. On the basis of this
result, Grafstrom (2012) proposed a method called
spatially correlated Poisson sampling (SCPS).

The sequential nature of the list means that we first
decide the sampling outcome for the first unit of a
(possibly previously randomly sorted) list, then for the
second unit, and so on until n units have been selected.
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Spatially Correlated Poisson Sampling

If Unit 1 is included with probability =, =z, , we set I, =1,

otherwise [,=0. After each step, the mclusion probabilities for
the remaining units in the list are updated according to a
specific rule. We start with 7" =, , for k1.

At step t, the values of I1,1I ,..., I.4 are known, and we select
unit £ with probability J'L’(t We update the generic unit k=t+1
according to 7" = 70" (I — ”Lw}j)t , where w” are

weights that depend on [, /,,. I_ ut not on I
To preserve the fixed first-order inclusion probabilities, the

weight that we can give to a unit is limited by

(1= ) . Jt,(f'l) |
—min <w, =min

’ ’
1 ﬂ;t(t -1) J_Et(t -1) (z-1) J_L,t(t -1)
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Spatially Correlated Poisson Sampling

One very interesting property is that the maximal weights
strategy locally balances the sample size, like a form of
loose spatial maximal stratification without fixed and
accurate borders. This local property can be Dbetter
appreciated by showing that, if the study region is
partitioned into two strata, A and B, so that units within
the same stratum are always closer than units belonging
to different strata,

o, and T,
€A lEB

are asymptotically equal to n, and ng, respectively. Then
the maximal weights method will approximately select
units from A and from B. Therefore, it locally satisfies the
theoretical basis of the spatial balance index.
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Spatially Correlated Poisson Sampling

Advantages

* Unequal Probability Sampling

Reference

* Reference: Grafstrom 2012.
R package

* BalancedSampling (Grafstrom and Lisic 2016
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Local Pivotal Method

Using a similar technique, Grafstrom et al. (2012) derived
two alternative procedures for selecting samples with
fixed m, and correlated inclusion probabilities, as an
extension of the pivotal method for selecting mps
samples (Deville and Tilleé 1998). They are essentially
based on an updating rule for the probabilities 1, and m,.
At each step, the rules state that the sum of the updated
probabilities is as locally constant as possible, and that
they differ from each other in the way that the two nearby
units k and / are chosen. These two methods are referred
to as the local pivotal method 1 (LPM1), which the
authors suggest is better spatially balanced, and the local
pivotal method 2 (LPM2), which is simpler and faster.

A sample is obtained in N steps. At each step, the
inclusion probabilities for two units are updated, and the
sampling outcome is decided for at least one the units.
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Local Pivotal Method

Using a similar technique, Grafstrom et al. (2012) derived
two alternative procedures for selecting samples with fixed m,
and correlated inclusion probabilities, as an extension of the
pivotal method for selecting mps samples (Deville and Tille
1998). They are essentially based on an updating rule for the
probabilities 1, and m,. At each step, the rules state that the
sum of the updated probabilities is as locally constant as
possible, and that they differ from each other in the way that
the two nearby units k and / are chosen. These two methods
are referred to as the local pivotal method 1 (LPM1), which
the authors suggest is better spatially balanced, and the local
pivotal method 2 (LPM2), which is simpler and faster.

A sample is obtained in N steps. At each step, the inclusion
probabilities for two units are updated, and the sampling
outcome is decided for at least one the units.
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Local Pivotal Method

Deville and Tillé (1998) suggested randomly choosing a
pair of units at each step to maximize the entropy of the
selected units. Grafstrom et al. (2012) introduced LPMs
that update the inclusion probabilities according to the
same updating rule of Deville and Tille (1998) but for two
nearby units, improving the spatial balance.

LPM1 randomly chooses the first unit k, and then the
closer unit / (if two or more units are the same distance
from k, the method randomly chooses between them). If
k is the nearest neighbor of [/, then the inclusion
probabilities are updated as follows.
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Local Pivotal Method

If m, + M, <1, then

(0’”k + ”z) with probability &l
T, T+,
(ﬂ'k,ﬂ,'l ) = 4

(7, +7,0)  with probability — ’ikn
k )

or, if m, + m, 21, then

(1,7, +,—1) with probability
. 2-m, -,
(i) =

(7, +m,-1,1) with probability

The expected number of computations for this algorithm is at
worst proportional to N3, and at best proportional to N2.

R. Benedetti, F. Piersimoni, F. Pantalone
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Local Pivotal Method

Advantages

* Unequal Probability Sampling

Reference

* Reference: Grafstrom 2012.
R package

* BalancedSampling (Grafstrom and Lisic 2016)
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The Doubly Balanced Sampling

Grafstrom and Tillé (2013) combined their techniques (i.e.,
the LPM and the CUBE), proposing a new method that aims to
achieve a double property of balancing. This new method
ensures that the sample is well-spread avoiding the selection
of selecting neighboring units (i.e., as the LPM). Besides, the
method also allows satisfying balancing equations on auxiliary
variables that are available on all the sampling spatial units
(i.,e., as the CUBE). This method is denoted as doubly
balanced spatial sampling (DBSS).
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The Doubly Balanced Sampling

Advantages

e Unequal Probability Sampling, Balanced on a set of covariates X

Reference

e Reference: Grafstrom and Tillé 2013.
R package

* BalancedSampling (Grafstrom and Lisic 2016)
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Halton Numbers, Continuous Populations

Halton sequences are sequences used to generate points in
space for numerical methods such as Monte Carlo
simulations. Although these sequences are deterministic,
they are of low discrepancy, that is, appear to be random for
many purposes (pseudo random). They were first introduced
in 1960 and are an example of a quasi-random number
sequence. They generalise the one-dimensional van der
Corput sequences.
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Halton Numbers

Advantages

* Very simple, continuous populations

Reference

 Reference: Robertson et al. 2013.

R packages

* randtoolbox (Chalabi, Dutang, Savicky and
Wuertz, 20106)

* SDraw (McDonald, T. L. 20106)
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