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Agricultural	and	environmental	surveys	
	

In	agricultural	and	environmental	surveys	the	main	feature	of	
the	popula4on	is	to	be	geo-referenced.	
	
	
In	these	circumstances,	usually	the	units	exhibit	spa4al	
dependence	between	them.	
	
	
Therefore,	it	is	important	to	consider	the	spa4al	distribu4on	of	
the	units	as	informa4on	for	selec4ng	samples.	
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•  Finite	popula4on	U	=	{1,…,N}.	
•  Set	of	q	auxiliary	variables,	X	=	{x1,…,xq}.	
•  Set	of	h	coordinates,	commonly	obtained	by	the	geo-
coding	of	each	unit	and	usually	with	h	=	2,	C	=	{c1,...,ch}.	

•  Response	variable	yi.	
•  Target	of	inference	ty	=	Σi	∈	Uyi.		
	
From	the	matrix	C	it	is	always	possible	derive,	according	to	
any	distance	func4on,	a	matrix	that	specifies	how	far	all	the	
pairs	of	units	in	the	popula4on	are	DU	=	{dkl	;	i	=	1,…,N,	j	=	1,
…,N}.						
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A	finite	popula4on	is	a	collec4on	of	a	finite	number	of	iden4fiable	
objects	or	units.	
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U = 1,2,..., k,..., N{ }
A	sampling	design,	p(s),	is	a	probability	distribu4on	on	Ω	
(collec4on	of	all	possible	samples	)	that	sa4sfies:		

  

p(s) ≥ 0,  all  s ∈Ω,
p(s)

Ω
∑ = 1

where	s	is	the	outcome	of	a	random	variable	S.		



First-order	inclusion	probability:	
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Second-order	inclusion	probability:	

  
π k = Pr(k ∈S ) = Pr(Ik = 1) = p(s)

s∍k
∑

  
π kl = Pr(k & l ∈S ) = Pr(Ik Il = 1) = p(s)

s∍k&l
∑



HT	es4mator	for	the	popula4on	total																							is:	
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The	es4mator													is	unbiased	for				

 
t = ykU∑

  t̂HT  
t = ykU∑

An	unbiased	es4mator	of		
  VHT (t̂HT ) is	given	by:		

   
V̂HT (t̂HT ) =

⌣
Δkl
⌣yk
⌣yls∑∑

  
V̂HT (t̂HT ) = 1

π kl

π kl − π kπ l

π kπ l

#

$%
&

'(s∑∑ yk yl

   
⌣
Δkl = Δkl / π klwhere		

represents	the	expanded	Δ	value,	for	all		  k, l ∈U .	Alterna4vely		
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Alterna4ve	formula	for	the	variance	of	es4mator		
obtained	when	p(s)	is	a	fixed	size	sampling	design		
Yates	and	Grundy	(1953),	and	Sen	(1953):		

   
VYGS (t̂HT ) = VarYGS (t̂HT ) = − 1

2
Δkl
⌣yk −
⌣yl( )U∑

2
∑
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In	the	design-based	approach,	the	uncertainty	is	ensured	by	p(s),	while	in	the	
superpopula4on	approach,	the	randomness	is	provided	from	the	model	ξ.	For	
this	reason,	this	approach	is	also	called	model-based	survey	sampling.	
Using	the	superpopula4on	approach,	we	es4mate	the	popula4on	total	as	
follows.	The	popula4on	total,	t,	can	be	decomposed	into:		

 
t = yks∑ + yks∑ = tys

+ tys

In	other	words,	the	popula4on	total	is	the	sum	of	the	sample	total										and	the	

corresponding	non-sample	total								.	Obviously,	aner	the	sample	has	been	

drawn,	the	sum	of	the	sample	total						is	known,	and	the	es4ma4on	problem	is	

reduced	to	predic4ng							given								.	Given	the	superpopula4on	model	ξ,	the	aim	

is	to	choose	the	best	predictor							of							,	and	a	sample	s,	so	that	we	minimize	the	

sample	error,																																			.		

 
tys

 
tys

 
tys

 
tys  

tys

  
t̂ ys  

tys

  
t̂ − t = t̂ ys

− tys



R.	Benede+	&	F.	Piersimoni	 Concepts	 12	

The	best	predictor								is	the	member	of	the	acceptable	predictors	that	has	the	

smallest	value	of																																				.	Besides,	we	aim	to	choose	s	that	minimizes	

																																across	the	set	of	all	possible	s	that	are	prac4cal	and	sa4sfy	the	

resource	constraints.	The	op4mal	predictor	(								)	and	op4mal	sample	(s)	

cons4tute	the	op4mal	strategy	for	t	under	the	assumed	superpopula4on	model	ξ.	

  t̂
Eξ t̂ − t( )

2
s"

#$
%
&'

  
E
ξ

t̂ − t( )2
s#

$%
&
'(

t̂
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Consider	an	un-sampled	loca4on	z0.	The	main	aim	of	geosta4s4cs	is	to	predict	y(z0).	
It	would	seem	reasonable	to	es4mate	y(z0)	using	a	weighted	average	of	the	values	
at	observed	loca4ons	y(zi),	i=1,2,..,n,	with	weights	given	by	some	decreasing	
func4on	of	the	distance	between	the	unobserved	and	observed	sites.	So,	the	
predictor	of	y(z0)	can	be	defined	as:		

   
ŷ(z0 ) = λi y(zi )i∑
A	simple	and	popular	spa4al	predic4on	method	is	kriging.	This	method	uses	a	
model	of	spa4al	con4nuity,	or	dependence.		
The	main	purpose	of	kriging	is	to	op4mally	determine	the	weights	λi.	A	
predictor	is	defined	by	first	construc4ng	a	func4on	that	measures	the	loss	
sustained	by	using													as	a	predictor	of	y(z0).	The	squared	loss	func4on	is	
most	onen	used	in	prac4cal	applica4ons.	
Generally,	the	theory	aims	at	finding	es4mators	that	minimize	the	average	loss.	
In	this	case,	the	loss	can	be	expressed	in	terms	of	the	mean	squared	predic4on	
error	(MSPE)	as:		

   ŷ(z0 )
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E y(z0 ) − ŷ(z0 )"# $%

2

Kriging	computes	the	best	linear	unbiased	predictor	(BLUP),													,	based	on	a	
stochas4c	model	of	the	spa4al	dependence	defined	by	the	expecta4on,	μ(z),	
and	covariance	func4on,	C(h),	of	the	random	field.		
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Consider	a	con4nuous	variable.	A	spa4al	model	that	sa4sfies	the	first-order	
Markov	property		
	
	
	
is	the	auto-normal	or	condi4onal	autoregressive	model	(CAR,	Besag	1974	).	It	
assumes	that	the	condi4onal	density	func4ons	of	each	random	variable	with	
respect	to	the	others	is	Gaussian	and	can	be	expressed	as:	

   
Pr y zi( ) y z j( ) , j ∈D, j ≠ i{ } = Pr y zi( ) y z j( ) , j ∈N (i), j ≠ i{ }

   

f y zi( ) y z j( )!
"#

$
%&
= f y zi( ) y z j( ) , j ∈N (i), j ≠ i!

"#
$
%&
=

= 2πσ i
2( )−1/2

exp −
1

2σ i
2

y zi( ) − µi − cij y z j( ) − µ j( )
i≠ j
∑

!

"
#

$

%
&

2-
.
/

0/

1
2
/

3/

where																											,	and												denote	spa4al	dependence	parameters	that	

are	only	non-zero	if																						.		
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From	these	defini4ons	it	follows	that:	

   
E y zi( ) y z j( ) , j ∈N (i), j ≠ i#
$%

&
'(
= µi + cij y z j( ) − µ j( )

i≠ j
∑

and:		

   
Var y zi( ) y z j( ) , j ∈N (i), j ≠ i#

$%
&
'(
= σ i

2
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Let																									,	where	ε(di)	is	the	variable	associated	with	site	zi.	A	random	
field	is	said	to	be	Gaussian	SAR	(Whiule	1954)	if:	

   
 ε ∝ N 0,σ 2I( )

   
y(zi ) = µi + bij y(z j ) − µ j

"
#

$
% + ε

i≠ j
∑ (zi )

where	bii=0.	In	a	matrix	nota4on	model,	the	above	equa4on	can	be	wriuen	
as:	

  (I − B)(y − µ) = ε

If																											Y	is	mul4variate	normal	such	that:	

   
y ∝ MVN µ,σ 2 (I − B)−1(I − Bt )−1$% &'( )

   Var(ε) = σ 2I
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Some	thoughts	about	X	and	C	in	spa-al	surveys.	
	
•  If	U	is	a	list	of	regularly	or	irregularly	shaped	polygons	defined	
ad	hoc,	C	is	always	available	and	X	can	be	constructed	
summarizing	within	each	polygon	a	classifica4on	of	remotely	
sensed	data	(unless	an	overlay	of	C	with	a	cadaster	is	possible).	

•  If	U	is	a	list	of	points,	X	can	be	only	represented	by	a	design	
matrix	of	codes	of	a	land	use	classifica4on	of	remotely	sensed	
data.	

•  If	U	is	a	list	of	economic	or	social	units,	C	is	rarely	obtainable	(it	
depends	on	the	availability	of	accurate	cadastral	maps)	and	
should	be	made	by	a	map	of	polygons	represen4ng	parcels	of	
land	used	by	each	holding,	while	X	is	usually	filled	with	
administra4ve	data	sources.		
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Consider	the	two	following	samples	obtained	by	SRSWOR	
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The	p(s)	of	these	two	samples	are	exactly	the	same,	p(S)	=	1/C(N,n)	



Spa-ally	Balanced	Samples	
How	to	take	into	account	the	spa4al	informa4on	while	designing	
a	sample?	
	

	
Spa-ally	balanced	samples:	samples	well-spread	over	the	
popula4on	of	interest.	In	this	way,	it	could	be	possible	capture	
the	spa4al	heterogeneity	of	the	popula4on.	
	
Some	theore4cal	mo4va4ons:	
•  Yates-Grundy-Sen	formula4on	of	the	HT	variance.	
•  An4cipated	Variance.	
•  Lemma	decomposi4on.	
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The	 variogram	 (or	 semi	 variogram)	 γy(h)	 whose	 shape	 is	 a	 valuable	
informa4on	to	choose	on	how	and	to	what	extent	the	variance	of	y	is	or	not	a	
func4on	of	the	distance	between	the	sta4s4cal	units.	
•  Yates-Grundy-Sen	formula4on	of	the	HT	variance:	

Semivariogram	

V ŶHT( ) = − 12 π ij −π iπ j( ) yi
π i
−
y j
π j

"

#
$
$

%

&
'
'

j∈U
∑

i∈U
∑

2

1
2
Var y(z)− y(z+h)[ ] = γ (h)
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We	wish	 to	derive	a	model	 that	 relates	each	yv	with	 the	X	observed	 in	past	
surveys	or	other	data	 sources.	We	assume	that	our	prior	knowledge	on	 the	
finite	 popula4on	 can	 be	 viewed	 as	 if	 it	 were	 a	 sample	 from	 an	 infinite	
superpopula4on	 and	 that	 a	model	ξ	 defines	 its	 characteris4cs.	 To	 design	 a	
survey,	we	should	thus	search	for	the	op4mal	an4cipated	variance	(AV)	of	the	
es4mator	of	the	popula4on	total.	This	can	be	defined	as	the	variance	of	the	
random	variable	(								)	under	both	the	design	and	the	model	

	
	

A	typical	assump4on	is	a	linear	model	that	relates	a	target	y	and	an	auxiliary	x	

	

t̂ − t
AV t̂ − t( ) = Eξ Es t̂ − t( )

2"
#$

%
&'{ }− Eξ Es t̂ − t( ){ }"

#
%
&
2

yk = xk
tβ+εk

Eξ εk( ) = 0

Vξ εk( ) =σ k
2

Eξ εkεl( ) =σ kσ lρkl    k ≠ l

#

$

%
%%

&

%
%
%



An)cipated	Variance	
xi	is	a	vector	of	auxiliary	variables,	𝛽		is	a	vector	of	
coefficient	regression,	𝜌ij	is	the	autocorrela4on	ij	is	the	autocorrela4on	
coefficient	and	Em,	Varm	and	Covm	denote,	
respec4vely,	expecta4on,	variance	and	covariance	
with	respect	to	the	model.	
The	An4cipated	Variance	(Isaki	and	Fuller	1982)	of	
HT	es4mator	under	the	model	is	(Grafstrom	and	Tillè	
2013)	
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AV t̂HT − t( ) = Es
xk
π kk∈s

∑ − xk
k∈U
∑

⎛

⎝
⎜

⎞

⎠
⎟

T

β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ σ kσ lρkl
π kl −π kπ l

π kπ ll∈s
∑

k∈s
∑
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Uncertainty	can	be	spliued	into	two	terms:	
	
1.																																												can	be	reduced	through	the	use	of		
	
			balanced	sampling	(Deville	and	Tillè	2004)	
	
2.																																											can	be	reduced	exploi4ng	spa4al		
	
			informa4on												if	ρij	decrease	with	respect	to	distance	
between	units,	then	selec4ng	units	far	apart	reduces	this	
term	

€ 

Es
xi
π i

− xi
i∈U
∑

i∈S
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 'β

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

€ 

σ iσ jρij
π ij −π iπ j

π iπ ji, j∈U
∑
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The	decomposi-on	lemma	
states	that	(Knounerus,	2003,	p.	87):	

	
It	can	be	seen	that	the	HT	es4mator	can	be	more	efficient	by	se+ng	the	first-order	
inclusion	probabili4es	in	such	a	way	that	yk/πk	is	approximately	constant	and/or	by	
defining	 a	 design	 p(s)	 that	 increases	 the	 expected	 within	 sample	 variance.	 The	
intui4ve	explana4on	for	this	is	that	if	a	sample	s	contains	as	much	informa4on	as	
possible,	the	uncertainty	in	the	es4ma4on	process	is	clearly	reduced	to	zero.	This	
considera4on	suggests	that	we	should	find	a	rule	that	makes	the	probability	p(s)	of	
selec4ng	 a	 sample	 s	 propor4onal,	 or	more	 than	 propor4onal,	 to	 its	 variance	 S2.	
This	variance	is	unknown,	because	it	is	rela4ve	to	the	target,	unobserved	variable	
y.	Thus,	this	is	a	purely	theore4cal	topic	unless	we	can	find	auxiliary	informa4on	for	
s.	

σ ⌣y
2 =Vs

⌣ys( )+ n−1n Es S⌣y,s
2( )



Decomposi)on	Lemma	
This	 considera4on	 suggests	 that	 we	 should	 find	 a	 rule	 that	
makes	 the	 probability	 p(s)	 of	 selec4ng	 a	 sample	 s	
propor4onal,	 or	 more	 than	 propor4onal,	 to	 its	 variance	 S2.	
This	variance	is	unknown,	because	it	 is	rela4ve	to	the	target,	
unobserved	variable	y.	Thus,	this	is	a	purely	theore4cal	topic	
unless	we	can	find	auxiliary	informa4on	for	s.	
When	 dealing	 with	 spa4ally	 distributed	 popula4ons,	 a	
promising	 candidate	 for	 this	 rule	 is	 the	 distance	 between	
units,	 as	 evidenced	 in	 spa4al	 interpola4on	 literature	 (Ripley	
1981,	Cressie	1993).	This	 is	because	 it	 is	onen	highly	 related	
to	 the	 variance	 of	 variables	 observed	 on	 a	 set	 of	 geo-
referenced	units.			

	
R.	Benede+,	F.	Piersimoni,	F.	Pantalone	 BaNoCoSS	2019	 27	



R.	Benede+,	F.	Piersimoni,	F.	Pantalone	 BaNoCoSS	2019	 28	

There	could	be	a	lot	of	different	reasons	why	it	is	appropriate	to	
select	samples	which	are	spa4ally	well	distributed:	
1.  y	has	a	linear	or	monotone	spa4al	trend;	
2.  there	 is	 spa4al	 autocorrela4on,	 i.e.	 close	 units	 have	 data	

more	similar	than	distant	units;	
3.  the	y	shows	to	follow	zones	of	local	sta4onarity	of	the	mean	

and/or	 of	 the	 variance,	 i.e.	 a	 spa4al	 stra4fica4on	 exists	 in	
observed	phenomenon;	

4.  the	units	of	the	popula4on	have	a	spa4al	pauern	which	can	
be	clustered,	 i.e.	 the	 intensity	of	 the	units	varies	across	the	
study	region.		
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The	Voronoi	polygon	for	unit	k	of	a	generic	sample	s	includes	all	the	
popula4on	units	closer	to	k	than	to	any	other	unit	in	the	sample.	Let			
	
be	 the	 sum	 of	 the	 inclusion	 probabili4es	 of	 the	 units	 in	 the	 k-th	
Voronoi	 polygon	VP(k).	 Then,	 for	 any	 sample	 unit,	we	will	 have	 an	
expected	value	E(vk)=1.	Addi4onally,	all	the	vks	should	be	close	to	1	
for	 a	 spa4ally	 balanced	 sample	 (Steven	 and	Olsen	2004).	 Thus,	 the	
index	V(vk)	(the	variance	of	the	vk)	can	be	used	as	a	measure	of	the	
spa-al	balance	of	a	sample.	Obviously,	a	lower	value	of	V(vk)	implies	
a	good	spa4ally	balanced	sample.		

vk = π ii∈VP(k )∑

V vk( ) =
vk −1( )2

k∈s∑
n



• Balanced	Sampling	CUBE	
• Systema-c	Sampling	
• Maximal	Stra-fica-on	
• Op-mal	Sampling	Designs	
• DUST	design	
• Sampling	Plans	that	Exclude	Adjiacent	Units	
• Generalized	Random	Tessella-on	Sampling	(GRTS)	
• Spa-ally	Correlated	Poisson	Sampling	(SCPS)	
• Local	Pivotal	Method	(LPM)	
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Which	is	the	“best”	sample	?	

Which is the “best” sample ? 

OK, we like the position in the middle, but why ? 
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Select	samples	with	the	important	property	:	
	
Note	that	many	sampling	designs	can	be	viewed	as	par4cular	cases	
of	balanced	sampling.	For	example,	 stra4fied	sampling	can	also	be	
defined	as	a	design	respec4ng	the	constraint	:	
	
Where	ϕkhs	are	 indicator	variables	equal	 to	1	 if	 the	unit	k	 is	 in	 the	
stratum	h,	and	0	otherwise.	
The	 algorithm	 consists	 of	 two	 main	 procedures:	 the	 flight	 and	
landing	phases.	 During	 the	 first	 phase,	 the	 constraints	 are	 always	
exactly	 sa4sfied.	 The	objec4ve	 is	 to	 randomly	 round-off	 almost	 all	
the	 πκs	 to	 0	 or	 1.	 The	 landing	 phase	 addresses	 the	 fact	 that	 the	
constraint	cannot	always	be	exactly	sa4sfied.		

dkxkj
k∈s
∑ = t̂HT ,x j

= tx j = xkj
k∈U
∑  ∀ j =1,…,q

dkϕkh
k∈s
∑ = ϕkh = Nh

k∈U
∑ ,  ∀ h =1,…,H
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Following	 Tillé	 (2011),	 we	 can	 summarize	 the	 main	 features	 of	
balanced	sampling	as	follows:		
•  It	increases	the	accuracy	of	the	HT	es4mator,	because	its	variance	
depends	 only	 on	 the	 regression	 residuals	 of	 the	 variable	 of	
interest	by	the	balancing	variables.	

•  It	 protects	 against	 large	 sampling	 errors,	 because	 the	 most	
unfavorable	samples	have	a	null	probability	of	being	selected.	

•  It	protects	against	a	misspecifica4on	of	the	model	within	a	model-
based	inference.	

•  It	can	ensure	that	the	sample	sizes	in	planned	domains	are	not	too	
small,	or	even	equal	to	zero.	By	adding	the	 indicator	variables	of	
the	planned	domains	to	the	list	of	balanced	auxiliaries,	we	can	fix	
the	sample	size	for	each	domain.		
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Constraint on the 1st and 2nd 
moments = assume a quadratic 
spatial trend 

Constraint	on	the	1st	moment	=	
Assume	a	linear	spa4al	trend	

Constraint on a Penalized Spline that fit the 
spatial trend (Breidt and Chauvet, 2012) 



> library(sampling) 

> n <- 100 

> N <- 1000 

> set.seed(200694) 

> par(mar=c(1,1,1,1), xaxs="i",yaxs="i") 

> plot(framepop$xc,framepop$yc,  

  +    axes=F,cex=0.5,pch=19,  

  +    xlim=c(0,1),ylim=c(0,1)) 

> box() 

> set.seed(200694) 

> pik <- rep(n/N,N) 

> X   <- as.matrix(cbind(framepop$xc,framepop$yc)) 

> bal <- samplecube(X,pik,comment=TRUE,method=1) 
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BEGINNING OF THE FLIGHT PHASE 

The matrix of balanced variable has 2  variables and  1000  units 

The size of the inclusion probability vector is  1000  

The sum of the inclusion probability vector is  100  

The inclusion probability vector has  1000  non-integer elements 

Step 1  

BEGINNING OF THE LANDING PHASE 

At the end of the flight phase, there remain  2 non integer 
probabilities  

The sum of these probabilities is  0.6969337  

This sum is  non-integer 

The linear program will consider  3  possible samples 

The mean cost is  0.0003727694  

The smallest cost is  0.0001680449  

The largest cost is  0.0006208612  
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The cost of the selected sample is 
0.0006208612 
QUALITY OF BALANCING 
    TOTALS HorvitzThompson_estimators 
Relative_deviation 
1 494.0807                   492.2161         
-0.3773813 
2 494.8565                   496.1754          
0.2665137 
  
>sum(bal) 
[1] 105 
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!

>set.seed(200694) 
>X   <- as.matrix(cbind(pik,framepop$xc,framepop
$yc)) 
>bal1 <- samplecube(X,pik,comment=TRUE,method=1) 
BEGINNING OF THE FLIGHT PHASE 
QUALITY OF BALANCING 
      TOTALS HorvitzThompson_estimators 
Relative_deviation 
pik 100.0000                   100.0000       
1.406875e-12 
2   494.0807                   491.0461      
-6.141966e-01 
3   494.8565                   495.9795       
2.269404e-01 
>sum(bal1) 
[1] 100 
>framebal <- framepop[bal1==1,] 
>points(framebal$xc,framebal$yc, pch=1, cex=2) 
>sbi(ds,rep(n/N,N),(1:1000)[bal1==1]) 
[1] 0.3242424  
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Some	references	about	Balanced	Sampling.	
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•  Tillé	Y	(2006).	Sampling	algorithms.	Springer	series	in	sta4s4cs.	Springer,	New	York.	

•  Tillé	Y	(2011).	Ten	years	of	balanced	sampling	with	the	cube	method:	An	appraisal.	Survey	
Methodology,	37:	215–226.	

•  Tillé	Y,	Favre	AC	(2005).	Op4mal	alloca4on	in	balanced	sampling.	Sta4s4cs	&	Probability	
Leuers,	74:	31–37.	



Systema4c	 sampling	 has	 a	 long	 tradi4on	 in	 survey	 sampling.	
When	applied	to	a	list	frame	of	individuals	or	families,	it	can	be	
referred	 to	 as	 the	 every	 r-th	 rule.	 The	 main	 parameter	 of	 the	
method	 is	 r,	 which	 is	 the	 number	 of	 units	 between	 each	 unit	
selected	 from	 the	 sample,	 according	 to	a	given	ordering	of	 the	
popula4on.	 The	 randomiza4on	principle	 is	 typically	 retained	by	
using	a	random	star4ng	point	and	a	fixed	interval	r.	
This	 scheme	 is	 a	 widely	 used	 technique	 in	 survey	 sampling	
because	of	its	simplicity,	par4cularly	when	the	units	are	selected	
with	equal	probability,	but	also	with	probabili4es	propor4onal	to	
an	auxiliary	size	measure.	
Systema4c	 sampling	 is	 also	 a	 common	 design	 for	 spa4ally	
distributed	 popula4ons.	 If	 the	 ordering	 uses	 the	 coordinate	
system	 that	 geo-codes	 the	 popula4on	 frame,	 it	 has	 the	
addi4onal	advantage	that	it	has	a	good	spa4al	coverage.	It	is	an	
efficient	method	for	sampling	autocorrelated	popula4ons.	
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Disadvantages	
	
•  Because	all	the	second-order	probabili4es	are	equal	to	
zero	within	each	step	r,	there	is	no	unbiased	method	for	
es4ma4ng	the	sampling	variance.	

•  The	ra4o	N/n	is	not	typically	an	integer,	so	it	is	onen	
impossible	to	find	a	step	r	that	is	suitable	for	finding	
exactly	n	sampling	units.	This	prac4cal	difficulty	may	
become	relevant	when	the	selec4on	should	be	repeated	
in	groups	of	homogeneous	units	of	the	popula4on,	or	in	
spa4al	frames	where	we	need	at	least	a	pair	(rx,	ry)	of	step	
parameters	(one	for	each	dimension).	
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> set.seed(200694) 

> startx <- sample(1:5,1) 

> starty <- sample(1:5,1) 

> datasys <- matrix(0,2500,3) 

> init <- 0 

> for (xc in seq(0.01,0.99,0.02)) 

+ { 

+   for (yc in seq(0.01,0.99,0.02)) 

+   { 

+     init <- init + 1 

+     datasys[init,1] <- xc 

+     datasys[init,2] <- yc 

+     datasys[init,3]=ifelse((abs((xc %% 0.1)-(startx/50-0.01)) 

+              +abs((yc %% 0.1)-(starty/50-0.01)) < 0.001),1,0) 

+   } 

+ } 
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> par(mar=c(1,1,1,1), xaxs="i", 

+ yaxs="i") 

> plot(datasys[,1],datasys[,2], 

+ axes=F,cex=0.5, 

+ pch=19,xlim=c(0,1),ylim=c(0,1)) 

> for (i in seq(0.1,0.9,0.1)) 

+ { 

+   abline(h=i,lty=2,lwd=2) 

+   abline(v=i,lty=2,lwd=2)   

+ } 

> points(datasys[datasys[,3] 

+  ==1,1],datasys[datasys[,3] 

+  ==1,2],pch=1, cex=2) 

> box() 
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An	intui4ve	way	to	produce	samples	that	are	well	spread	over	
the	popula4on,	widely	used	by	prac44oners,	is	to	stra4fy	the	
units	of	the	popula4on	on	the	basis	of	their	loca4on.	
	
A	maximal	stra4fica4on,	i.e.	par44oning	the	study	in	as	many	
strata	as	possible	and	selec4ng	one	or	two	units	per	stratum.	
The	basic	principle	is	to	extend	the	use	of	systema4c	sampling	to	
two	or	more	dimensions.	The	problems	arising	from	such	a	
fragmenta4on	of	the	popula4on	is	onen	reflected	in	the	
following	unfavorable	issues:	
	
•  If	we	allocate	less	than	a	fixed	threshold	(say	Th)	to	a	generic	
stratum	h,	we	typically	have	nh	=Th	with	a	consequent	fic44ous	
increase	of	the	sample	size.	
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•  If	the	effec4ve	number	of	observed	units	rh	in	a	stratum	is	
less	 than	 2	 because	 of	 non-responses,	 it	 is	 no	 longer	
possible	 to	 es4mate	 the	 variability	 and	 accuracy	 of	 the	
sample.	 If	 rh=0,	 it	 is	 not	 even	 possible	 to	 produce	 point	
es4mates.	

•  It	 is	 difficult	 to	manage	 panel	 rota4ons	 or	more	 general	
sample	 coordina4on	 (between	 mul4ple	 surveys)	 in	 an	
under-represented	stratum.	

In	these	cases,	liule	can	be	done	unless	we	accept	solu4ons	
that	are	not	methodologically	desirable,	but	that	introduce	
as	few	bias	as	possible.	A	prac4cal	solu4on	is	the	posterior	
aggrega4on	of	similar	strata.		
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> library(sampling) 

> library(survey) 

> n <- 100 

> N <- 1000 

> set.seed(160964) 

> framepop <- data.frame(id = 1:N, 

+ xc = runif(N), yc = runif(N)) 

> yobs<-(exp((framepop$xc-0.5)^2)+exp((framepop$yc-0.5)^2)) 

> yobs <- 100-((yobs-min(yobs))/(max(yobs- 

        + min(yobs))))*100+(rnorm(N)+5)*5 

> q1obs <- sample(1:3,N,replace=T) 
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> q2obs <- as.numeric(cut(yobs,quantile(yobs,probs = 

+          seq(0, 1, 0.2)))) 

> q2obs[is.na(q2obs)] <- 1	

>framepop<-cbind(framepop,strataid2  
+                  = floor(framepop$xc*10)*10 
+                  + floor(framepop$yc*10)) 

>table(framepop$strataid2) 
>set.seed(200694) 
>str <- strata(framepop,"strataid2",size=rep(1,100), 
+       method="srswor") 
>str <- getdata(framepop,str) 
>table(str$strataid2) 
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!

> par(mar=c(1,1,1,1), 
+     xaxs="i",yaxs="i") 
> plot(framepop$xc,framepo$yc, 
+  axes=F,cex=0.5, 
+  pch=19,xlim=c(0,1), 
+  ylim=c(0,1)) 
> for (i in seq(0.1,0.9,0.1)) 
+ { 
+   abline(h=i,lty=2,lwd=2) 
+   abline(v=i,lty=2,lwd=2)   
+ } 
> box() 
> points(str$xc,str$yc,pch=1,cex=2) 
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Some	references	about	Maximal	Stra4fica4on	&	Systema4c	Sampling.	
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Sampling	 schemes	 for	 spa4al	 units	 can	 be	 reasonably	 treated	 by	
introducing	a	suitable	model	of	spa4al	dependence	within	a	model-
based.	 However	 under	 this	 assump4on	 the	 concern	 consist	
necessarily	 in	 finding	 the	 sample	 configura4on	 that	 is	 the	 best	
representa4ve	 of	 the	 whole	 popula4on	 and	 leads	 to	 define	 our	
selec4on	 as	 a	 combinatorial	 op4miza4on	 problem	 (Benede+	 and	
Palma	1995).	If	we	define	a	model	ξ	:	
	
We	can	 choose	 the	 sample	 s	 that	minimize	 the	MSE	of	 the	model-
based	predic4on	:	
	
	
Usually	it	is	the	sample	that	maximize	the	distance	between	units.	

Eξ (Y) =Xβ
Varξ (Y) =V

min
s

Varξ θ̂ −θ( ) = γst Vss +XsAs
−1X−1

s( ) γs{ }
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If	 there	exists	some	ordering	of	 the	units,	and	con4guous	units	
are	 an4cipated	 to	 provide	 similar	 data,	 Hedayat	 et	 al.	 (1988b)	
suggested	 that	 more	 informa4on	 could	 be	 obtained	 if	 the	
sample	avoids	pairs	of	con4guous	units.	 It	 is	 interes4ng	to	note	
that	 this	 feature	 is	 considered	 so	 important	 that	 it	 was	
suggested	 by	 Hedayat	 et	 al.	 (1988b)	 as	 a	 prac4cal	 solu4on.	 In	
fact,	they	observe	that		
“if	in	any	observed	sample	con4guous	(or	close	to	each	other	in	
some	sense)	units	occur,	they	may	be	collapsed	into	a	single	unit	
with	 the	 corresponding	 response	 as	 the	 average	 observed	
response	 over	 these	 units.	 An	 es4mate	 of	 the	 unknown	
parameter	is	then	made	on	the	basis	of	such	a	reduced	sample”.	
The	 basic	 design	was	 suggested	 by	 Hedayat	 et	 al.	 (1988a)	 and	
called	 balanced	 sampling	 design	 excluding	 con4guous	 units	
(BSEC).	It	is	a	fixed	size	n	design	where	πkl	=	0	if	the	units	k	and	l	are	 con4guous,	 and	 all	 other	 πkls	 are	 equal	 to	 an	 appropriate	constant.		
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A	theore4cal	comparison	of	the	variance	of	this	design	with	the	
classical	benchmark	represented	by	SRS	shows	that,	when	using	
the	HT	es4mator	for	the	total,	BSEC	represents	a	beuer	strategy	
if	and	only	if	
	
where	ρ1	 is	 the	 first-order	 circular	 serial	 correla4on	 coefficient	
between	the	units	and	is	given	by	

	
It	is	interes4ng	to	note	that	a	similar	role	is	played	by	the	sample	
autocorrela-on	coefficient	defined	as																															,	where	C	
is	 the	covariance	and	S	 is	 the	variance	of	 the	survey	variable	y.	
Using	the	decomposi4on,	this	can	be	shown	to	have	the	bounds	
(Knounerus	2003,	p.	89)		
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ρ1 > −
1

N −1

ρ1 = yk −µy( ) yk+1 −µy( )
k∈U
∑ Nσ 2

−
1
n−1

≤ ρ ⌣y ≤1

ρ ⌣y =Ck≠l∈U (
⌣yk,
⌣yl ) s⌣y

2



Arbia	 (1993)	 was	 inspired	 by	 purely	 model-based	 assump4ons	
on	the	dependence	of	the	stochas4c	process	that	generates	the	
data,	according	to	the	algorithm	types	iden4fied	by	Tillé	(2006).	
Arbia	 (1993)	 suggested	 a	 draw-by-draw	 scheme	 called	 the	
dependent	 areal	 units	 sequen4al	 technique	 (DUST).	 The	
proper4es	of	DUST	 can	be	also	 analyzed	within	 a	design-based	
framework,	because	it	respects	the	randomiza4on	principle.		
The	main	argument	for	this	method	was	that		
“it	 is	 intui-vely	 clear	 that,	 when	we	 have	 a	 clue	 of	 the	 spa-al	
correla-on	 structure	 underlying	 the	 spa-al	 phenomenon	 to	 be	
sampled,	it	is	desirable	to	exploit	this	informa-on	in	the	sampling	
design.	 In	 this	way	we	 could	avoid	duplicate	 informa-on	partly	
contained	 in	 areas	 already	 sampled	 and	 we	 can	 economize	
sampling	costs	without	loosing	reliability	of	the	es-mates”		
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The	DUST	algorithm	starts	by	randomly	selec4ng	a	unit	k.	Then,	
at	 every	 step	 t<n,	 the	 algorithm	 updates	 the	 selec4on	
probabili4es	of	any	other	unit	(l)	of	the	popula4on	according	to	
the	rule	
	
	
where	λ	is	a	tuning	parameter	used	to	control	the	distribu4on	of	
the	 sample	 over	 the	 study	 region,	 and	 dkl	 is	 a	 measure	 of	
distance	between	unit	k	and	l.		
This	algorithm,	or	at	least	the	sampling	design	that	it	implies,	can	
easily	be	interpreted	and	analyzed	in	a	design-based	perspec4ve,	
with	 par4cular	 reference	 to	 a	 detailed	 empirical	 assessment	 of	
the	 first	 and	 second-order	 inclusion	 probabili4es	 because	 they	
are	theore4cally	unknown.	
Problem	:	are	the	obtained	πk*	equal	to	the	design	πk?	NO	
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π l
(t ) = π l

(t−1) 1−λ dkl( )
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Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

Unità selezionate 1 Unità selezionate 2

Unità selezionate 3 Unità selezionate 4

Unità selezionate 5 Unità selezionate 6

1	 2	 3	

4	 5	 6	
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> DUST <- function (matraux,nsamp,bdis=2,nrepl=1) 
+ { 
+   selez<-matrix(0,nsamp*nrepl,2) 
+   npo<-nrow(matraux) 
+   dis<-as.matrix(dist(matraux)) 
+   dis<-1-exp(-bdis*(dis)) 
+   for (cc in 1:nrepl) 
+   { 
+     psel<-rep(1/npo,npo) 
+     for (j in 1:nsamp) 
+     { 
+       selez[(cc-1)*nsamp+j,1]<-cc 
+       selez[(cc-1)*nsamp+j,2]<-sample(1:npo,1,prob=psel) 
+       psel=psel*dis[selez[(cc-1)*nsamp+j,2],] 
+       psel=psel/sum(psel) 
+     } 
+   } 
+   selez 
+ } 
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!

> n <- 100 
> N <- 1000 
> set.seed(200694) 
> X <- cbind(framepop$xc,framepop$yc) 
> DUSTsel <- DUST(X,n,bdis=10)  
> nrow(DUSTsel) 
[1] 100 
>sbi(ds,rep(n/N,N),DUSTsel[,2]) 
[1] 0.2830303  
>par(mar=c(1,1,1,1), xaxs="i", 
+ yaxs="i") 
>plot(framepop$xc,framepop$yc, 
+ axes=F, cex=0.5,pch=19, 
+      xlim=c(0,1),ylim=c(0,1)) 
>points(framepop$xc[DUSTsel[,2]], 
+ framepop$yc[DUSTsel[,2]], 
+        pch=1, cex=2) 
>box()  



•  Idea:	map	two-dimensional	spa4al	popula4on	into	one-
dimensional	popula4on	while	preserving	some	spa4al	order.	

•  Sampling	mechanism:	
1.  the	sampling	units	are	sorted	according	to	a	recursive,	

hierarchical	randomiza4on	process,	which	tries	to	preserve	
the	spa4al	rela4onship	of	the	units;		

2.  the	sampling	units	are	ordered	by	means	of	a	func4on	𝑓,	
which	maps	the	two-dimensional	space	of	the	popula4on	
into	one-dimensional	space,	then	defining	an	ordered	spa4al	
address;	

3.  the	one-dimensional	space	of	units	(i.e.	a	line)	obtained	by	
the	previous	steps	is	then	divided	into	a	number	of	equal-
length	segments.	This	division	depends	on	the	request	on	
the	requested	sample	size,	since	one	unit	is	selected	
randomly	from	each	segment	(hence,	the	line	is	divided	in	𝑛	
segments).	

	
R.	Benede+,	F.	Piersimoni,	F.	Pantalone	 BaNoCoSS	2019	 61	



R.	Benede+,	F.	Piersimoni,	F.	Pantalone	 BaNoCoSS	2019	 62	

!
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Example,	Equal	probabili4es	πi	
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Example,	Unequal	probabili4es	πi	



Advantages	

•  Spa4al	balance.	
•  It	can	be	used	for	sampling	point,	linear	features	and	not	
con4guous	phenomena.	

•  Possibility	to	sample	with	unequal	probability.	
•  Prac4cal	and	can	be	applied	even	in	problema4c	
situa4ons	like	poor	frame	informa4on	and	irregular	space	
pauern.	
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Disadvantages	

•  Only	applicable	over	units	with	a	pair	of	coordinates	(.	
•  Possibility	to	lose	some	spa4al	rela4onship	during	the	use	of	.	

Reference	
	

•  Reference:	Steven	and	Olsen	2004.	
	

R	package		
	

•  spsurvey	(Kincaid	and	Olsen	2016).	
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Some	references	about	GRTS.	

•  Barabesi	L,	Franceschi	S	(2011).	Sampling	proper4es	of	spa4al	total	es4mators	under	
Tessella4on	Stra4fied	Designs.	Environmetrics,	22:	271–278.	

•  Stevens	DL	Jr	(1997).	Variable	density	grid-based	sampling	designs	for	con4nuous	spa4al	
popula4on.	Environmetrics,	8:	167-195.	

•  Stevens	DL	Jr,	Olsen	AR	(1999).	Spa4ally	restricted	surveys	over	4me	for	aqua4c	resources.	
Journal	of	Agricultural,	Biological,	and	Environmental	Sta4s4cs,	4:	415-428.	

•  Stevens	DL	Jr,	Olsen	AR	(2003).	Variance	es4ma4on	for	spa4ally	balanced	samples	of	
environmental	resources.	Environmetrics,	14:	593–610.	

•  Stevens	DL	Jr,	Olsen	AR	(2004).	Spa4ally	balanced	sampling	of	natural	resources.	Journal	of	
the	American	Sta4s4cal	Associa4on,	99:	262–278	
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It is difficult to modify the second-order inclusion 
probabilities while preserving fixed πk. Bondesson and 
Grafström (2011) extended Sampford’s method to 
address this issue by defining a procedure that appears 
to be only in one dimension, but that actually explores 
two dimensions of spatial units. On the basis of this 
result, Grafström (2012) proposed a method called 
spatially correlated Poisson sampling (SCPS). 
The sequential nature of the list means that we first 
decide the sampling outcome for the first unit of a 
(possibly previously randomly sorted) list, then for the 
second unit, and so on until n units have been selected. 
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If Unit 1 is included with probability             , we set I1 =1, 
otherwise I1=0. After each step, the inclusion probabilities for 
the remaining units in the list are updated according to a 
specific rule. We start with                   , for k≥1. 
At step t, the values of I1, I2,…, It-1 are known, and we select 
unit t with probability        . We update the generic unit k≥t+1 
according to                                              , where        are 
weights that depend on I1, I2,…, It-1 but not on It . 
To preserve the fixed first-order inclusion probabilities, the 
weight that we can give to a unit is limited by  
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One very interesting property is that the maximal weights 
strategy locally balances the sample size, like a form of 
loose spatial maximal stratification without fixed and 
accurate borders. This local property can be better 
appreciated by showing that, if the study region is 
partitioned into two strata, A and B, so that units within 
the same stratum are always closer than units belonging 
to different strata,   
 
are asymptotically equal to nA and nB, respectively. Then 
the maximal weights method will approximately select  
units from A and  from B. Therefore, it locally satisfies the 
theoretical basis of the spatial balance index.  

π ll∈A∑  and π ll∈B∑
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Advantages	

•  Unequal	Probability	Sampling	

Reference	
	

•  Reference:	Grafstrom	2012.	
	

R	package		
	

•  BalancedSampling (Grafstrom and Lisic 2016	
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Using a similar technique, Grafström et al. (2012) derived 
two alternative procedures for selecting samples with 
fixed πk and correlated inclusion probabilities, as an 
extension of the pivotal method for selecting πps 
samples (Deville and Tillé 1998). They are essentially 
based on an updating rule for the probabilities πk and πl. 
At each step, the rules state that the sum of the updated 
probabilities is as locally constant as possible, and that 
they differ from each other in the way that the two nearby 
units k and l are chosen. These two methods are referred 
to as the local pivotal method 1 (LPM1), which the 
authors suggest is better spatially balanced, and the local 
pivotal method 2 (LPM2), which is simpler and faster. 
A sample is obtained in N steps. At each step, the 
inclusion probabilities for two units are updated, and the 
sampling outcome is decided for at least one the units.  
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Using a similar technique, Grafström et al. (2012) derived 
two alternative procedures for selecting samples with fixed πk 
and correlated inclusion probabilities, as an extension of the 
pivotal method for selecting πps samples (Deville and Tillé 
1998). They are essentially based on an updating rule for the 
probabilities πk and πl. At each step, the rules state that the 
sum of the updated probabilities is as locally constant as 
possible, and that they differ from each other in the way that 
the two nearby units k and l are chosen. These two methods 
are referred to as the local pivotal method 1 (LPM1), which 
the authors suggest is better spatially balanced, and the local 
pivotal method 2 (LPM2), which is simpler and faster. 
A sample is obtained in N steps. At each step, the inclusion 
probabilities for two units are updated, and the sampling 
outcome is decided for at least one the units.  
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Deville and Tillé (1998) suggested randomly choosing a 
pair of units at each step to maximize the entropy of the 
selected units. Grafström et al. (2012) introduced LPMs 
that update the inclusion probabilities according to the 
same updating rule of Deville and Tillé (1998) but for two 
nearby units, improving the spatial balance.  
LPM1 randomly chooses the first unit k, and then the 
closer unit l (if two or more units are the same distance 
from k, the method randomly chooses between them). If 
k is the nearest neighbor of l, then the inclusion 
probabilities are updated as follows. 
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If πk + πl <1, then  
 
 
 
 
or, if πk + πl ≥1, then 
 
 
 
 
The expected number of computations for this algorithm is at 
worst proportional to N3, and at best proportional to N2. 
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Advantages	

•  Unequal	Probability	Sampling	

Reference	
	

•  Reference:	Grafstrom	2012.	
	

R	package		
	

•  BalancedSampling (Grafstrom and Lisic 2016)	
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Grafström	 and	 Tillé	 (2013)	 combined	 their	 techniques	 (i.e.,	
the	LPM	and	the	CUBE),	proposing	a	new	method	that	aims	to	
achieve	 a	 double	 property	 of	 balancing.	 This	 new	 method	
ensures	that	the	sample	is	well-spread	avoiding	the	selec4on	
of	selec4ng	neighboring	units	 (i.e.,	as	the	LPM).	Besides,	 the	
method	also	allows	sa4sfying	balancing	equa4ons	on	auxiliary	
variables	 that	 are	 available	 on	 all	 the	 sampling	 spa4al	 units	
(i.e.,	 as	 the	 CUBE).	 This	 method	 is	 denoted	 as	 doubly	
balanced	spa4al	sampling	(DBSS).		
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Advantages	

•  Unequal	Probability	Sampling,	Balanced	on	a	set	of	covariates	X	

Reference	
	

•  Reference:	Grafstrom	and	Tillé	2013.	
	

R	package		
	

•  BalancedSampling (Grafstrom and Lisic 2016)	
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Halton	 sequences	 are	 sequences	used	 to	 generate	points	 in	
space	 for	 numerical	 methods	 such	 as	 Monte	 Carlo	
simula4ons.	 Although	 these	 sequences	 are	 determinis4c,	
they	are	of	low	discrepancy,	that	is,	appear	to	be	random	for	
many	purposes	(pseudo	random).	They	were	first	introduced	
in	 1960	 and	 are	 an	 example	 of	 a	 quasi-random	 number	
sequence.	 They	 generalise	 the	 one-dimensional	 van	 der	
Corput	sequences.	
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Advantages	
•  Very	simple,	con4nuous	popula4ons	

Reference	
•  Reference:	Robertson	et	al.	2013.	

	

R	packages		
•  randtoolbox(Chalabi, Dutang, Savicky and 
Wuertz, 2016) 

•  SDraw (McDonald, T. L. 2016) 
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