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ABSTRACT

While a large literature on return predictability has shown a link between val-
uation levels and expected rates of returns, we document a link between valuation
levels and the shape of the distribution of cumulative (for example, over 12 and
24 months) total returns. Return distributions become more asymmetric and neg-
atively skewed when valuation levels are high. In contrast, they are roughly sym-
metric when valuation levels are low. These results turn out to be very robust to
alternative (a) measures of valuation levels, (b) model specifications and (c) equity
markets, shed light on how equity prices regress back to their means conditional
on valuation levels and have important practical implications for risk measurement
and asset management. Conceptually, our empirical results support asset pricing
models that have asymmetric responses to shocks, such as stochastic bubbles, lig-
uidity spirals or models with time-varying risk aversion.
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1 Introduction

A large literature has looked at the time-variation in expected rates of returns and
the link between prices, dividends and discount rates (see, for example, Cochrane
(2011) and Fama (2013) for recent discussions of that literature; Golez and Koudijs
(2016) evaluate this link using four centuries of data). The goal of this paper is to
provide a fresh view on this important question in empirical asset pricing. Specif-
ically, we look beyond the mean of the return distribution and focus on the shape
of the predictive return distribution. The key innovation of the paper is that we
model the shape to depend on a valuation ratio such as the cyclically-adjusted
price-earnings ratio or the book-to-market ratio.

Our empirical analysis is motivated by a quick look into the data. Figure 2 re-
ports histograms of observed cumulative 12-month total log-returns conditional on
valuation ratios being HIGH (top quartile) and LOW (bottom quartile) and high-
lights a pronounced shift in the shape of the distribution: while it looks symmetric
in the case of low valuation ratios, it becomes negatively skewed for higher valu-
ation ratios. While many practitioners seem to be well aware of this conditional
asymmetry of the return distribution (for example, when they describe dynamics
in equity markets as “up the stairs, down the elevator”) we are not aware of any
academic study that documents this strong and intuitive pattern and that models it
in econometric terms.

Such an asymmetry has important economic implications. While the existing
literature on return predictability helps us understand the dynamics of time-varying
expected rates of return, it does not explain how the reversion to that mean will
actually occur. For example, when valuations are high (low), how will prices adjust
reflecting the expected low (high) returns? Is this adjustment more likely to happen
smoothly or rather abruptly? Another central question in this literature is about
the interpretation of long-lasting deviations of market values from fundamentals:
do these patterns reflect (rational) bubbles? Put differently, why is the timing of
market reversals so difficult even at extremely high valuations? These are precisely
the questions we will address in this paper.

Specifically, we propose an econometric framework that is simple but flexible
enough to model the asymmetry of the return distribution as a function of a valu-
ation ratio and, at the same time, nests the standard, linear predictive regressions
as a special case. In more detail, we compare the model with conditional skewness
to two benchmark models; one that implies a symmetric distribution, and one that
implies a distribution with constant skewness. To reflect the well-known fact that
equity returns have fat tails and to avoid any confounding effects between excess
kurtosis and skewness of the estimated return distributions, we use the (skew) T-
distribution to model returns instead of the (skew) normal distribution. For some



comparisons, however, we also refer back to the standard Gaussian model.

Relative to the standard, linear predictive regression, our main empirical model
with conditional skewness has very similar implications for mean prediction. How-
ever, the model is powerful enough to help us understand how regression to the
mean works. Using this framework and the standard US data, we find strong sta-
tistical evidence that the shape of the return distribution varies conditional on the
valuation ratio and that the distribution becomes more negatively skewed when val-
uation ratios are high. Put differently, our empirical evidence documents that if val-
uations are high, regression to the mean is more likely to happen with strongly neg-
ative returns; in contrast, if valuations are low it is more likely to happen smoothly.

The model with conditional skewness is well-supported by the data. Its log
likelihood exceeds those of the competing benchmark models; and the parameter
governing the link between valuation levels and the shape of the return distribu-
tion is statistically significant. These results are very robust across different sub-
samples (pre-1945 and post-1945 samples), returns horizons (12-month and 24-
month returns), proxies for valuation ratios (the cyclically-adjusted price-earnings
CAPE ratio, the margin-adjusted CAPE ratio, the book-to-market ratio and past
5-year returns), model specifications (also allowing conditional dispersion to de-
pend on the valuation level) and international equity markets (the UK or a global
portfolio of international equity indices).

Interestingly, when valuation ratios are very high the most likely value of the
future return (i.e., the mode of the predictive distribution) still remains positive (in
fact roughly unchanged) in our empirical analysis showing that timing the top of
a bull market is made inherently more difficult as a consequence of time-varying
skewness. Conversely, since at low valuations our predictive distributions become
approximately symmetric, very low valuations have higher power to forecast mar-
ket direction.

Regarding the predictability of conditional mean returns, our results are in line
with the existing literature. One characteristic of a very asymmetric distribution,
like the one we find when valuation ratios are high, is that it takes more observa-
tions to learn about the conditional mean with sufficient accuracy. In contrast, for
symmetric distributions, like the ones we find for lowest valuation ratios, learning
about the conditional mean tends to happen faster. Thus, our results could pro-
vide an explanation for the robust finding in the literature that evidence on mean
predictability is stronger during recessions than during expansions given that re-
cessions (expansions) have some tendency to overlap with periods of low (high)
valuations.

Our empirical results have important implications for investors, asset managers
and risk managers. Obviously, ignoring that the return distribution becomes very
negatively skewed when valuation levels are high leads to severe underestimation



of risk measures such as volatility, value-at-risk and expected-tail-loss. These is-
sues of underestimation of risk hold for the standard Gaussian model as well as the
two benchmark models that we evaluate empirically, a model assuming a symmet-
ric T-distribution and a model assuming a T-distribution with constant skewness.
For example, while a symmetric T-distribution, with parameters estimated from
the full sample, implies a 1% value-at-risk of -45% (-36% simple returns) for 12-
month cumulative total log returns when valuation levels are high, our model with
conditional skewness implies a 1% value-at-risk of -71% (-51% simple returns) in
this case.

Interestingly, we observe the mirror-image of this pattern, albeit to a less ex-
treme extent, when valuation levels are low. In this case, the Gaussian model and
our benchmark models overestimate risk for any risk measure that we look at.
For example, while a symmetric T-distribution estimates the 1% value-at-risk to
be -28% for 12-month cumulative total returns when valuation levels are low, our
model with conditional skewness implies a 1% value-at-risk of -23% in this case.
Thus, from an investor’s point of view ignoring the conditional skewness is a lose-
lose situation. For example, a mean-variance investor using a Gaussian model (or,
more generally speaking, any estimate of realized volatility from a standard model)
would invest too aggressively in the market when valuation ratios are already high
but too conservatively when valuation ratios are low.!

Finally, we also use our framework to evaluate the current situation (as of May
2018), which is characterized by an extended period of rising market prices and
valuation levels. Consistent with our main results, we predict that the distribu-
tions of future 12-month and 24-month returns are very negatively-skewed, exhibit
substantial downside risk and feature low expected rates of return.

The remainder of the paper is organized as follows. In Section 2 we summa-
rize the related literature focusing on theoretical models consistent with our em-
pirical results. In Section 3, we describe the empirical model and the predictive
framework. Section 4 describes the data used in our analysis and provides some
descriptive statistics. Section 5 summarizes the empirical results including robust-
ness tests and an evaluation of the current situation (as of May 2018). Section 6,
finally, concludes.

IRecently asset management strategies based on volatility, such as risk parity and volatility tar-
geting, have become increasingly popular (see, for example, Moreira and Muir (2017)). Obviously,
such strategies are very sensitive to accurate predictions of future volatilities.



2 Related Literature

Several theories have been proposed to rationalize negative skewness in asset re-
turns. Among these the “leverage effect” (a drop in market valuations increases
leverage ratios and, as a consequence, increases volatility of subsequent returns)
and the “volatility feedback effect” (bad news lowers future expected cash-flows
and increases the risk premium; good news, in contrast, increases future expected
cash-flows but, again increases the risk premium resulting in a dampened overall
effect) have been found to lack the quantitative importance to explain the data (see,
for example, Bekaert and Wu (2000) and Poterba and Summers (1986)). Chen,
Hong, and Stein (2001) propose and evaluate an alternative explanation based
on heterogeneous investors, differences in opinions and short-sale constraints for
some investors. Hueng and McDonald (2005), however, find no support for this
explanation in the case of aggregate stock market returns.

Importantly, however, the theories discussed in the previous paragraph fail to
rationalize that the shape of the return distribution varies with valuation ratios.
A theoretical motivation that overcomes this shortcoming is linked to stochastic
rational bubbles, as first developed by Blanchard and Watson (1982). In these
models, the stock price is the sum of a fundamental price and a bubble compo-
nent. The bubble is stochastic, as it continues with a given probability p and bursts
with probability (/-p). Importantly, the model explicitly links the shape of the
predictive distribution to the valuation ratio. If one, for example, assumes that
the fundamental price follows a symmetric distribution then the Blanchard-Watson
model implies a symmetric predictive distribution at low valuations (in this case,
the bubble component is zero); at high valuations, however, the predictive distri-
bution becomes increasingly left skewed as a mixture of two distributions. This
would be consistent with our empirical results.?

Another theoretical framework that fits our empirical results is the one on fund-
ing liquidity and liquidity spirals proposed in Brunnermeier and Pedersen (2009)
and evaluated for carry trades in Brunnermeier, Nagel, and Pedersen (2008). In
that framework, assets that speculators invest in feature negative skewness aris-
ing from an asymmetric response to fundamental shocks: losses of speculators are
amplified when they hit funding constraints (e.g., margin calls); as a consequence
they unwind their positions and further depress prices only deepening their funding

ZNote, however, that we do not view our empirical results as evidence in support of the existence
of price bubbles. Instead, we view them as being merely consistent with some, but not all, of these
models’ predictions. If rational bubbles existed, prices would change while expected returns would
not (see, for example, Cochrane (2011)). In our case, however, we find both, time-varying asymme-
try, consistent with the Blanchard-Watson model, and predictability in mean returns, consistent with
Campbell and Shiller (1988) and Cochrane (2008).



constraints and leading the asset market into a liquidity spiral; positive shocks to
the positions of speculators, in contrast, are not amplified. Importantly, Figure 7
in Brunnermeier and Pedersen (2009) shows that skewness becomes more negative
with initial funding levels. This model prediction fits our empirical patterns well,
as valuation levels of asset markets should be related to funding levels.

A third stream in the theoretical asset pricing literature that features asymmet-
ric responses of returns to fundamental shocks is built around time-varying risk
aversion (e.g., habit-based models). A recent example of that literature that is in
line with our empirical results is Greenwald, Lettau, and Ludvigson (2016). They
propose a model to explain stock price fluctuations in which investors are close to
risk-neutral most of the time but subject to rare spikes in their risk aversion that
generate a “flight-to-safety”and, as a consequence, a rapid drop in the price of the
risky asset. An important advantage of that framework is that in addition to the
shape predictability it also matches our results for expected rates of returns, which
are essentially zero when valuation levels are high and positive when valuations
are low. In contrast, stochastic bubble models — having a constant expected rate
of return — and the liquidity spiral framework — featuring an always positive ex-
pected rate of return to compensate for liquidity risk — seem to be at odds with
our empirical estimates of expected rates of returns.

Finally, David and Veronesi (2014) develop a dynamic equilibrium model of
learning that also provides a rationalization for the link between valuation ratios
and the shape of the return distribution. In their model investors learn about differ-
ent regimes in the fundamental value. During a boom period, positive news about
fundamentals has little impact on investors’ beliefs; negative news, however, may
lead to a large downward revision in beliefs; thus, in that situation investors per-
ceive greater downside risk than in bad times. As a consequence, stock returns will
be negatively skewed in good times.

Interestingly, David and Veronesi (2014) also provide evidence from option
markets that is consistent with our empirical results. They find that the ratio of the
implied volatilities of out-of-the-money puts over out-of-the-money calls, an indi-
cator of the market’s assessment of downside risk versus upside risk, raises during
expansions and drops during recessions (i.e., it is pro-cyclical). Their analyses
focuses on three-months options and the sample period of 1988 to 2011. Our anal-
ysis, instead, documents consistent patterns for long-term returns up to two years
and is based on a much longer sample period.

Similarly, Veldkamp (2005) develops a model of endogenous information flow
to study slow booms and sudden crashes in lending markets in emerging markets.
In the model, agents undertake more economic activity in good times than in bad
time. Thus, economic activity generates public information about the state of the
economy. If the economic state changes when times are good and information is



abundant, asset prices adjust quickly and a sudden crash occurs. When times are
bad, scarce information and high uncertainty slow agents’ reactions as the economy
improves; a gradual boom ensues.

In terms of empirical literature, the following two recent papers are closely
related to our work. Greenwood, Shleifer, and You (2017) study industry-returns
and use an ad-hoc definition of bubbles based on past returns. Looking exclusively
at those bubble periods, they document results that are consistent with the ones
we report; such as, for example, that a sharp price increase predicts a substantially
higher probability of a crash. They, however, do not study the predictive relation
between valuation levels and the shape of the return distribution in a comprehensive
econometric framework that also allows for predictability in other characteristics
of the return distribution.

Gormsen and Jensen (2017) study higher-order moments of monthly and quar-
terly returns using estimates extracted from option markets. The main advantage
of those estimates is that they are forward looking. Relying on option markets,
however, also comes at a cost, such as, for example, the lack of options with long-
horizon maturities and an overall relatively short sample size. While their empirical
setup is quite different from ours, some of their results are qualitatively consistent
with our analysis. For example, they also show that higher-order risks are time-
varying and tend to increase during good times.

Finally, we also relate to the literature on carry trades, currency returns and
crash risk that specifically refers to the pattern that “carry trades go up by the stairs
and down by the elevator”(Brunnermeier, Nagel, and Pedersen (2008)). We are,
however, not aware of an empirical model in that literature that is comparable to
the one we propose in this paper.

Our paper also relates, more broadly speaking, to the literature on the non-
normality of asset returns. Looking at daily or even higher-frequency returns, this
literature finds excess kurtosis and negative skewness. It usually models condi-
tional skewness as following an autoregressive process and models it jointly with
conditional volatility (see, for example, Harvey and Siddique (1999) and Jondeau
and Rockinger (2003)). Our approach is very different as we look at longer hori-
zon returns (in particular, 12-month and 24-month cumulative returns)® and are
interested in understanding how the shape of the predictive distribution depends on
valuation ratios. It is also important to emphasize that skewness in daily returns

3We share the view of Fama and French (2017) and Bessembinder (2017) that the literature has,
to some extent, been focusing on the distributional characteristics of short-horizon returns (daily and
monthly) rather than on the characteristics of long-horizon returns. Studying long-horizon returns
comes with econometric challenges, such as fewer observations. We consider our choice of 12-month
and 24-month cumulative returns to be a reasonable compromise between analyzing longer-term
returns and having enough observations for estimation.



may have little or no connection to time-varying asymmetric shapes of cumulative
returns.

3 Model Specification

A skew-T distribution with deterministically varying parameters. The
standard predictive regression is a linear projection of cumulative log returns on
a valuation (ratio), also in logs, so the implicit model is

Vig+h = Bo+Bix +&,

where y; ;15 = 10g((Pryn + Dig1:4+4)/P;) are cumulative total log returns over h
periods, x; is a log valuation ratio, and OLS estimation is optimal under the as-
sumption that €& is Gaussian.

The most parsimonious and interpretable way to extend this model to capture
the idea that valuation ratios may also affect the shape of the distribution is to move
from a symmetric to an asymmetric distribution, where the asymmetry is a func-
tion of valuation levels. A skew-normal distribution would be the most immediate
extension of the regression model, but we prefer to be slightly more general and
opt for a skew-T distribution. Allowing for fat tails is always good practice, partic-
ularly with financial data, and in our case it is particularly important to mitigate the
risk of interpreting one or a few outliers as asymmetry or time-varying asymmetry.
Forcing a Gaussian distribution on fat-tailed data results in extremely noisy esti-
mates of skewness in repeated samples, particularly if skewness is measured as the
centered third moment. In our sample the key results are little changed (t-statistics
are even higher) if we force a high value for the degrees of freedom. However,
since this restriction is strongly rejected by the data, we show results for the more
general and robust model, which is

yt,t+h ~ SkeWt(mt,G, v, Yt)

where skewt is the skew-T distribution of Fernandez and Steel (1998). Here my; is
the mode (location parameters), G is the dispersion parameter, v are the degrees of
freedom, 0 < 7y, < o is the asymmetry (shape) parameter, and the model parameters
are deterministic functions of a constant and x; as follows:

my = BO,m + Bl Xt
logo = Pos
logv. = Boy
logy, = Poy+Biyx-



Notice that we work with logs of the dispersion and degrees-of-freedom pa-
rameters, ¢ and v, and also model logy, rather than ¥; as a linear function of log-
valuation x;. This makes the distribution p(y; ;1x|x;) well-defined for any value of
Bl,m and Bl,y-

This model nests the standard predictive regression as a special case with By y =
Bo,y =0 and v fixed at a large number. If v is freely estimated, we have a regression
with T rather than Gaussian errors. We will refer to this model as the Symmetric-T
Model. An interesting comparison is with a model where the skew is fixed, so oy
is freely estimated but 3 y = 0. We will refer to this model as the Constant-Skew-
T model. The main model of interest, however, is one in which we also estimate
Bi.y to see whether valuation ratios affect the shape of the return distribution. We
will refer to this model as the Conditional-Skew-T model. In this paper we present
results for a simplified Conditional-Skew-T model by imposing B ,, = 0. In our
sample this restriction is never rejected using any standard selection criteria like
BIC or AIC, and when B, and B, are estimated jointly B, is always small
with t-statistics much lower than one. What this implies is that the mode of the
distribution is fixed, and as the distribution becomes more left (right) skewed, its
mean is lower (higher). Of course this does not have to be the case for other assets
or samples, where m; could either move left or, as in the Blanchard-Watson rational
bubble model (Blanchard and Watson (1982)), shift right at higher valuations.

We also consider an even more general version of the model by estimating B s
— also allowing the variance to be a function of valuations. Details on this model
implementation can be found in the robustness section. This improves the fit to the
data but does not have important implications for the analysis of the shape of the
return distribution which represents the focus of this paper. Thus, we decided to
focus on the simpler model throughout the paper. If our goal was to maximize the
fit to the data we would indeed need to model the dispersion as time-varying, and
include more variables; see Li and Villani (2010) for an example of such a model
fitted to daily stock return data (without including any measure of valuation).

Skewness, asymmetry, and some features of the skew-T distribution. There
are several skew-T distributions available in the literature. Jones (2014), with a
univariate emphasis, and Lee and McLachlan (2013), with a multivariate empha-
sis, provide excellent reviews. Most proposals are fairly recent and there is still
very little applied work to guide a choice (Jones (2014)). We have opted for the
version of Fernandez and Steel (1998) because, in their model, the role of each
parameter is easy to interpret; in particular, our main hypothesis — that asymme-
try varies with valuations — is captured by just one parameter. It also nests the
standard regression equation and its likelihood is available in closed form, which



aids in the estimation.

The idea of Fernandez and Steel (1998) is to introduce an inverse scale factor
in the positive and negative orthants, so that if the distribution f(g&,) is unimodal
and symmetric around zero, then we can create a skewed distribution p indexed by

Y

pledl) = {f(zl[o,@ (6 + F ) o) <s,>} |

Yty
In our case & = f(y;++n —my) and f(g) is a student 7 distribution with dispersion
o and degrees of freedom v. In Fernandez and Steel (1998) v is fixed, but the
extension is fairly straightforward. In our experience, this two-piece transformation
fits moderate skewness well and is very convenient and robust in estimation, but
may not be the best choice for severe skewness.

Each parameter has a fairly straightforward interpretation: m;, is the mode, ¢
is the dispersion, v controls the fatness of the tails, and 7y; determines the amount
of asymmetry. However, each statistical moment is in general a function of all
four parameters (see Fernandez and Steel (1998) for closed-form expressions). In
particular, m;, is the mode, which differs from the mean unless ¥, = 1, the variance
is a function of &,v, and v;, and the most common measure of skewness as the
centered third moment divided by the cubed standard deviation is also a function
of 6,v, and ;.

For unimodal distributions, Arnold and Groeneveld (2010) propose a measure
of skewness defined as one minus twice the probability mass left of the mode,
which in our case is 2ol

t

¥+1

since in the skew-T distribution of Fernandez and Steel (1998), v alone controls the
allocation of mass to each side of the mode as

P(y; > my|V;) :'YZ
P(y, <my|y) t'

Given our use of the Fernandez and Steel skew-T distribution, “asymmetry”
in this paper is a one-to-one function of the amount of probability mass on each
side of the mode. This definition is of course not free from shortcomings, but it
is intuitive and far more stable than the centered third moment, particularly for
fat-tailed distributions.

Estimation. Since the likelihood and all derivatives are available in closed
form, estimation by maximum likelihood is convenient and works well for the



small models considered in this paper. When using overlapping data, the assump-
tion of conditionally independent observations is incorrect and results can be in-
terpreted as quasi-ML. A correction for autocorrelation should then be made to
compute standard errors and t-statistics.

A very effective Markov Chain Monte Carlo algorithm (Gamerman (1997))
exists for generalized linear models, of which ours is a special case. Our version
is taken from Li and Villani (2010). The problem is broken into sequential steps
of estimating the coefficients associated with each parameter in separate blocks,
with tailored proposal distributions obtained by maximizing the conditional likeli-
hood at each step. The computational cost is compensated by increased reliability:
in more complex problems and/or in less informative data, there can be multiple
modes that the MCMC is able to explore in our experience. The general version of
the model in which explanatory variables can affect both the mode and the asym-
metry is particularly prone to multimodality, requiring either MCMC or great care
in optimization.

For all results presented in this paper, the posterior means from MCMC (which
we report and which are obtained with very disperse priors) for the key parameters
of interest, namely oy and B y, are nearly identical to ML estimates. Maximum
likelihood estimation gives consistently lower estimates of the degrees-of-freedom
parameter than MCMC. This is not surprising: the data contain some very large
outliers, and ML can only accommodate them with a fairly low v. In contrast,
MCMC results in a posterior distribution for v. This distribution has a higher mean
and mode than the ML estimate, but also a tail of very low draws of v which induce
very fat tails in the distribution of returns. We view this as a highly desirable feature
of fully Bayesian MCMC inference, since it allows for very fat tails without forcing
the spikes in the center of the distribution that are associated with low degrees-of-
freedom in a student-t distribution.

We are not aware of any fully Bayesian approach to inference with overlap-
ping observations: the likelihood is technically misspecified. Common practice
is to either work with non-overlapping observations, which throws away a lot of
useful data, or work as if observations were independent, which gives incorrect
posteriors and over-confident results. We have employed an ad-hoc fix inspired by
autocorrelation-consistent standard errors computed in a frequentist approach: the
log-likelihood within each MCMC step is divided by 1+ 0.5(h — 1) in an attempt
to account for overlapping observations. For the results reported in this paper, this
produces standard deviations extremely close to autocorrelation consistent standard
errors when the posterior mean is close to the posterior mode (the ML estimate), as
in the case for the key coefficients of interest 3py and ;. We report results from
these MCMC draws, but emphasize that the key findings are equally strong from
ML estimates. For the full sample, ¢ statistics for the main parameter of interest
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B1,y are close to three even if non-overlapping observations are used.

4 Data and Descriptive Statistics

The key variables of interest are the cumulative, overlapping (i.e., all possible
12-month and 24-month periods are considered) 12-month and 24-month total re-
turns. The only predictive variable is the cyclically adjusted price-to-earnings ratio
(CAPE); as a robustness test, we replicate our main results using the market-to-
book (MB) ratio, the margin-adjusted CAPE (Hussman (2017)), or the 5-year re-
turn (e.g., Asness, Moskowitz, and Pedersen (2013), Greenwood, Shleifer, and You
(2017)) as the only predictive variable. The sample period is from January 1881
(January 1921) to December 2014 in the case of CAPE (MB). All variables are in
logs. We also standardize the valuation ratios in the model such that the mean is
zero and the standard deviation is one, which makes parameters easier to interpret.
Data is at the monthly frequency and is taken from Amit Goyal’s webpage.

Figure 1 shows the time-series graph of market-to-book and CAPE. As one
would expect, the two series are very closely related — noticeable differences can
be observed up to the 30ties and during the 60ties and 70ties. Negative values
correspond to periods of time during which book values exceed market prices while
large positive values correspond to market booms. One clearly observes the stock
market crash before the great depression and the run-up and subsequent correction
associated with the boom in technology stocks at the end of the last century.

Table 1 presents the summary statistics of 12-month (Panel A) and 24-month
(Panel B) total returns including means, standard deviations and skewness. We re-
port these statistics for the full sample period, and the pre-1945 and post-1945 sub-
periods separately. Furthermore, we report them separately for the first, the pooled
second and third, and the fourth valuation quartiles. There are several measures of
skewness available in the literature, each attempting to quantify the asymmetry in
a distribution. The most common measure is the centered and standardized third
moment. This statistic is known to suffer from large sampling errors in the case of
distribution with fat tails and is therefore very susceptible to outliers.

The expected 12-month return is 16.2% in the case of low (lowest quartile of
CAPE) and 3.9% in the case of high (highest quartile of CAPE) valuation ratios
(the unconditional mean is 8.7% with a standard deviation of 18.8%). The standard
deviation of 12-month returns is 16.9% for the case of lowest valuation ratios and
only slightly higher at 19.4% for highest valuation ratios. In the case of 24-month
returns the full sample average is 17.3% with a standard deviation of 26.3%; ex-
pected 24-month returns amount to 31.7% for periods with lowest and 7.3% for
periods with highest valuation ratios; the corresponding standard deviations are
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18.7% and 32.9%, respectively. Note the mild increase in standard deviation (be-
tween 12-month and 24-month returns) in the case of lowest valuation ratios and
the comparatively very stark increase in the case of highest valuation ratios. The
patterns in average realized returns observed across valuation quartiles are consis-
tent with the standard Campbell-Shiller argument that low (high) valuation ratios
predict high (low) expected rates of returns.

In terms of skewness, Table 1 shows that, as expected and consistent with ex-
isting literature, cumulative 12-month and 24-month returns are, in general, nega-
tively skewed. Most importantly, however, we find that they are more negatively
skewed when valuation ratios are high (top quartile) than when valuation ratios
are low (bottom quartile). In the case of bottom-quartile valuation ratios, we fre-
quently find even positive or close-to-zero skewness. Thus, these simple descrip-
tive statistics already imply a link between valuation ratios and the shape of the
return distribution.

In many cases, however, skewness does not monotonically decrease when val-
uation levels increase; i.e., in some cases we find even lower skewness when valua-
tion ratios are in the middle quartiles. While this seems to be at odds with our story,
it is most likely related to the previously discussed shortcomings of the standard
skewness measure that we report in Table 1. To get a better idea of the shapes of
the empirical return distributions, Fig 2 (12-month returns) and Fig 3 (24-month
returns) show histograms of realized returns for the full sample and conditional on
valuation ratios at the beginning of the return observation period. In both cases, we
clearly see that the shape of the distribution of observed returns changes substan-
tially conditional on the valuation ratio. While it looks slightly positively skewed
in the case of the lowest valuation quartile, it becomes increasingly asymmetric
and negatively skewed for higher valuation quartiles. These patterns also appear to
be somewhat more pronounced for realized 24-month than 12-month returns.

5 Empirical Results

In this section, we summarize our empirical results focusing on 12-month and 24-
month cumulative total log returns and the cyclically-adjusted-price-earnings ratio
(CAPE) as proxy for the valuation ratio.

5.1 Model Parameters

Table 2 summarizes parameter estimates for the three models of interest — the
Symmetric-T model, the Constant-Skew-T model and the Conditional-Skew-T model
— when 12-month returns are modeled. Panel A reports results based on the full
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sample of data, Panel B focuses on the pre-1945 and Panel C on the post-1945
sub-period.

The Symmetric-T model represents the standard, simple linear regression model
with the only difference that we assume a T-distribution instead of a normal distri-
bution for the residuals. Consistent with the literature we find that valuation ratios
predict expected returns: a one-standard deviation increase in log(CAPE) results
in a, statistically and economically significant, drop in expected 12-month returns
of 4.226%. The corresponding full sample OLS estimates assuming a normal dis-
tribution for the errors are 8.667 for B, and -4.817 for B ;. Thus, the impact of
the valuation ratio is slightly smaller once residuals are modeled to follow a fat-
tailed distribution. Note also that parameters B, and B ,, predict the mode of the
predictive distribution rather than the mean in our framework. However, as long as
the predictive distribution is symmetric the mode is, obviously, equal to the mean.

The Constant-Skew-T model extends the basic model by allowing the predic-
tive distribution to be skewed. This results in a substantial increase in fit as mea-
sured by the log-likelihood. The constant asymmetry parameter of -0.316 implies
a negatively skewed predictive distribution, as one would expect. The coefficient
of the valuation ratio in predicting the mode of the distribution stays essentially
unchanged. Interestingly, however, the skewness parameter becomes insignificant
and is cut in half, to -0.160, once we focus on the pre-1945 sample period imply-
ing that returns were less negatively skewed on average according to that model
specification.

Finally, Table 2 summarizes the parameter estimates for the Conditional-Skew-
T model which models the predictive distribution’s asymmetry as a function of the
valuation ratio. We find that conditioning on the valuation ratio in the shape equa-
tion improves the model fit (i.e., the log likelihood increases). We find a value of
-0.175 for By indicating that, as expected, the distribution becomes more nega-
tively skewed when valuation ratios increase. It also shows that the total estimate
of the shape parameter, including the constant term, becomes essentially zero, im-
plying a symmetric distribution, for valuation ratios that are close to two standard
deviation below zero (i.e., low valuation ratios).

As discussed before, we observe substantial variation in [y across sub-periods.
Interestingly, however, estimates of 3y do not share this behavior. Thus, while the
overall asymmetry in the return distribution has changed somewhat over time, the
link between valuation levels and skewness appears to have been stable and sta-
tistically significant. Changes in the unconditional asymmetry (captured by [ y)
across sub-periods do not necessarily imply a break in the relation we are inter-
ested in, since P y is stable and valuation proxies also have different sample means
across sub-periods. The model then implies that periods of higher (lower) average
valuations should have more (less) pronounced average skewness. A formal test for

13



the null hypothesis that By is constant versus the alternative that it has changed
post-1945 has a borderline t-statistic of 1.9, with the AIC criterion picking the
extension and the more stringent BIC criterion choosing constant parameters.

Note that in the Conditional-Skew-T model we do not include the valuation
ratio in the mode equation (i.e., we set By, = 0). The main motivation to do so
is for simplicity, as we focus on the impact of valuation ratios on the shape of the
return distribution in this paper. We do, however, also estimate an extension of the
Conditional-Skew-T model, in which the valuation ratio affects both, the mode and
the shape, of the distribution. It turns out, however, that the more general model
does not fit better and that the estimated B; ,, parameter is small and insignificant.
For reasons of brevity, we decided not to report these results in detail.

Nevertheless, these results do have some further noteworthy implications: while
the return distribution becomes much more negatively skewed when valuations are
high, the most likely return of the distribution (i.e, the mode) is essentially un-
affected by valuation levels. Given that By, > 0, this also means that the most
likely return is positive even at very high valuation ratios reflecting the difficulty of
timing market reversals.

Table 3 contains parameter estimates of the three models when 24-month re-
turns are used as dependent variable. Results look qualitatively very similar in this
case. It is noteworthy to point out that the estimates of unconditional skewness in
the Constant-Skew-T model, Boy, are in all sample periods statistically insignifi-
cant and smaller than in the case of 12-month returns. In contrast, however, the
coefficients capturing the conditional impact of valuation ratios on the shapes of
the predictive distributions, iy, are always statistically significant and increase
relative to Table 2.

Bottom line, we find — across all return definitions and sample periods — that
valuation ratios have a statistically significant impact on the shape of the return
distribution. Specifically, distributions become more negatively skewed when val-
uation ratios increase. In the following sections, we analyze the resulting shapes of
the return distributions in more detail.

5.2 Predictive Distributions

The parameter estimates discussed in the previous section already document that
valuation ratios help predict the shape of the distributions of 12-month and 24-
month returns. Judging, however, how large this impact is in terms of the resulting
asymmetry of the distributions directly from the parameter estimates is difficult.
Thus, we take a detailed view at the predictive distributions implied by the various
models in this section.

Figures 4 and 5 represent the main results of the paper. They show the con-
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ditional predictive distributions for 12-month (Figure 4) and 24-month (Figure 5)
returns implied by the Conditional-Skew-T model* using the full sample parameter
estimates. The top graph in each figure represents the case of high and the bottom
graph the case of low valuation ratios. While the modes of the two distributions
are identical by design, the model implies very different shapes of the distribution
depending on the level of the valuation ratios: while predictive distributions look
pretty much symmetric for low valuation ratios, they become asymmetric and neg-
atively skewed in the case of high valuation ratios. As discussed before, results are
slightly stronger for 24-month returns than for 12-month returns.

Table 4 provides some further information on the conditional distributions im-
plied by our models, namely the mean, standard deviation, the normalized third
moment (skewness), the probability mass left to the mode (asymmetry), the 1%
Value-at-Risk and the 1% Expected Tail Loss. Most importantly, we are interested
in skewness and asymmetry. By construction, skewness is zero and asymmetry
is equal to 50% in the case of the Symmetric-T Model. When we allow the dis-
tribution to be skewed in the Constant-Skew-T Model, we find that the implied
distributions become asymmetric and that probability mass shifts to the left of the
mode; in the case of 12-month (24-month) returns 65% (61%) of the probability
mass end up being below the mode.

Finally in the Conditional-Skew-T Model, we observe that valuation levels
have a strong impact on the shape of the distributions. In the case of 12-month
returns, we find that, for low valuation levels, the distribution is nearly symmetric
with a skewness of zero and 47% of the probability mass being to the left of the
mode. In stark contrast, for high valuation levels, we find that nearly 80% of the
probability mass is below the mode and skewness is equal to -0.97. A similarly
pronounced pattern prevails in the case of 24-month returns with the only differ-
ence that, in the case of low valuation levels, the implied distribution seems to be
positively skewed with only 39% of the probability mass to the left of the mode.

These results illustrate, yet again, that the shape of the return distribution de-
pends strongly on valuation levels. An equally important question, however, is
whether this shape dependence also has implications for other characteristics of
the return distribution such as means or standard deviations. Table 4 reports sev-
eral key characteristics of the return distributions implied by our models. In gen-
eral, across all models, we find that expected returns are considerably lower when
valuation levels are high, as one would expect. Not surprisingly, given the choice
of our models, estimates of expected rates of returns are also within rather narrow
bands.’

4Note that the two benchmark models, by design, do not model conditional skewness and, thus,
it makes no sense to draw these graphs for the two benchmark models.
3In the case of the Conditional-Skew-T Model, we find expected returns that are even slightly
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We also observe an interesting pattern for model-implied standard deviations.
Both, the Symmetric-T and the Constant-Skew-T Model, show a tendency to over-
estimate volatility when valuation levels are low and, at the same time, underesti-
mate volatility when valuation levels are high, relative to the standard deviations
implied by the Conditional-Skew-T Model. That means that the two benchmark
models are on the wrong side in both cases: when valuations are very low, a mean-
variance investor using those standard deviation estimates would invest too cau-
tiously while the same investor would invest too aggressively when valuation levels
are very high. Note that in our econometric setup these volatility patterns only arise
as a consequence of the change in the asymmetry of the distribution, as dispersion
and degrees of freedom are modeled identically across all three models.

Similar patterns are observed when we move to risk measures beyond volatil-
ity, such as value-at-risk and expected tail loss. In both cases, we find that the
two benchmark models overestimate risk in the case of low valuation levels but
underestimate risk in the case of high valuation levels. For example, in the case of
12-month returns the Constant-Skew-T Model implies a 1% value-at-risk of -37%
(-53%) when valuation levels are low (high) while the Conditional-Skew-T Model
implies values of -23% (-71%). While it is difficult to judge economic importance
of these differences without having a specific application or portfolio in mind, they
certainly look sizable and noteworthy to us.°

So far, we have focused on full sample evidence in the discussion of the predic-
tive distributions. Figures 6 and 7 illustrate the model-implied distributions sepa-
rately for the pre-1945 and post-1945 sample periods while Tables 5 and 6 provide
the corresponding characteristics. Most importantly, the patterns that we discussed
above based on the full sample also hold for each sub-sample separately. Thus, our
results are robust across different sample periods and do not seem to be driven by
individual years or particular events.

5.3 Robustness

To make sure our results about the predictability of the shape of the return distri-
bution are not driven by discretionary choices we made along the way, we perform
an extensive set of robustness tests. First, we rerun the empirical analysis for three
alternative proxies for valuation levels. Second, we analyze an econometric model

negative when valuation levels are high. Obviously, negative expected returns of equity over 12 or
24-month periods are not consistent with theory. In our simple models, however, there are no explicit
mechanisms that ensure that expected returns are positive in all cases.

6In the case of the Conditional-Skew-T Model and 24-month returns, we find value-at-risk and
expected-tail-loss estimates of -103% and -126%, respectively. Note that throughout the paper we
use log-returns. Thus, these estimates correspond to -64% and -72% in terms of simple returns.
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in detail that also allows for a link between the valuation level and return disper-
sion. Third, we provide international evidence. In all cases, the empirical analysis
shows that our results are very robust to these changes.

5.3.1 Alternative Valuation Ratios

As the first set of robustness tests, we replicate the main steps of our empirical
analysis using the market-to-book (MB) ratio, the margin-adjusted CAPE (Huss-
man (2017)), and the 5-year return (e.g., Asness, Moskowitz, and Pedersen (2013),
Greenwood, Shleifer, and You (2017)) instead of the CAPE ratio as our predictive
variable. While the market-to-book ratio and the 5-year return are straight-forward
to construct (when using the market-to-book ratio the sample only starts in January
1921), the margin-adjusted CAPE needs some more explanation.

The simple but intuitive idea of the margin-adjusted CAPE is that margins are
embedded into every earnings-based valuation ratio including CAPE. As margins
vary themselves over time and over the business cycle, it might be useful and
important to explicitly account for them. Hussman (2017), for example, argues
that adjusting CAPE for that embedded margin significantly improves the relation-
ship between CAPE and subsequent market returns. To construct margin-adjusted
CAPE one would ideally like to have information on aggregate sales of the firms
in the S&P 500 to relate them to S&P 500 earnings but, unfortunately, that data
does not seem to be available sufficiently long back in time. Thus, we use data
on corporate profits for the entire economy divided by GDP using Federal Reserve
Economic Data as a proxy for S&P500 earnings divided by sales.

Specifically, we calculate margin-adjusted CAPE in the following way. We
first collect annual data on corporate profits after tax and on GDP (available from
1929) and then switch to quarterly data for these two data series in 1947. We then
compute profits-to-GDP for each quarter (or year), and set all months in that quarter
(year) equal to that value. Then, we use a 10-year sliding window to compute a
smoothed value of profits/GDP. To get the margin-adjusted CAPE, the standard
CAPE at each time t is multiplied by the ratio of this 10-year smoothed value of
profits-to-GDP to its full sample mean.

Table 7 shows the corresponding parameter estimates if we use 12-month (Panel
A) and 24-month (Panel B) returns as dependent variables. Note that for simplic-
ity and readability we focus on the Conditional-Skew-T model in the table. This
choice does not represent a limitation, as we also find for these alternative valu-
ation proxies, similar to the main results, that the the Conditional-Skew-T model
gets most support in the data compared to the Symmetric-T and Constant-Skew-T
model (as reflected by maximum log-likelihoods).

Most importantly, Table 7 shows that the coefficients of the alternative val-
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uation proxies in the shape equation are all negative and statistically significant.
Thus, as valuation levels — proxied by any of these three alternative proxies —
increase, the shapes of the return distributions, for both 12-month and 24-month
returns, become more asymmetric and, in particular, more negatively skewed.

Table 8 reports detailed characteristics of the model-implied distributions: the
patterns described as the main results also prevail when we use these alternative
proxies for valuation levels. Most importantly, we observe a stark change in the
shape of the distributions conditional on valuation levels. For example, in the case
of 24-month returns and the market-to-book ratio the probability mass to the left of
the mode is 49% (83%) when valuation levels are low (high). Differences between
the implied distributions when valuation levels are low and high are somewhat less
pronounced when we use the 5-year return as a proxy for valuation levels. In this
case, we also find that our empirical models fit the data considerably worse in terms
of likelihood. This might not be too surprising given that the 5-year return is a very
different and most-likely more noisy proxy for valuation levels compared to the
market-to-book ratio or CAPE-based measures. Overall, however, our main results
about the shape predictability of the return distribution are very robust to different
proxies for valuation levels.

5.3.2 Model with Conditional Dispersion

The second robustness test considers an extension of our econometric specification
that allows the return dispersion to depend on the valuation level. Specifically, we
will estimate the following set of equations (consistent with the Conditional-Skew-
T model we will also set the link between the mode of the return distribution and
the valuation level to zero, as this link does not receive support in the data):

my = Bo,m
logo = Poc+ Bl,Gxt
logv = Po,
logy: = PBoy+Biyx

Table 9 summarizes the parameter estimates of this model for 12-month re-
turns (Panel A) and 24-month returns (Panel B). Similar to the main results, we
distinguish three samples — the full sample, the pre-1945 sample and the post-
1945 sample. Across all specifications, we find that our main result still holds; i.e.,
B1,yis negative and statistically significant. Comparing the point estimates to those
reported in Table 2 and 3 shows very minor changes; basically the estimates of B y
are unaffected by allowing B ; to be different from zero.
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In contrast, estimates of B; s are not significantly different from zero across
all specifications. Thus, there does not seem to be a strong association between
current valuation levels and the return dispersion of future returns. Ignoring the
lack of significance for a second, it is interesting to point out that point estimates
are consistently negative for 12-month returns while being consistently positive for
24-month returns.

Table 10, finally, characterizes model-implied distributions for low and high
valuations. Not surprisingly, we do not observe any significant changes with re-
spect to our main empirical specification (refer to Table 4 for the details). Again,
we find that the implied distributions become much more negatively skewed when
valuation levels are high. In the case of 24-month returns, we do observe that the
positive but insignificant estimates of B s have some noticeable negative impact
on the expected rate of return (decreases) and the standard deviation (increases)
when valuation levels are high. Bottom line, however, is that our main results are
unaffected by whether return dispersion is allowed to depend on valuation levels
or not.

5.3.3 International Evidence

As another robustness test for our empirical results, we repeat our analysis on a
sample of international equity markets. We obtain data on total returns, dividend
yields, consumer price indices, price-earnings ratios and short-term interest rates
from Global Financial Data and construct Shiller’s CAPE for each market.” We use
data at the monthly frequency but set monthly observations equal to the last avail-
able PE-ratio when price-earnings ratios are only available at the annual frequency
(i.e., we do not perform any interpolation).

Table 11 lists the individual countries included in the international sample to-
gether with the dates when the data starts for each country. We end up with an
unbalanced panel of 29 countries.® We leave out the US from this analysis to avoid
any confounding effects. While we model returns in the case of US, we focus on
excess returns in the case of the international sample because inflation and inter-
est levels vary considerably across countries in our sample (some of the countries
included are emerging market countries).’

7Shiller’s CAPE is real price divided by the ten year moving average of real earnings. To construct
it, we build returns from total returns by subtracting the dividend yield from the total returns; then
we construct the real equity index and back-out real earnings using the price-earnings ratio.

8We started with a sample of 41 countries but had to drop several countries, as we were not able
to construct CAPE.

9Note that results for the US are basically unchanged when modeling excess returns. In the case
of the international sample, results are also the same qualitatively but the fit of the models deteriorates
noticeable when we model returns instead of excess returns.
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Using the international data, we run several robustness tests. First, we replicate
our main results for the UK, which is the only country in the GFD data, for which
we are able to construct a data history that is comparable in length to the one we
used for the US. Second, we pool all countries and estimate a common model
(i.e., common model parameters) across countries. Third, we allow for country-
specific fixed effects. Fourth, we use trailing 5-year cumulative returns as proxies
for valuation levels. Fifth, we add US CAPE to the country-specific CAPE in the
model.

Figure 8 compares valuation levels for the US and the UK (top graph) and
the US and the equal-weighted global portfolio (bottom graph). In both cases,
one observes periods during which valuation levels seem to be closely related as
well as periods during which they evolve rather independently from each other.
Correlations are 0.64 (0.58) for the US and the UK (the US and the global portfolio)
series. Another interesting pattern is that neither valuation levels in the UK nor in
the global portfolio show positive spikes comparable to the ones we have seen in
the US.

Our main results all hold up in these robustness tests. First, the Conditional-
Skew-T model is most supported by the data (i.e., shows largest log-likelihoods)
outperforming the Symmetric-T and Constant-Skew-T model in terms of fitting the
data, both for 12-month and 24-month future returns.

Second, estimates of 1y are highly significant and negative confirming that
valuation levels and skewness are robustly negatively related. In the case of the
UK and the 12-month horizon, the coefficient estimate is -0.27 — compared to
an estimate of -0.18 for the US (see Table 2) — with a t-statistic of -4.8 imply-
ing a substantially more pronounced effect of valuation levels on the shape of the
return distribution. For the pooled international data, the coefficient estimate is
very similar to the one we found for the US and amounts, for example, to -0.17
with a t-statistic of -8.6 in the case of 12-month returns!’. When we allow for
country-specific fixed effects, the same coefficient drops to -0.19 (with a t-statistic
of -10.9). Adding then also US Cape leads to an increase of the coefficient associ-
ated with domestic CAPE to -0.16 with a t-statistic of -7.9. The coefficient on US
CAPE itself is small and insignificant suggesting that US valuation levels do not
add information beyond domestic CAPE.!

10The t-statistics that we report for the estimates of the pooled international sample have to be
interpreted with a grain of salt, as they assume that countries are independent from each other, which
is obviously not the case.

' We abstain from reporting detailed results to avoid overwhelming the reader with similar, and
thus somewhat repetitive, results. Detailed results are available from the authors upon request.
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5.4 The Current Situation (May 2018)

As discussed before, our paper has broad implications for empirical asset pricing
and asset management. It is, however, also a timely topic given current valuation
levels in the US.!? Thus, we use data from the period of January 1946 to May
2018 to estimate the parameters of the Conditional-Skew-T model and to predict
the distributions of 12-month and 24-month returns starting in June 2018.13.

Figure 9 shows the model-implied, predictive return distributions. In the fol-
lowing discussion, we zoom into the 12-month (24-month) cumulative return dis-
tribution when using CAPE as the predictive variable (results look similar but more
pronounced when using margin-adjusted CAPE as the predictive variable). As one
would expect, the distributions exhibit negative skewness with very pronounced
left tails — 1% value-at-risk estimates equal -54.41% (-67.88%) and correspond-
ing expected tail losses amount to -64.18% (-79.85%) for the 12-month (24-month)
horizon. This pronounced tail risk is, however, not reflected in elevated expected
rates of return. In contrast, we estimate low expected rates of returns of 2.38%
(7.80%) with standard deviations of 18.68% (24.79% over 24 months)'4.

To conclude, our empirical analysis shows that, as markets are currently at el-
evated valuation levels, future 12-month and 24-month return distributions exhibit
substantial amounts of negative skewness and crash risk; at the same point in time
the implied distributions feature low or even negative expected rates of return.

6 Conclusion

In this paper, we document a robust link between valuation levels and the shape of
the distribution of cumulative (up to 24 months) total log returns in the SP500 and
in international equity indices. Our key result is that return distributions become
considerably more asymmetric and negatively skewed when valuation levels are
high; in contrast they tend to be symmetric, sometimes even slightly positively
skewed, when valuation levels are low. These patterns are very robust across return
horizons, proxies for valuation levels and sample periods.

While the emphasis of the literature is usually on expected rates of return (point

12We decided to add this separate section on the “current situation”instead of updating the entire
paper using the longer data series to be more flexible and to be able to keep it up-to-date over time.

B3 parameter estimates of our econometric model are very similar to the ones we report in our main
analysis for the post-1945 sample period. Thus, we decided not to report them to keep the paper
more tractable. They can be obtained from the authors upon request. Results are very similar if we
use the full sample starting in 1929 for this analysis.

141n comparison, the option-implied volatility index, VIX, showed a closing price of 15.43% for
the 30-day volatility, annualized, on May 31, 2018.
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prediction), we focus on the novel and important question of how asset prices ac-
tually revert back to these time-varying means. Our empirical results indicate that
this reversion is rather smooth when valuation levels are low and rather abrupt
when valuation levels are high. Intuitively, this pattern is well summarized by
practitioners describing equity market as “up the stairs, down the elevator”.

The dependence of the shape of the return distribution on valuation levels has
several further interesting practical implications. Most importantly, it implies that
measures of risk (e.g., standard deviation, value-at-risk, expected-tail-loss), derived
from symmetric distributions or distributions with constant skewness, are underes-
timated when valuation levels are high and overestimated when valuation levels
are low relative to a model with conditional skewness. This indicates a lose-lose
situation for risk managers and asset managers relying on these risk measures. Im-
portantly, magnitudes of these deviations are sizable.

Another noteworthy result of our empirical analysis is that we find the mode
of the return distribution to be consistently positive and essentially unaffected by
valuation levels. This implies that even when valuation levels are extremely high,
the most likely return over the next 12 to 24 months remains positive reflecting
the well-known difficulty of predicting turning points and market crashes. Overall,
our empirical evidence on how valuations affect the asymmetry of the predictive
distribution of returns is qualitatively consistent with stochastic rational bubbles in
the spirit of Blanchard and Watson (1982). However, expected returns are constant
in models of rational bubbles, whereas the introduction of time varying skewness
does nothing to change the relation between valuations and expected returns that
has been the focus of so much attention in the literature. The finding that the
mode of the predictive distribution (the most likely outcome) does not change and
remains positive even at extremely high valuations may however provide useful
insights into why such valuations can be reached at all.
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Figure 1: Market-to-book and Cyclically-Adjusted-Price-Earnings (CAPE)
Ratios

The figure shows the standardized — mean equal to zero, standard deviation equal
to 1 — log market-to-book and log cyclically-adjusted-price-earnings ratio.
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Table 2: Model Parameters when Predicting 12-month Returns

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — when 12-month returns are used as dependent variable. All variables are
in logs. The table reports mean parameter estimates and corresponding t-values.

Panel A: Full Sample
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 9.686 8.707 16.825 7.122 16.233 6.480
Bim -4.226 -3.721 -4.185 -4.007

Bo.c 2.724  38.296 2.668 34.686 2.680 35.343
Bo.v 2.025 4.666 2.163 4.384 2.407 4.058
Bo.y -0.316 -3.195 -0.297 -2.900
Biy -0.175 -4.254
Log-Likeli. -6790.7 -6756.7 -6752.6

Panel B: Pre-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo,m 7.081 3.795 11.356 2.708 10.256 2.180
Bim -6.029 -3.117 -6.081 -3.159

Bo.c 2.849 25523 2.846 26.119 2.853 27.924
Bo.v 2.062  3.059 2229 2.981 2.476 3.122
Bo.y -0.160 -1.124 -0.124 -0.790
Biy -0.197 -3.345
Log-Likeli. -3230.6 -3227.5 -3225.8

Panel C: Post-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat
Bo,m 11.081 8.078 19.543 6.452 18.420 6.344
Bim -4.083 -3.007 -3.903 -3.343
Bo.c 2.617 27417 2.506 23.661 2.516 25.639
Bo.v 2649 3216 2984 3.493 3.048 3.576
Bo.y -0.433 -2.833 -0.378 -2.632
Biy -0.190 -3.368
Log-Likeli. -3357.4 -3328.3 -3326.8

27



Table 3: Model Parameters when Predicting 24-month Returns

This table provides parameter estimates of three different models — the
Symmetric-T Model, the Constant-Skew-T Model and the Conditional-Skew-T
Model — when 24-month returns are used as dependent variable. All variables are
in logs. The table reports mean parameter estimates and corresponding t-values.

Panel A: Full sample
Symmetric-T Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo.m 18.395 8.874  25.350 5.328  27.230 5.756
Bim -8.623  -4.030 -8.032 -3.765

Bo.c 3.020 29.884  3.006 29.644  2.994 31.445
Bo.v 2.059 3.307 2.281 3.154 2.658 3.276
Boy -0.219 -1.583  -0.263 -1.895
Biy -0.240 -4.191
Log-Likeli. -7201.8 -7188.8 -7174.5

Panel B: Pre-1945
Symmetric-T  Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat
Bo,m 13.137 3.796  16.208 1.920 18.675 2.072
Bim -11.276  -3.142 -11.080 -3.004
Bo.c 3.116  20.491  3.098 20.313 3.094 22.220
Bo.v 2.081 2.502 2.121 2.373 2.602 2.751
Bo.y -0.079 -0.359  -0.133 -0.565
Biy -0.299 -3.314
Log-Likeli. -3366.8 -3366.5 -3362.2

Panel C: Post-1945
Symmetric-T Constant-Skew-T Conditional-Skew-T

Mean t-stat Mean t-stat Mean t-stat

Bo,m 21.364 8.603  24.906 4482  28.090 4.707
Bim -8.369 -3.210 -7.927 -2.932

Bo.c 2907 21366 2.892 22477 2.851 22.012
Bo,v 2.694 2.662 2.728 2.767 2.966 2.994
Bo.y -0.129  -0.719  -0.209 -1.025
Biy -0.255 -3.247
Log-Likeli. -3540.5 -3536.9 -3524.3
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Table 7: Robustness Test: Model Parameters when using Alternative Valua-

tion Ratios

This table provides parameter estimates of the Conditional-Skew-T Model when
12-month returns and 24-month returns are used as dependent variable. We con-
sider three alternative valuation ratios: (i) the market-to-book ratio, (ii) the margin-
adjusted CAPE, and (iii) the past 5-years of returns. All variables are in logs. All
results summarized in the table are based on the full sample of data. The table

reports mean parameter estimates and corresponding t-values.

Panel A: 12-Month Returns

Market-to-Book Margin-adjusted CAPE Past 5-Year Return

Mean t-stat Mean t-stat Mean t-stat
Bo.m 19.602  7.177  18.282 7.292 17.753 6.779
Bo.c 2.639 26396 2.643 27.202 2.686 36.323
Bo.v 1.924 3.732 2.533 3.346 2.595 4.143
Bo.y -0.376  -3.134  -0.391 -3.491 -0.351 -3.223
Biy -0.166  -3.111  -0.267 -4.826 -0.142 -3.697
Log-Likeli. -4740.3 -4345.1 -6763.5

Panel B: 24-Month Returns

Market-to-Book Margin-adjusted CAPE Past 5-Year Return

Mean t-stat Mean t-stat Mean t-stat
Bo,m 34757 5.880 32.064 5.879 27.826 5.485
Bo.c 2.999 227768  2.933 23.015 3.022 31.221
Bo,v 2.362 2.691 2.883 2.897 2.602 3.190
Bo.y -0.393 -2.207 -0.398 -2.251 -0.274 -1.885
Biy -0.208 -2.857 -0.313 -4.362 -0.170 -2.965
Log-Likeli. -5046.8 -4634.7 -7222.3
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Table 9: Robustess Test: Model with Predictability in Dispersion

This table provides parameter estimates of a model that allows for a link between
return dispersion and valuation levels. We call that model the Conditional-Skew-T-
Vola Model. All variables are in logs. Details on the estimation of these parameters
are summarized in the Appendix. The table reports mean parameter estimates and
corresponding t-values.

Panel A: 12-Month Returns

Full Sample Pre-1945 Post-1945
Mean t-stat Mean t-stat Mean t-stat

Bo.m 16983 6.537 10472 2.029 18.501 6.034
Bo.c 2.669 34104 2.854 28374 2514 24.159
Bio -0.053 -0965 -0.013 -0.175 -0.016 -0.221
Bo,» 2.384 3988 2416 3.153 3.004 3.456
Bo.y -0.332  -3.051 -0.135 -0.780 -0.383 -2.474
Biy -0.188 -4.244 -0.203 -3.329 -0.197 -3.405
Log-Likeli. 6749.7 3225.8 3326.8

Panel B: 24-Month Returns

Full Sample Pre-1945 Post-1945
Mean t-stat Mean t-stat Mean t-stat

Bo.m 25.729 5550 14529 1.451 25.052 4.129
Bo.c 3.005 31.000 3.076 20.140 2.856 23.043
Bio 0.080 1.064 0.108 0.844 0.152 1.420
Bo.v 2.618 3.171 2372 2574 2893  3.054
Bo.y -0.211  -1.568 -0.007 -0.024 -0.087 -0.418
Biy -0.233  -4.057 -0.302 -2.890 -0.261 -3.055
Log-Likeli. 7166.2 3359.3 3509.5
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Table 11: Robustness Test: Sample of internaional countries

This table lists all countries included in our international sample including the start
date of the observations, the end date and the number of months using in the esti-
mation.

Country Start Date End Date Months

aus 197906 201103 382
aut 199109 201103 235
bel 197906 201103 382
bra 199801 200401 69

can 196512 201103 544
che 197906 201103 382
dnk 198001 201103 375
esp 198911 201103 257
gbr 193711 201103 881
ger 197906 201103 382
arc 198701 201103 291
hkg 198212 201103 340
ind 199801 201103 159
isr 200905 201103 23

jap 196512 201103 544
kor 198402 201103 326
mys 198212 201103 340
nld 197907 201103 381
nor 198001 200009 249
nzl 199712 201103 160
pak 199801 200709 117
phl 199201 201103 231
rsa 197002 201103 494
sgp 198212 201103 340
swe 197906 201104 383
tai 199801 201103 159
tha 199712 201103 160
tur 199602 201103 182
ven 199801 200403 75
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Figure 2: Histograms of Realized 12-month Returns

The figure shows four histograms of realized 12-month returns. All returns are in
logs. The left graph in the top row shows the full sample unconditional distribution
of realized 12-month returns. The remaining graphs show, in clock-wise direc-
tion, the full sample distributions conditional on being in the (i) lowest valuation
quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles.
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Figure 3: Histograms of Realized 24-month Returns

The figure shows four histograms of realized 24-month returns. All returns are in
logs. The left graph in the top row shows the full sample unconditional distribution
of realized 24-month returns. The remaining graphs show, in clock-wise direc-
tion, the full sample distributions conditional on being in the (i) lowest valuation
quartile, (ii) the top valuation quartile, and (iii) the two middle valuation quartiles.
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Figure 4: Model-implied Conditional 12-month Return Distribution

The figure shows the model-implied return distributions of 12-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels. All returns are in logs. The parameters governing
the distributions are summarized in Table 2.

forecast distribution from high valuation (2 std)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

-100 -80 -60 —40 -20 0 20 40 60 80

forecast distribution from low valuation (=2 std)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ol — — —




Figure 5: Model-implied Conditional 24-month Return Distribution

The figure shows the model-implied return distributions of 24-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels. All returns are in logs. The parameters governing
the distributions are summarized in Table 3.
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Figure 6: Sub-sample Results: Model-implied Conditional 12-month Return
Distribution

The figure shows the model-implied return distributions of 12-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels separately for the pre-1945 and the post-1945
sample periods. All returns are in logs. The parameters governing the distributions
are summarized in Table 2.
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Figure 7: Sub-sample results: model-implied, conditional 24-month return dis-
tribution

The figure shows the model-implied return distributions of 24-month returns for
low (two standard deviations below the mean) and high (two standard deviations
above the mean) valuation levels separately for the pre-1945 and the post-1945
sample periods. All returns are in logs. The parameters governing the distributions
are summarized in Table 3.
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Figure 8: Cyclically-Adjusted-Price-Earnings (CAPE) Ratios
The figure shows the CAPE for the US and the UK (top panel) and for the US and
the equal-weighted global portfolio (bottom panel).
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Figure 9: Current situation: model-implied 12-month and 24-month return
distributions as of end of May 2018

The figure shows the model-implied return distributions of 12-month (Panel A) and
24-month (Panel B) returns based on the valuation levels at the end of May 2018.
Each graph shows two lines: one for the model using CAPE and one for the model
using margin-adjusted CAPE as predictive variable.
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