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Abstract

The ratio of long- to short-term dividend prices, “price ratio” (prt), predicts annual

market return with an out-of-sample R2 of 19%, subsuming the predictive power of

price-dividend ratio (pdt). After controlling for prt, pdt predicts dividend growth with

an out-of-sample R2 of 30%. Our results hold outside the U.S. An exponential-affine

model shows that the key to our findings is the (lack of) persistence of expected div-

idend growth. We find the expected return is countercyclical and responds strongly

to monetary policy shocks. As implied by ICAPM, shocks to prt, the expected-return

proxy, are priced in the cross section.
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1 Introduction

Return and cash-flow predictability are at the core of asset pricing studies. Remarkably, a

simple variable, the ratio of long- to short-term dividend prices (“price ratio”), brings new

insights on both fronts. It predicts one-year stock market return with an out-of-sample R2 of

19%. The residual from projecting the price-dividend ratio on the price ratio predicts one-

year dividend growth with an out-of-sample R2 of 30%. While enormous efforts have been

made to study dividend strips (Binsbergen and Koijen (2017)), we are the first to show that

their price ratio contains critical information on the aggregate market. Using the exponential

affine framework of Lettau and Wachter (2007), we show that the key to understanding our

findings is the (lack of) persistence in the expected dividend growth.

We further study the variation of expected return. In ICAPM (Merton (1973)), shocks

to investment opportunities (e.g., the expected market return) are priced; so are shocks to

adequate return predictors as expected-return proxies. Indeed, we find shocks to the price

ratio are priced in the cross section of stocks. To the best of our knowledge, we are the first

to conduct this economic test of return predictor. The estimated price of risk also implies a

coefficient of relative risk aversion greater than one (Campbell (1993)). We demonstrate the

risk of time-varying expected return by showing its response to monetary policy and its cor-

relations with macroeconomy, financial intermediation capacity, uncertainty, and sentiment.

The return predictive power of the price ratio is also strong outside the U.S., and the

variations of expected stock return across countries are almost perfectly synchronized in our

sample period from 1988 to 2017.1 Finally, we examine conditional predictability and find

returns are more predictable during market downturns in both the U.S. and other countries.

We start by decomposing the total market valuation into the prices of long- and short-

1Binsbergen, Brandt, and Koijen (2012) show that futures or option data can be used to calculate dividend
strip prices. We use futures because they have a longer sample period.
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term dividends, so the traditional price-dividend ratio is the sum of two components,

Pt
Dt

=
Price of Long-term Dividends

Dt

+
Price of Short-term Dividends

Dt

.

As in Binsbergen and Koijen (2010) and Kelly and Pruitt (2013), we show in a state-space

model that the two components may contain distinct information on future returns and divi-

dends, so to extract more information beyond the log price-dividend ratio (pdt = ln (Pt/Dt)),

we calculate the log difference of this pair (i.e., the price ratio),

prt = ln

(
Price of Long-term Dividends

Price of Short-term Dividends

)
.

It is the term-structure slope of dividend trip prices, while pdt captures the level. It also

measures duration. We set “short-term” to be one year. With the value of one-year dividends

in the numeraire, prt counts how many years of dividend value are there going forward.

prt strongly predicts market return. A decrease of prt by one standard deviation adds

7.3% to the expected return over the next year. Annual forecasting delivers an out-of-sample

R2 equal to 19.2%, which is three times the out-of-sample R2 of pdt in our sample. Improve-

ments mainly come from the variation of prt at higher frequencies, since prt is constructed

from market prices that are more responsive to news than accounting variables (e.g., past

dividends). This variability in return expectations is difficult to reconcile with asset pricing

models (e.g., Campbell and Cochrane (1999), Bansal and Yaron (2004)). The market timing

strategy using prt as signal delivers a Sharpe ratio of 0.84.

We establish the robustness of our prediction results in a number of ways. First,

following Hodrick (1992), we adjust the standard error by taking into account the overlapping

structure of annual returns. Second, we show that the autocorrelation of prt is 91.5%,

lower than that of pdt (98.7%), and that our estimate of predictive coefficient is robust to

Stambaugh (1999) bias.2 Third, we conduct several out-of-sample tests (e.g., Clark and

2Ferson, Sarkissian, and Simin (2003) show a spurious regression bias when both the proposed predictor
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McCracken (2001)). Finally, we also show that in terms of in-sample R2, out-of-sample R2,

and Hodrick (1992) t-statistic, prt outperforms the existing predictors.3

The price ratio also predicts return outside the United States. We run a panel predictive

regression with prt of each country as the predictor. The coefficient is significant and close in

magnitude to the coefficient in the U.S. Interestingly, once we add time fixed effect to absorb

the global factor in the realized returns of each country, return predictability disappears.

This suggests that the variations of expected stock return are synchronized across countries

in our sample period, offering new evidence on global market integration.

To understand our findings, we impose more structure on the state-space model follow-

ing Lettau and Wachter (2007). The prices of dividends at different horizons are exponential-

affine functions of the expected return and expected dividend growth, with the latter’s coeffi-

cient depending on the specific horizon through the persistence of expected dividend growth.

If and only if the persistence is zero, the prices of all dividends have the same coefficient

on the expected dividend growth, and thus, the log difference between long- and short-term

dividend prices, our price ratio, becomes a function of only the expected return, i.e., a perfect

return predictor. Then prt outperforms pdt in return prediction precisely because pdt mixes

the information on both the expected return and expected dividend growth (Menzly, Santos,

and Veronesi (2004); Lettau and Ludvigson (2005)).

Can we use prt to tease out the information on expected dividend growth in pdt? We

project pdt on prt to remove the information on the expected return and use the residuals

to forecast dividend growth. The out-of-sample R2 is 30%. In contrast, pdt itself does

not predict dividends in our sample, as already documented (Chen (2009); Cochrane (2011);

Chen, Da, and Priestley (2012)).4 Using the pdt residual as a proxy for the expected dividend

growth, we find the autocorrelations are close to zero across countries. The persistence of

and the underlying expected return are persistent. prt also passes a recent test proposed by Kostakis,
Magdalinos, and Stamatogiannis (2015) that explicitly addresses the issue of predictor persistence.

3Previously studied predictors typically perform well in-sample but become insignificant out-of-sample,
often performing worse than forecasts based on the historical mean (Goyal and Welch (2007)).

4Golez and Koudijs (2018) find that pdt predicts dividend growth in the pre-1945 sample (see also Koijen
and Van Nieuwerburgh (2011)).
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expected dividend growth is also weak in a state-space model fitted to the realized dividends.

To obtain a better return predictor, recent studies modify pdt to eliminate the varia-

tion of expected dividend growth (Campbell and Thompson (2008); Lacerda and Santa-Clara

(2010); Da, Jagannathan, and Shen (2014)). Golez (2014) adjusts pdt using the expected

dividend growth implied in derivative markets. We use derivatives to construct dividend

strips, and rearrange the horizon-specific components of pdt’s to form a return predictor.

Moreover, the prt-adjusted pdt (residual) strongly predicts dividend growth, adding to the

literature on cash flow predictability (Larrain and Yogo (2008); Binsbergen, Hueskes, Koijen,

and Vrugt (2013); Chen, Da, and Zhao (2013)). Many have shown that cash-flow expecta-

tion is important for understanding key asset pricing patterns (Bansal and Yaron (2004);

Beeler and Campbell (2012); Belo, Collin-dufresne, and Goldstein (2015); Collin-Dufresne,

Johannes, and Lochstoer (2016)). We further this line of research by pinpointing the return

predictive power of prt to the persistence of expected dividend growth.

After establishing the evidence on return predictability, we proceed to examine the risk

of time-varying expected return. In particular, we test whether shocks to prt are priced in

the cross section of stocks. In ICAPM, shocks to the expected return is priced; so should the

shocks to prt if it is an adequate proxy for the expected return. Therefore, the cross-sectional

asset pricing exercise is an economic test of prt as a return predictor. To the best of our

knowledge, we are the first to conduct this test in the literature of return predictability.

We find a significant and negative price of prt risk in the cross-section. Consider two

assets with one standard-deviation difference in their prt beta. The average return of high-

beta asset is 2.1% lower. It delivers higher returns when prt is high and the expected market

return is low. This implies a coefficient of relative risk aversion greater than one – hedging

against the deterioration in investment opportunities is more desirable than having more

wealth to profit from improved investment opportunities.5 Our model for cross-section asset

5Note that here we focus on the first moment of market return. It is likely that the investment opportunity
improves because the volatility, or covariance with the marginal investors’ marginal value of wealth, declines
even more than the expected return. However, empirically, the evidence on the correlation between the
expected return and expected volatility is mixed (Guo and Whitelaw (2006); Lettau and Ludvigson (2010)).
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pricing is exactly the two-factor structure of Campbell (1993) that incorporate both the

market excess return and the revisions of expected future returns (i.e., prt shocks). We show

that the price of market risk is better identified in the cross section and estimated to be 1%

per month, once prt shocks are added as the second risk factor.

To further characterize the risk of time-varying expected return, we examine how the

expected return (proxied by prt) responds to monetary policy shocks. The impact of mon-

etary policy on asset prices continues attracting enormous attention (Lucca and Moench

(2015); Campbell, Pflueger, and Viceira (2015); Drechsler, Savov, and Schnabl (2017)).

Specifically, we project prt on the unanticipated changes in the Federal Funds rate (Cochrane

and Piazzesi (2002)), and find a negative coefficient, suggesting that the expected return de-

clines during monetary expansions. In contrast, pdt, the common proxy for the expected

return (e.g., Muir (2017)), does not respond to monetary policy shocks. We also find that

monetary easing is associated with a higher contemporaneous realized return, in line with

Thorbecke (1997) and Bernanke and Kuttner (2005). Finally, we use the prt-adjusted pdt

(residual) to proxy the expected dividend growth, and find it does not respond to monetary

policy shocks. In sum, stock price rises in response to expansionary monetary policy, but

since the expected return declines, such increase tends to revert over the next year.

Next, we show that the expected stock return is countercyclical. The expected re-

turn is positively correlated with unemployment and negatively correlated with consumption

growth, fixed investment, and inflation. The expected return shows a very strong negative

correlation with broker-dealer leverage (Adrian and Shin (2010)) and intermediaries’ net

worth (inversely proxied by the broker-dealer CDS spreads). Interestingly, the expected

return declines when VIX rises, which has important implications on the dynamics of risk-

return trade-off (Lettau and Ludvigson (2010); Moreira and Muir (2017)). Finally, the

expected return tends to be low when the sentiment (Baker and Wurgler (2006)) is high,

even after the sentiment index is orthogonalized to other macro variables.

Last but not least, we study conditional return predictability. We find that the return
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predictive power of prt is asymmetric – it is much stronger following a negative market

excess returns in the past twelve months.6 Such asymmetry holds outside the United States.

Related, Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), Dangl and

Halling (2012), and Cujean and Hasler (2017) find that return predictors, such as the price-

dividend ratio, work better in economic downturns. We evaluate two asset pricing models,

Barberis, Huang, and Santos (2001) and He and Krishnamurthy (2013), that imply strong

asymmetry in return predictability. While the return predictive power of prt does depend

on the state variables proposed by both models, these state variables alone do not predict

future returns, suggesting that these theories still miss important drivers of expected return.

2 Return Prediction

In this section, we motivate prt, the ratio of long- to short-term dividend prices, as a return

predictor in a state-space model, and document its superior predictive power in comparison

with pdt, the price-dividend ratio (Table 2), and other predictors (Figure 3). Moreover, the

residuals from projecting pdt on prt strongly predict dividends (Table 3). Next, following

Lettau and Wachter (2007), we impose more structure on the state-space model to obtain

economic intuitions behind our results. Finally, Table 4 and Figure (4) exhibit the return

predictive power of prt across countries.

2.1 Decomposing the price-dividend ratio

A motivating model. We consider a state-space model of return and cash flow (Cochrane

(2008)). Let µt denote the expected return from time t to t+1, and gt the expected dividend

6Our results of conditional predictability suggest that the expected return is a function of both prt and
past returns. Thus, our findings are related to the long-standing literature on return autocorrelation (Fama
and French (1988); Poterba and Summers (1988); Moskowitz, Ooi, and Pedersen (2012)). When prt is at
its mean, the return does not show autocorrelation. However, when prt is one standard deviation (or more)
above the mean, return exhibits momentum at one-year horizon, and when prt is one standard deviation
(or more) below the mean, return shows reversal. Related, Huang, Jiang, Tu, and Zhou (2017) find that
whether the stock market exhibits time-series momentum or reversal depends on the state of the economy.
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growth. We assume that the information set at time t is summarized by factors Ft, and the

expected return and dividend growth are given by the following linear system7

µt = γ0 + γ ′Ft,

gt = δ0 + δ′Ft.

(1)

Following Binsbergen and Koijen (2010) and Kelly and Pruitt (2013), we impose a VAR(1)

structure on the factors

Ft+1 = ΛFt + ξt+1, (2)

where Λ is a constant matrix with conformable dimensions. Let pdt denote the log price-

dividend ratio of the market at time t, ∆dt+j the one-period dividend growth from t+ j − 1

to t + j, and rt+j the market return from t + j − 1 to t + j. We can use the present value

identity of Campbell and Shiller (1988), i.e.,

pdt =
κ

1− ρ +
∞∑
j=1

ρj−1Et [∆dt+j − rt+j] , (3)

to solve the price-dividend ratio as a function of Ft:

pdt = φ0 + φ′Ft, (4)

where φ0 is equal to κ+δ0−γ0
1−ρ , and φ′ is equal to ιψ′ (1− ρΛ)−1 with ι being a row vector

(1,−1) and ψ equal to (δ′,γ ′). Derivation details are in Appendix I.

By linking the price-dividend ratio to future returns and dividend growth, the present

value identity serves as a motivation to use pdt as a predictor. The factor structure reveals

that any predictive power of pdt comes from a particular linear combination of Ft, i.e.,

a compression of information. Next, we decompose the price-dividend ratio into different

7A non-linear model is more general, but this model is only used for motivation, not estimation.
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components with distinct information content from Ft.

The price ratio. Let St denote ex-dividend market value, Dt, the dividend at t, and rt, the

short rate. Under the no-arbitrage condition, there exists a risk-neutral measure, Q, such

that the stock price is the expected sum of discounted future dividends:

St =
∞∑
τ=1

EQt
[
e−

∫ t+τ
t rsdsDt+τ

]
=

T∑
τ=1

EQt
[
e−

∫ t+τ
t rsdsDt+τ

]
︸ ︷︷ ︸

PT−t

+
∞∑

τ=T+1

EQt
[
e−

∫ t+τ
t rsdsDt+τ

]
︸ ︷︷ ︸

PT+
t

,

where P T−
t is the price of dividends paid from t + 1 to t + T , i.e., the price of short-term

dividends, and P T+
t is the price of long-term dividends. Dividing both sides by Dt, we obtain

a decomposition of price-dividend ratio into two valuation ratios, i.e., the ratio of short-term

dividend price to Dt, and the ratio of long-term dividend price to Dt:

St
Dt

=
P T−

Dt

+
P T+

Dt

. (5)

Since the price-dividend ratio is the sum of these two ratios, we construct our predictor

by taking the (log) difference so that it contains different information from the pair:

prt = ln

(
P T+

Dt

)
− ln

(
P T−

Dt

)
= ln

(
P T+

P T−

)
(6)

The price ratio, “prt”, is the log ratio of long- to short-term dividend prices. We use the log

difference instead of level difference to get rid of Dt, so that prt only contains market prices,

and thereby, captures the variation of expected return at relatively higher frequencies than

pdt. In the literature, and as in this paper, the current dividend Dt is measured by the sum

of dividends paid in the previous year to remove seasonality (Fama and French (1988)), so

through Dt, pdt tends to be more slow-moving than prt.

Together, pdt and prt should reflect the information content of
(
PT+

Dt
, P

T−

Dt

)
. We will

show that prt is a better way to extract information about future returns. Intuitively, the
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valuation of long-term dividends is more sensitive to discount rate movements than the

valuation of short-term dividends. The ratio of the former to the latter tends to increase

when the discount rate declines, and decrease when the discount rate rises.

To construct prt, we need the short-term dividend price and the long-term dividend

price, which are calculated using data of S&P 500 futures and zero-coupon bonds (ZCBs) as

follows.8 Consider any T > 0. To calculate P T+
t from futures price and ZCB price, we make

the assumption that
∫ t+T
t

rsds and St+T are not correlated under Q measure, so we have

P T+
t =

∞∑
τ=T+1

EQt
[
e−

∫ t+T
t rsdse−

∫ t+τ
t+T rsdsDt+τ

]
= EQt

[
e−

∫ t+T
t rsdsEQt+T

[
∞∑

τ=T+1

e−
∫ t+τ
t+T rsdsDt+τ

]
︸ ︷︷ ︸

St+T

]

=EQt
[
e−

∫ t+T
t rsdsSt+T

]
= EQt

[
e−

∫ t+T
t rsds

]
︸ ︷︷ ︸

ZCBTt

EQt [St+T ] . (7)

Therefore, we can calculate P T
t directly from the price of ZCB that matures in T periods,

ZCBT
t , and futures price that is the Q-expectation of future stock price (Duffie (2001)).

2.2 Predicting return

Data and summary statistics. We use monthly data of S&P 500 futures (source:

Bloomberg) and zero-coupon bond prices (source: Fama-Bliss database) from January 1988

to June 2017 to construct prt.
9 The sample starts in 1988 to have a sufficiently liquid futures

market.10 Also, after the market crash of October 1987, regulators overhauled several trade-

clearing protocols.11 pdt is the month-end price-dividend ratio of S&P 500 index (source:

8Figure 7 in the appendix shows that prt constructed from futures data has 88% correlation with prt
constructed from option data in Binsbergen, Brandt, and Koijen (2012).

9We obtain the daily settlement prices for the S&P 500 futures. For return prediction, we use month-end
data. Later, we use daily data to analyze the impact of monetary policy on the expected return. The
available futures maturities vary over time, so to obtain constant maturities, we apply the shape-preserving
piecewise cubic interpolation to complete the futures curve. The results from linear interpolation are similar.

10Wang, Michalski, Jordan, and Moriarty (1994) identify structural changes of liquidity in the S&P 500
futures market in the pre-1987 period, during the market crash, and in the post-1987 period.

11The stock market crash in October 1987 reveals anomalous trading behavior in the futures market
that was largely driven by portfolio insurance (Brady Report (1988)). According to the New York Stock
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Table 1: Summary Statistics

This table reports the number of observations, mean, standard deviation, minimum, maximum, quartiles,
and first-order (one-month) autocorrelation (ρ) of our predictor, prt (the ratio of long-term dividend price
to short-term dividend price) and pdt (the price-dividend ratio). The correlation matrix is shown at the end
of the table. Using Equation (7), we construct long-term dividend price from data of S&P 500 futures price
and zero-coupon bond price (source: Bloomberg), and short-term dividend price is the difference between
S&P 500 index value and long-term dividend price. pdt is the month-end price-dividend ratio of S&P 500
index (source: Bloomberg).

obs mean std min 25% 50% 75% max ρ corr. pr pd

pr 348 3.992 0.531 2.677 3.630 3.992 4.195 6.631 0.915 1.000
pd 348 3.873 0.307 3.241 3.594 3.887 4.052 4.551 0.987 0.874 1.000

Bloomberg). We set T equal to one year, so prt is the log ratio of price of dividends paid

beyond the coming year to the price of dividends paid within the coming year. Accordingly,

we focus on forecasting the return of S&P 500 index at the one-year horizon but also report

the forecasting results at the one-month horizon in the appendix.

Table 1 reports the summary statistics of prt, and the log price-dividend ratio pdt

for comparison. We can interpret prt as a measure of duration. Its median value, 3.992,

translates into 54.2 after taking exponential, meaning that the valuation of dividends two

years onward is 54.2 times the valuation of dividends in the next year. In other words, the

market has a valuation duration of a total 55.2 years. prt has a wide range of variation, with

a minimum of 2.677 (i.e., 15.5 years) right before the 1990-1991 recession (Jun. 1990) and a

maximum of 6.631 (i.e., 759.2 years) near the end of the dot-com boom (Nov. 2000).

prt has a lower one-month autocorrelation (“ρ”) than pdt. The persistence of predictors

is a major concern in the literature on return forecasting, especially due to the associated

small-sample bias (Nelson and Kim (1993); Stambaugh (1999)) and spurious regression when

the underlying expected return is persistent (Ferson, Sarkissian, and Simin (2003)).

The correlation between prt and pdt is 0.87. As shown in the cross-spectrum in Figure 1,

the high correlation is mainly from low-frequency movements. When forecasting the market

Exchange’s current website: “In response to the market breaks in October 1987 and October 1989, the New
York Stock Exchange instituted circuit breakers to reduce volatility and promote investor confidence. By
implementing a pause in trading, investors are given time to assimilate incoming information and the ability
to make informed choices during periods of high market volatility.”
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return, we will consider pdt and prt separately as univariate predictors, and also examine the

predictive power of their components orthogonalized to each other.

Inference and forecasting evaluation. We run the following regression to predict one-

year return:

rt,t+12 = α + βxt + εt,t+12, (8)

where xt is a predictor. Twelve-month forecasts use overlapping monthly data, so we ad-

just our standard errors to reflect the dependence that overlap introduces into error terms.

Following Cochrane and Piazzesi (2002), we report Newey and West (1987) standard errors

with 18 lags to account for the moving-average structure induced by overlap. Besides, we

also calculate Hodrick (1992) standard errors. Hodrick (1992) shows that GMM-based auto-

covariances correction (e.g., Newey and West (1987)) can have poor small-sample properties,

Related to the serial correlation in errors, another concern is the persistence of predictor that

induces bias in β estimate. We report the estimate adjusted for Stambaugh (1999) bias. In

the appendix, we report the IVX-Wald test of predictive coefficient in Kostakis, Magdalinos,

and Stamatogiannis (2015) that accounts for the persistence of predictor (Table 16).

The adjusted R2 measures in-sample fitness. Several studies have raised concerns over

out-of-sample performances of return predictors (Bossaerts and Hillion (1999); Goyal and

Welch (2007)). To address these issues, we report the out-of-sample R2 and two formal tests

of out-of-sample performances. We calculate out-of-sample forecasts as a real-time investor,

using data up to time t in the predictive regression to estimate β, which is then multiplied

by the time-t value of the predictor to form the forecast. Out-of-sample forecasting start

from December 1997, when we have at least ten years of data. Out-of-sample R2 is

R2
OOS = 1−

∑
t (rt,t+12 − r̂t,t+12)

2∑
t (rt,t+12 − rt)2

,

where r̂t,t+12 is the forecast value and r is the average of twelve-month returns (the first is

January-December 1998). The out-of-sample R2 lies in the range (−∞, 1], where a negative
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Table 2: One-year Return Prediction

This table reports the results of predictive regression (Equation (8)). The left-hand side variable is the return
of S&P 500 index in the next twelve months. We consider four the right-hand side variables (i.e., predictors),

prt, pdt, the residuals of prt after projecting on pdt (εprt ), and the residuals of pdt after projecting on prt (εpdt ),
and the results are reported in Column (1) to (4) respectively. The β estimate is shown followed by Newey
and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-statistic, the coefficient adjusted for Stambaugh
(1999) bias, and the in-sample adjusted R2. We run the regression monthly. Starting from December 1997,
we form out-of-sample forecasts of return in the next twelve months by estimating the regression with data up
to the current month, and use the forecasts to calculate out-of-sample R2, ENC test (Clark and McCracken
(2001)), and the p-value of CW test (Clark and West (2007)).

prt pdt εprt εpdt

β -0.138 -0.193 -0.160 0.098
Newey-West t (-4.718) (-3.575) (-2.233) (0.848)
Hodrick t [-2.743] [-2.217] [-1.677] [0.613]
Stambaugh bias adjusted β -0.127 -0.182 -0.152 0.107

R2 0.238 0.157 0.076 0.010
OOS R2 0.192 0.068 0.048 -0.043
ENC 4.052 1.776 2.249 -0.241
p(ENC) < 0.01 < 0.10 < 0.05 > 0.10
p(CW ) 0.007 0.041 0.111 0.348

number means that a predictor provides a less accurate forecast than the historical mean.

We report the p-value of two tests of out-of-sample performance, “ENC” and “CW”.

ENC is the encompassing forecast test derived by Clark and McCracken (2001), which

is widely used in the forecasting literature. We test whether the predictor has the same

out-of-sample forecasting performance as the historical mean, and compare the value of the

statistic with critical values calculated by Clark and McCracken (2001) to obtain a range of

p-value. Besides, Clark and West (2007) adjust the standard MSE t-test statistic to produce

a modified statistic (CW ) that has an asymptotic distribution well approximated by the

standard normal distribution, so for CW , we report the precise p-value.

One-year return prediction. Table 2 presents the results of annual return forecasting.

Column (1) shows that our price ratio, prt, demonstrates a striking degree of predictabil-

ity for one-year returns. The in-sample implementation generates a predictive R2 reaching
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23.8%.12 Out-of-sample forecasts are similarly powerful, delivering an R2 of 19.2%, signifi-

cantly outperforming the historical mean as shown by the p-values of ENC and CW .

Campbell and Thompson (2008) calculate a long-term estimate of the market Sharpe

ratio (“s0”) equal to 0.374. In the Appendix (see also Kelly and Pruitt (2013)), we show

that the Sharpe ratio of a mean-variance investor’s market-timing strategy (“s1”) is related

to s0 through s1 =

√
s20 +R2

1−R2
, where R2 is the out-of-sample R2 when prt is used as annual

return predictor. Therefore, an out-of-sample R2 of 19.2% implies a Sharpe ratio of 0.84,

suggesting that the stochastic discount factor is more volatile than implied by the common

asset pricing models (e.g., Campbell and Cochrane (1999) and Bansal and Yaron (2004)).

The predictive coefficient is also large in magnitude, indicating high volatility of the

expected return. A decrease of prt by one standard deviation adds 7.3% to the expected

return. Both Newey-West and Hodrick t-statistics are significant at least at the 1% level.

Column (2) reports the results for pdt. The return predictive power of pdt is weaker

than prt in all aspects. Its in-sample and out-of-sample R2 is almost half of those of prt.

Its coefficient is smaller and less significant. Moreover, an decrease in pdt by one standard

deviation leads to an increase of expected return by 5.8%, implying a less volatile expected

return than the one from prt. In the appendix, the IVX-Wald test of Kostakis, Magdalinos,

and Stamatogiannis (2015) in Table 16 also supports the significant predictive power of prt

while rejects the predictive power of pdt.

Since prt and pdt are highly correlated, we regress prt on pdt to obtain residuals, εprt ,

that are orthogonal to pdt in sample, and use the residual as a predictor to evaluate the return

predictive power of prt beyond pdt. The results are reported in Column (3). prt residual still

delivers in-sample and out-of-sample R2 of 9%, showing a very strong incremental predictive

power of prt. Note that to obtain out-of-sample forecasts, at time t we obtain the residuals

12Foster, Smith, and Whaley (1997) discuss the potential data mining issues that arise from researchers
searching among potential regressors. They derive a distribution of the maximal R2 when k out of m
potential regressors are used as predictors, and they calculate the critical value for R2, below which the
prediction is not statistically significant. For instance, when m = 50, k = 5, and the number of observations
is 250, the 95% critical value for R2 is 0.164.

13
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Figure 1: Spectrum and Cross-spectrum of Price Ratio and Price-Dividend Ratio. The left
panel shows the estimated spectral densities of prt, pdt, and the residuals of prt after projecting on pdt (εprt ).
The integral of spectral density is equal to the variance. The horizontal line starts from zero and ends at
π, but labeled with the corresponding length of a cycle. The right panel shows the cross-spectral density
between prt and pdt. The integral of cross-spectral density is equal to the covariance.

εprt only using data up to t from projecting prt on pdt, and then use these residuals to estimate

the predictive coefficient. In Column (4), εpdt , the residuals from projecting pdt on prt, does

not show return predictive power, which again confirms prt as the superior predictor.

Variation in the frequency domain. To better understand the incremental predictive

power of prt beyond pdt, Panel A of Figure 1 shows the spectrum of prt, pdt, and εprt

(residuals from projecting prt on pdt). The area under spectrum (integral) is the variance,

so the spectrum graph provides a variance decomposition in the frequency domain. On the

horizontal axis, instead of showing the frequencies from zero to π, we mark the corresponding

length of cycle for easier interpretation. Consistent with the fact that prt is less persistent

than pdt, its variation is also more concentrated in higher frequencies than the variation of

pdt. Once orthogonalized to pdt, prt’s residual varies mainly at annual or higher frequencies.

Panel B plots the cross-spectrum of prt and pdt. The integral is the covariance between

prt and pdt. The correlation between prt and pdt is mainly from low frequencies. This again

indicates that it is the high-frequency variation in prt that adds the return predictive power.

Expected return dynamics. Figure 2 plots the realized market return, the in-sample
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Figure 2: Expected Return Dynamics. The graph reports the in-sample fitted value, the out-of-sample
forecast, and the realized twelve-month return of S&P 500 index. The date on horizontal axis is the beginning
date of the twelve-month period. Starting from December 1997, we form out-of-sample forecasts of return
in the next twelve months by estimating the predictive regression with data up to the current month.

fitted value, and the out-of-sample forecast. The horizontal axis shows the beginning date of

each twelve-month return, i.e., the time when the expectation is formed. As before, out-of-

sample forecasts at time t only uses data up to time t to estimate the predictive coefficient.

The out-of-sample forecasting starts from December 1997 when we have at least ten years.

We plot separately the expected return from prt and that from pdt. For both predictors, in-

versus out-of-sample estimates of the expected return are fairly consistent with each other.

The first message from this graph is that in contrast to pdt, which produces a smooth

expected return over time, prt reveal variations of expected return at higher frequencies. This

observation is consistent with the Figure 1, and the fact that prt is less persistent. prt is more

responsive to news, as it contains only the market prices of short- and long-term dividends.

In contrast, pdt has a denominator that is a rolling accumulation of past dividends.
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Our sample has three recession periods (shaded). Near the end of each recession, the

expected return tends to increase, which is in line with studies that document countercyclical

equity premium (e.g., Fama and French (1989); Ferson and Harvey (1991)). Related to the

high-frequency variation revealed by prt, such increase is sharper for the estimate from prt

than that from pdt. Another interesting finding is that in the year leading up to the dot-com

burst and the global financial crisis, the expected return from prt exhibits slump, while the

expected return from pdt barely moves. Also, the expected return from prt starts to recover

near the end of these recessions, while the expected return from pdt only shows a smooth

upward trend throughout the recession. These new patterns from prt as the expected return

proxy are informative for constructing asset pricing and macroeconomic models.

Other predictors. How does prt compare with predictors proposed in the existing litera-

ture? Figure 3 compares the predictive accuracy of prt with that of an extensive collection

of other predictors. In the caption, we document the sources. We consider 18 alternative

predictors including the price-dividend ratio (pd), the default yield spread (dfy), the infla-

tion rate (infl), stock variance (svar), the cross-section premium (csp), the dividend payout

ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default

return spread (dfr), the dividend yield (dy), the long-term rate of return (ltr), the earnings-

to-price ratio (ep), the book to market ratio (bm), the investment-to-capital ratio (ik), the

net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), the consumption-

wealth-income ratio (cay), the short interests index (SII), the option-implied lower bound

of 1-year equity premium (SVIX) and Kelly and Pruitt (2013) factor extracted from 100

book-to-market and size portfolios (kp).

Most predictors are studied in a return predictability survey by Goyal and Welch

(2007), and others are proposed more recently, such as short interest index (“SII” in Ra-

pach, Ringgenberg, and Zhou (2016)) and SVIX (Martin (2017)). We report in-sample

(“IS”) R2, out-of-sample (“OOS”) R2, the absolute values of Newey-West and Hodrick t-

statistics. In our sample, prt outperforms other predictors in all aspects. Among the al-
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Figure 3: Comparison with Alternative Return Predictors. This graphs compares the 1-year return
predictive power between prt and other commonly studied predictors in our sample period. Panel A reports
the in-sample adjusted R2. Panel B reports the out-of-sample R2. Negative out-of-sample R2 indicates that
the predictive power is below historic mean. Panel C reports the absolute values of Newey and West (1987)
t-statistic (with 18-month lag). Panel D reports the absolute values of Hodrick (1992) t-statistic. Most
predictors are from Goyal and Welch (2007) and include the price-dividend ratio (pd), the default yield
spread (dfy), the inflation rate (infl), stock variance (svar), the cross-section premium (csp), the dividend
payout ratio (de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return
spread (dfr), the dividend yield (dy), the long-term rate of return (ltr), the earnings-to-price ratio (ep), the
book to market ratio (bm), the investment-to-capital ratio (ik), the net equity expansion ratio (ntis), the
percent equity issuing ratio (eqis), and the consumption-wealth-income ratio (cay). SII is the short interests
index from Rapach, Ringgenberg, and Zhou (2016) (1988-2014). SVIX is option-implied lower bound of
1-year equity premium from Martin (2017) (1996-2012). kp is the single predictive factor extracted from 100
book-to-market and size portfolios from Kelly and Pruitt (2013).

ternatives, the price-dividend ratio and the book-to-market ratio (“bm”) deliver the most

successful univariate forecasts, while others either fail in the out-of-sample R2 (e.g., cay, the

consumption-wealth ratio of Lettau and Ludvigson (2001)) or in statistical significance (e.g.,

ik, the investment-capital ratio of Cochrane (1991)). In the appendix, we report the corre-

lation between prt and other predictors. pdt, bm, ik, and dy show significant correlations.
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Table 3: Dividend Growth Prediction

This table reports the results of dividend growth forecasting. The left-hand side variable is the one-year,
non-overlapping dividend growth rate of S&P 500 index defined in Equation (10). We consider four right-

hand side variables (i.e., predictors), the residuals of pdt after projecting on prt (εpdt ), pdt, prt, the equity

yield, ln
(

Dt

PT−
t

)
, and the results are reported in Column (1) to (4) respectively. The estimated predictive

coefficient (β) is shown followed by Newey and West (1987) t-statistic (with 18 lags), Hodrick (1992) t-
statistic, the coefficient adjusted for Stambaugh (1999) bias, and the in-sample R2. We run the regression
monthly. Starting from December 1997, we form out-of-sample forecasts of return in the next twelve months
by estimating the regression with data up to the current month, and use the forecasts to calculate out-of-
sample R2, ENC test (Clark and McCracken (2001)), and the p-value of CW test (Clark and West (2007)).

εpdt pdt prt ln
(

Dt
PT−t

)
β 0.307 0.014 -0.035 -0.127

Newey-West t (3.204) (0.247) (-2.005) (-3.395)
Hodrick t [5.153] [0.642] [-3.990] [-6.767]
Stambaugh bias adjusted β 0.316 0.025 -0.024 -0.118

R2 0.349 0.003 0.057 0.233
OOS R2 0.304 -0.045 0.046 0.222
p(ENC) < 0.01 > 0.10 < 0.10 < 0.01
p(CW ) 0.011 0.418 0.054 0.001

2.3 Predicting dividend growth

As shown in Equation (4), the price-dividend ratio compresses information about expected

return and expected dividend growth. As the return predictive power is concentrated in prt,

the component of pdt that is orthogonal to prt (i.e., εpdt ) should forecast dividend growth. We

measure dividend growth by the ratio of adjacent, non-overlapping cumulative dividends,

∆Dt,t+12 =

∑12
i=1Dt+i∑12

i=1Dt−12+i
.13 (9)

In the predictive regression, we use the logarithm of ∆Dt,t+12 as the forecasting target.

Table 3 reports the results of dividend growth prediction.14 Column (1) shows that

εpdt , the residual of pdt after projecting on prt, exhibits very strong predictive power with

13Dividends are calculated from the difference between cum- and ex-dividend S&P index levels.
14Forecasting dividend growth has been at the center of asset pricing literature. See, e.g., Fama and French

(2000), Lettau and Ludvigson (2005), Koijen and Van Nieuwerburgh (2011), Lacerda and Santa-Clara (2010),
Golez (2014), Golez and Koudijs (2018).
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in-sample and out-of-sample R2 of 34.9% and 30.4% respectively. The coefficient has a

large magnitude and is statistically significant. One standard-deviation increase of εpdt is

associated with 4.55% increase of dividend growth (i.e., 3.7 standard deviations). Column

(2) shows that pdt itself does not strongly predict dividend growth. Column (3) shows that

in comparison with εpdt , the dividend predictive power of prt is weaker, with an out-of-sample

R2 only 15% of that of εpdt . Together, Table 2 and 3 show that the information about future

return and dividend is mingled together in pdt. Such information is disentangled, once pdt

is decomposed by cash-flow horizon, and prt is constructed to extract the expected return.

Our analysis of return and dividend predictability echoes the observation of Cochrane

(2007) that price-dividend ratio must either predict return or dividend growth, but we show

an even richer story: the predictive information on return and dividend cancels out each

other within pdt (Lettau and Ludvigson (2005)). Once we tease out the information on the

future return, the rest of pdt predicts dividends better than pdt itself.

εpdt is related to the “equity yield” in Binsbergen, Hueskes, Koijen, and Vrugt (2013)

in its dividend predictive power. Following that paper, we define equity yield as ln
(

Dt
PT−t

)
.

The following equation directly decomposes pdt into prt and the equity yield:

pdt = ln (1 + eprt)− ln

(
Dt

P T−
t

)
≈ κ0 + κ1prt − κ2 ln

(
Dt

P T−
t

)
, (10)

where the linearizion coefficients are κ1 = exp(pr)

1+exp(pr)
, κ2 = 1, and κ0 = ln

(
1 + exp (pr)

)
−κ2pr.

The upper bar represents long-run means, around which we log-linearize the equation. The

correlation between prt and the equity yield is 0.86 in our sample, so Equation (10) is only an

imperfect decomposition. As shown in Column (4) of Table 3, the equity yield also predicts

dividend growth, albeit with a forecasting power less than εpdt .15

15Our sample period differs from Binsbergen, Hueskes, Koijen, and Vrugt (2013) (October 2002 and April
2011) who need dividend derivatives for dividend strips, so the estimates of predictive coefficient are different.
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2.4 A structural interpretation

The economic intuition behind our results can be understood by imposing more structure on

the state-space model. We construct the stochastic discount factor and aggregate dividend

following Lettau and Wachter (2007), and show that the return predictive power of prt

depends on the persistence of expected dividend growth. This model is nested by the previous

state-space model. To streamline the exposition, here we define one unit of time as one year,

instead of one month as in the empirical exercises.

Model and solution. The economy has three independent shocks: one to dividend growth,

one to expected dividend growth, and a preference shock. A 3 × 1 vector εt+1 record these

standard normal shocks. The aggregate dividend is assumed to evolve according to

∆dt+1 = g + zt + σdεt+1, (11)

where zt follows the AR(1) process

zt+1 = φzzt + σzεt+1, (12)

with |φz| < 1. The conditional mean of dividend growth is g+zt. Row vectors σd and σz load

shocks into ∆dt+1 and zt+1 respectively. The conditional standard deviation of ∆dt+1 equals

‖σd‖ =
√
σdσ′d. Similarly, the conditional standard deviation of zt+1 equals ‖σz‖ =

√
σzσ′z,

and its conditional covariance with ∆dt+1 is σdσ
′
z.

The stochastic discount factor is directly specified for this economy. In particular, we

assume that the price of risk is driven by a single variable xt that follows the AR(1) process

xt+1 = (1− φx) x̄+ φxxt + σxεt+1, (13)

where |φx| < 1 and σx is a 1 × 3 vector. For simplicity, the risk-free rate, denoted rf , is

constant. Following Lettau and Wachter (2007), and in line with Campbell and Cochrane
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(1999) and Menzly, Santos, and Veronesi (2004), we assume only dividend risk is priced. Let

εd,t+1 = σd
‖σd‖

εt+1 denote the normalized dividend shock. The stochastic discount factor is

Mt+1 = exp{−rf − 1

2
x2t − xtεd,t+1}. (14)

Consistent with the no-arbitrage condition, lnEt [Mt+1] = −rf . In Campbell and Cochrane

(1999), the price of risk (xt here) is perfectly negatively correlated with cash-flow growth,

which corresponds to σx/‖σx‖ = σd/‖σd‖. Here, as in Lettau and Wachter (2007), we allow

the conditional correlation to be imperfect, and interpret shocks that are uncorrelated with

changes in fundamentals as preference or sentiment shocks.

We solve prt, which is equal to ln
(

St
PT−t
− 1
)

given our previous notations. First, we

solve P T−
t , the price of one-year dividend following Lettau and Wachter (2007):

P T−
t = Dt exp{AT− +BT−xt + CT−zt}, (15)

where AT− is a constant, and the constant coefficients on xt and zt are

BT− = −‖σd‖, and CT− = 1.

Next, we solve the price of all dividends from the next year to the indefinite future, as in

Bansal and Yaron (2004), using Campbell and Shiller (1988) approximation of market return

rt+1, i.e., κ0 + κ1pdt+1 − pdt + ∆dt+1, and no-arbitrage condition (details in Appendix I):

St = Dt exp{A+Bxt + Czt}, (16)
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where A is a constant, and the constant coefficients on xt and zt are

B = −
σdσ
′
z

‖σd‖
κ1C + ‖σd‖

σdσ′x
‖σd‖

κ1 + κ1φx − 1
, and C =

1

1− κ1φz
.16

The return predictor prt is a function of St/P
T−
t , which in turn depends on xt and zt:

St

P T−
t

= exp{A− AT− +
(
B −BT−)xt +

(
C − CT−) zt}. (17)

Finally, we solve the expected market return that only depends on xt, the price of risk:

Et [rt+1] = Ar +B (κ1φx − 1)xt, (18)

where Ar is a constant and the coefficient of xt is a product of B and (κ1φx − 1).

Equation (11) and (18) show that the state-space model that motivates our decomposi-

tion of price-dividend ratio nests this structural model. Ft contains xt and zt, with the former

driving the expected market return and the latter driving the expected dividend growth.

Return predictability and the expected dividend growth. From Equation (18), we

know that to predict return, all we need is xt. pdt and prt depend on both xt and zt. The

information on future dividends may compromise the return predictive power (Menzly, San-

tos, and Veronesi (2004); Lettau and Ludvigson (2005)). For example, Lettau and Wachter

(2007) calibrate the shock correlation between xt and zt to zero, so zt adds pure noise. In fact,

when the expected dividend growth is transient (φz = 0), prt perfectly reveals xt, because

φz = 0 implies C = 1 and the coefficient of zt in St/P
T−
t , i.e., (C − CT−), is zero.

Proposition 1 In an economy with stochastic discount factor given by Equation (14) and

aggregate dividend growth given by Equation (11), there is a one-to-one mapping from prt to

xt if and only if the expected dividend growth is not persistent, i.e., φz = 0.

16Lettau and Wachter (2007) solve the total value of dividends using a different approximation that sums
up the closed-form prices of dividend strips up to a finite horizon and approximate the residual value by
exploiting the fact that strip prices’ coefficients on xt and zt converge to horizon-independent fixed points.
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Our findings on dividend predictability lend further support to this structural inter-

pretation of prt’s return predictive power. In Table 3, we show that εpdt , the residuals from

projecting pdt on prt, predict dividend growth. When φz = 0, prt perfectly reveals xt, so

εpdt maps to zt. Moreover, ln
(
P T−
t /Dt

)
predicts dividends, but its power is weaker than εpdt

because, ln
(
P T−
t /Dt

)
is AT−+BT−xt +CT−zt so the variation of zt is masked by that of xt.

Using εpdt as a proxy for the expected dividend growth, we can examine its persistence

directly. Figure 11 in the appendix shows that autocorrelations of εpdt are not statistically

different from zero. Because next we will show the return predictive power of prt outside the

U.S., we report the autocorrelations of εpdt both in the U.S. and other countries.

Finally, we fit a state-space model to dividends, and report the estimates in Table

15 in the appendix. The null hypothesis of zero persistence in the expected dividend

growth cannot be rejected for both S&P 500 dividends and the total cash payout of CRSP

NYSE/AMEX/NASDAQ Cap-Based index. Note that in Table 3, the dividend predictive

power of prt seems stronger than pdt (still much weaker than εpdt ’s). This is due to the shock

correlation between xt and zt, which causes an unconditional correlation between prt and

the expected dividend growth. We show that our results are robust to different correlations

between structural shocks (Figure 10 in the appendix).

When zt is a constant, prt and pdt are both perfect proxies for xt, but when zt varies

over time, the return predictive power of pdt is compromised. Variants of growth-adjusted

valuation ratios have been proposed (Campbell and Thompson (2008); Lacerda and Santa-

Clara (2010); Da, Jagannathan, and Shen (2014); Golez (2014)). Binsbergen and Koijen

(2010), Rytchkov (2012), and Jagannathan and Liu (2015) use state-space models to filter

out ans separate the information on expected return and dividend growth. We contribute

to this line of research by proposing a model-free predictor that is directly constructed from

market prices. Moreover, we construct a dividend predictor by simply projecting pdt on prt.
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2.5 Predicting return outside the United States.

A potential concern is that our US sample of thirty years (354 monthly observations) is

relatively short. We close this section with international evidence on return predictability.

Sample construction. The index return and futures data are obtained from Datastream.

Zero coupon bond yields and index dividends are obtained from Bloomberg. We start with

all developed countries with index futures, and drop a country from the sample if one of the

following criteria is met: 1) futures with maturity larger or equal to one year do not exist

(Germany, Hong Kong, Switzerland) or exist for less than five years (Norway); 2) futures

price exhibits strong seasonality (Italy, Netherlands, and Switzerland) or break (Canada).17

For each country, our sample starts from the earliest date when index return, futures,

and dividend data are all available. We end up with 1,469 country-month observations: UK

(FTSE100, starting in 1993), France (CAC40, starting in 1998), Spain (IBEX35, starting in

1994), Australia (ASX200, starting in 2002), and Japan (Nikkei225, starting in 1993). We

construct prt and pdt, and estimate εprt and εpdt country-by-country.

International return predictability. We supplement the US sample with data from the

other five countries, and use this unbalanced panel to test the return predictive power of prt.

In the panel data regression, the left-hand side variable is the future stock market return

in a country, and the right-hand side variable of interest is prt in that country. Instead of

running the typical predictive regression with overlapping returns on the left-hand side, we

follow the suggestion of Hodrick (1992) and run the following (“reverse”) regression to test

the return predictive power of prt at one-year horizon.

12arnt,t+1 = α + β

(
1

12

11∑
i=0

xnt−i

)
+ εnt,t+1, (19)

where n represents a country.18 The dependent variable is the (annualized) next-month mar-

17In the appendix, Figure 9 plots the futures-to-spot ratio for these four countries.
18Note that the Hodrick (1992) standard error in Table 2 is not based on such non-overlapping regression.

We corrected the standard error of predictive coefficient of overlapping regression following the calculation
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Table 4: International Panel Return Prediction

This table reports the results of return forecasting regression (Equation (19)) using the panel data of Aus-
tralia, France, Japan, Spain, the United Kingdom, and the United States. The left-hand side variable is the
one-month, non-overlapping index return of a country, and for the right-hand side variable, we consider prt
(Column 1 and 2), pdt (Column 3 and 4), εprt (Column 5 and 6), and εpdt (Column 7 and 8) in that country.

εprt is the residual of prt after projecting on pdt, and εpdt is the residual of pdt after projecting on prt. For
each predictor, we report both the results with and without time fixed effects. The estimated predictive
coefficient (β) is shown followed by Hodrick (1992) t-statistic. In each column, we report whether country
and time fixed effects are included, the number of observations, and adjusted R2. We drop observations with
negative one-year dividend strip prices, so the estimation using prt has a shorter sample than that using pdt.

prt −0.189 -0.051
[-4.497] [-0.740]

pdt −0.109 -0.135
[-3.843] [-1.339]

εprt −0.404 -0.113
[-7.087] [-1.438]

εpdt −0.063 -0.083
[-1.961] [-1.230]

Country FE 3 3 3 3 3 3 3 3

Time FE 3 3 3 3

Obs 1,469 1,469 1,553 1,553 1,469 1,469 1,469 1,469

ket return (non-overlapping), and the predictor is averaged in the most recent twelve months.

Hodrick (1992) points out the difficulties in inference when using overlapping observations,

especially given the the poor small-sample properties of GMM-based autocovariances correc-

tion (e.g., Newey-West standard error), and suggest this reverse regression (19) for drawing

inference on long-run prediction.19 We cluster the standard error by time and country. The

model of Equation (19) combines the small-sample properties of Hodrick (1992) standard

error and the robustness of clustered standard errors to various error correlations.

Table 4 reports the results. Column (1) shows the strong return predictive power of prt

after controlling for the heterogeneity in level of equity premium across countries (through

country fixed effect). The coefficient estimate is similar to the predictive coefficient in the

in Hodrick (1992) who show that under certain assumptions the corrected t-statistic of the overlapping
regression equals the t-statistic of the non-overlapping reverse regression.

19Note that the adjusted R2 from the non-overlapping regression of Equation (19) is not comparable to
that of the overlapping regression in Table 2, because in Equation (19), we effectively forecast monthly
return using the one-year average of predictor, even if the inference we draw from such regression is about
the return prediction at the one-year horizon. Thus, we do not report the R2 of non-overlapping regression.
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Figure 4: Return Prediction across Countries. This graph shows side-by-side the adjusted R2s of three
univariate predictive regressions, with prt, pdt, and prt and pdt together on the right-hand side respectively
for each country. The left hand side variable is the total market return in the next twelve months.

U.S. sample, and more statistically significant. The comparison between Column (1) and (3)

of Table 4 shows that the return predictive power of prt is stronger than pdt. Column (5)

shows that the residuals of prt after projecting on pdt strongly predicts return at one-year

horizon. Column (7) shows that prt largely subsumes the return predictive power of pdt (as

a reminder, εpdt is the residual from projecting pdt on prt). In contrast to the U.S. results,

pdt now carries some distinct information on future returns.

Cross-country comovement in the expected return. We introduce time fixed effect in

Column (2) that absorbs a global factor in the returns of each country. Return predictability

disappears, meaning that the return predictive power of prt mainly comes from the informa-

tion it contains regarding the global factor. Note that prt is constructed country-by-country.

This finding suggests that the expected return across countries comoves, which is in line with

the literature on global market integration (Karolyi and Stulz (2003); Miranda-Agrippino

and Rey (2015)). In Column (4), return predictive power of pdt also disappears once the
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time fixed effect is introduced. A similar result holds in Column (6) for prt’s residuals.

Figure 8 in the appendix shows the time series of the first three principal components of

prt in these countries, which together account for more than 80% of the variation. The first

principal component (48% of variation) exhibits spikes at the onsets of the global financial

crisis and the European sovereign debt crisis, suggesting that a major part of the global

comovement of expected stock return comes from crisis periods.

Return predictability in each country. Figure 4 reports the adjusted R2 from predictive

regressions in each country using prt, pdt, and prt and pdt together on the right hand side.

prt outperforms pdt in all countries but Japan, and adding pdt does not seem to bring extra

return predictive power. Table 12 in the appendix reports the details of estimation results.

3 The Risk of Time-Varying Expected Return

We study the risk of time-varying expected return using prt as the forecasting variable.

Shocks to prt are significantly priced in the cross section (Table 5). This exercise is essentially

a test of prt as a return predictor. In ICAPM, shocks to agents’ investment opportunities

are priced; so should shocks to prt if it is an adequate expected-return proxy. Moreover,

we find the price of market risk can be better identified when prt shocks are included. The

two-factor structure follows closely Campbell (1993). Next, we document the cyclicality of

expected return by examining the response of prt to monetary policy shocks (Table 6) and

prt’s correlations with macroeconomic and financial market conditions (Table 7).

3.1 The price of prt risk

Revisiting ICAPM. The expected market return, and more generally, agents’ investment

opportunity set, varies with prt. On the one hand, assets that have negative covariance with

shocks to prt are desirable because they enable investors to profit from improved investment

opportunities – a negative shock to prt is a positive shock to the expected market return
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(i.e., goods news on future market returns). On the other hand, assets with positive prt-

beta are desirable because they hedge against the deterioration of investment opportunities.

As shown by Campbell (1993) using the recursive utility of Epstein and Zin (1989), if the

coefficient of relative risk aversion is greater than one, the hedging motive dominates, and

shocks to prt are negatively priced. Next, we estimate the price of prt risk in the cross section

of standard sorted portfolios.

We are the first to perform this asset pricing test in the literature of return predictabil-

ity. If predictive power is not from spurious relations, shocks to the predictor should be

priced. Here, we go beyond standard-error correction, bias adjustments, and out-of-sample

tests. We test the return predictive power of prt using ICAPM (Merton (1973)).

Estimating pr risk price. Our testing assets are the twenty-five Fama-French portfolios

(sorted by size and book-to-market ratio), twenty-five momentum portfolios (sorted by size

and prior returns), twenty-five investment portfolios (sorted by size and change in total

assets), and twenty-five profitability portfolios (sorted by size and operating profitability).

The data of monthly portfolio returns are from Kenneth R. French’s website.20 We consider

this set of portfolios as good proxy for the U.S. investors’ opportunity set.

The first step is to calculate the loadings of assets on shocks to prt. As noted by Pástor

and Stambaugh (2003), an asset’s beta should be defined with respect to shocks (innovations)

instead of the level of a state variable, because the expected changes in the state variable and

the expected asset return can be correlated, which contaminate beta measures. In our case,

prt is very likely to correlate with expected asset returns, because it forecasts the market

return and the expected asset returns are functions of the expected market return in CAPM

or other equilibrium asset pricing models. We measure shocks to prt as the first difference.

In the appendix (Table 13), we show that results based on AR(1) shocks are similar.

To estimate the price of prt shocks, we take two approaches. The first is the Fama-

MacBeth method. The second one is GMM, which corrects potential biases in the Fama-

20http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 5: The Price of prt Risk

This table reports the price of market risk and prt risk estimated using Fama-MacBeth method and Gener-
alized Method of Moments (GMM). We use the two-stage GMM estimator with the efficient weight matrix.
prt shock is measured by the first difference of prt. The full asset universe (“All”) includes the twenty-five
Fama-French portfolios (sorted by size and book-to-market ratio), ten momentum portfolios, ten invest-
ment portfolios, and ten profitability portfolios. We also estimate prt risk price using twenty-five value-size,
momentum-size, investment-size, and profitability-size portfolios. The data of monthly portfolio returns are
from Kenneth R. French’s website. Each column corresponds to one set of assets. Each estimated price of
risk is followed by the t-statistic in parenthesis. *, **, and *** denote 5%, 2%, and 1% level of statistical
significance respectively. We also report mean absolute pricing error (MAPE) and R2.

All Fama-French 25 Momentum 25 Investment 25 Profitability 25
(1) (2) (3) (4) (5)

Fama-MacBeth
∆prt −0.252∗∗∗ −0.288∗∗∗ −0.367∗∗∗ -0.099 −0.193∗∗

(-4.707) (-2.803) (-3.858) (-1.047) (-2.513)

rt − rft 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.009∗∗∗

(4.025) (3.893) (3.772) (4.214) (4.023)
MAPE 0.189% 0.172% 0.220% 0.212% 0.228%
R2 0.645 0.674 0.718 0.696 0.719

GMM
∆prt −0.359∗∗∗ −1.354∗∗∗ −0.296∗∗∗ −52.494 −0.069∗∗

(-8.314) (-2.907) (-5.428) (-0.059) (-2.571)

rt − rft 0.010∗∗∗ 0.010∗∗∗ 0.009∗∗∗ -0.015 0.013∗∗∗

(5.006) (3.662) (4.284) (-0.036) (5.979)
MAPE 0.091% 0.027% 0.089% 0.066% 0.147%
R2 0.729 0.678 0.667 0.720 0.727

MacBeth standard errors (Cochrane (2005)). Parameters are over-identified in GMM. For

the weight matrix, we use the two-stage efficient weight matrix (Hayashi (2000)). In both

cases, the cross-sectional pricing equations exclude intercepts. We include market excess

return as the other risk factor following the exact equilibrium condition of Campbell (1993).

Table 5 reports the results of cross-sectional estimations. Each column corresponds to

a universe of assets. *, **, and *** denote 5%, 2%, and 1% level of statistical significance

respectively. “All” refers to the universe that includes Fama-French twenty-five portfolios,

ten momentum, ten investment, and ten profitability portfolios (a total of fifty-five assets).

Column (2) to (5) correspond respectively to twenty-five double-sorted portfolios of book-

to-market, momentum, investment and profitability interacting with size. The price of risk

is reported for both prt shock (∆prt) and market excess return (rt − rft ), followed by the
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t-statistic. We also report the mean absolute pricing error (MAPE) and R2.

The price of prt risk is negative and statistically significant in the cross-section of all

assets, size and book-to-market sorted portfolios, momentum portfolios, and profitability

portfolios. The magnitude is similar across asset universes and economically significant. For

example, one standard deviation difference in the prt beta of two assets corresponds to a

difference of 0.252×0.00685×12 = 2.1% in average return per annum. A significant price of

pr risk helps establish prt as a return predictor, i.e., a proxy for the expected market return.

Among size (SMB), value (HML), profitability (RMW), investment (CMA) and mo-

mentum factors, prt shocks have the highest correlation (−12.7%) with the momentum (Table

14 in the appendix), suggesting that the cross-sectional dispersion of prt beta are highest

among momentum-sorted portfolios. This may explain why the estimated price of prt risk

is higher and more precise in the momentum universe than the other sets of portfolios.

Importantly, once the prt shock is introduced as a risk factor, we estimate an eco-

nomically meaningful and statistically significant price of market risk, which is roughly 1%

per month across asset universes. The asset-pricing model we estimate here is precisely the

Equation (25) of Campbell (1993) that decomposes assets’ expected returns into the covari-

ance with the market return and the covariance with a shock to the expected future returns

(exactly the prt shock). As illustrated by our structural model earlier, the two risk factors

are correlated, so omitting one makes it difficult to estimate the price of risk for the other.

By delivering a strong return predictor, we contribute to the estimation and test of ICAPM.

3.2 The cyclicality of expected return

The fact that shocks to prt are priced suggests the expected market return, proxied by prt,

comoves with macroeconomic variables. The relation between macroeconomic conditions

and the expected stock return has always been at the center of asset pricing research (Fama

and French (1989); Ferson and Harvey (1991)). In particular, the impact of monetary pol-

icy on asset prices continues attracting great attention (Campbell, Pflueger, and Viceira

30



(2015))). Bernanke and Kuttner (2005) find that an unanticipated cut in the Federal funds

rate is associated with an increase in stock indexes, and based on the VAR approach pro-

posed by Campbell and Ammer (1993), they show the largest part of stock price response

is from changes in the expected return. More recently, Lucca and Moench (2015) show that

sizable fractions of realized stock returns are concentrated in the twenty-four hours before

the scheduled meetings of the Federal Open Market Committee (FOMC) in recent decades.

Next, using prt as a proxy of the expected return (discount rate) in the stock market,

we examine how monetary policy affects stock prices through its impact on the discount rate

and relate our results to the literature. We also document significant correlations between

the expected returns from our predictive regression and macroeconomic variables.

Monetary policy and the expected return. To examine the impact of monetary policy

on stock prices, we construct four variables. We define a variable, FOMC Day, that equals

one if the day has an FOMC meeting and zero otherwise. We also construct Pre-FOMC Day

that equals one if the next day has an FOMC meeting and zero otherwise, and similarly,

Post-FOMC Day. Finally, we use the monetary policy shocks from Nakamura and Steinsson

(2017) to construct a variable, MP Shock, that equals their monetary policy shocks on FOMC

days and zero in non-FOMC days.21

Table 6 reports the results of projecting the realized return, prt (our proxy for expected

return), pdt, ε
pd
t (our proxy for expected dividend growth), and εprt on the four variables.

Column (1) confirms the results of Lucca and Moench (2015). FOMC day sees an average

positive return of 40 basis points. While Lucca and Moench (2015) argue that most of the

realized market returns are concentrated in the twenty-four hours before FOMC announce-

ments (on average 49 basis points), a big fraction of the those hours are on the FOMC

day because the release time varies between 12:30 pm and 2:30 pm. We do not conduct an

21Monetary policy shock is calculated using a 30-minute window from 10 minutes before the FOMC
announcement to 20 minutes after it. Data of the Federal funds futures is used to separate changes in the
target funds rate into anticipated and unanticipated components. For earlier contributions, please refer to
Cook and Hahn (1989), Kuttner (2001), and Cochrane and Piazzesi (2002) among others.
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Table 6: Realized Return, Expected Return, and Monetary Policy Announcements

This table reports how realized and expected returns change during FOMC days and respond to monetary
policy shocks. Monetary policy shock (MP Shock) is equal to the unanticipated changes in the Federal Funds
rate from Nakamura and Steinsson (2017) on the days of FOMC meetings, and zero otherwise. The sample
period is Jan 1st, 1988 to Dec 31st, 2014. FOMC day, Pre-FOMC day, and post-FOMC day are dummy
variables for the announcement day, the day before, and the day after respectively. We linear-project realized
returns rt, pr, pdt, ε

pd
t , and εprt on these monetary policy variables. Each column resports the results from

one specification. *, **, and *** denote 5%, 2%, and 1% level of statistical significance respectively.

rt rt prt pdt εpdt εprt

MP Shock −0.075∗∗∗ −1.326∗∗ -0.251 0.247 −0.951∗∗

(-5.507) (-2.329) (-0.879) (1.305) (-2.519)
FOMC day 0.004∗∗∗ 0.003∗∗∗ 0.075 0.042∗ 0.014 0.013

(4.513) (3.443) (1.935) (2.138) (1.052) (0.492)
Pre-FOMC day 0.001 0.001 0.099∗∗ 0.042∗ 0.002 0.040

(0.702) (0.704) (2.553) (2.191) (0.174) (1.559)
Post-FOMC day -0.001 -0.001 0.101∗∗∗ 0.045∗∗ 0.007 0.035

(-0.896) (-0.898) (2.628) (2.327) (0.508) (1.358)
R2 0.004 0.009 0.004 0.003 0.000 0.002
Obs 5600 5600 5600 5600 5600 5600

intraday analysis due to the concern over intraday futures liquidity.

Column (2) of Table 6 shows a tightening of monetary policy (i.e., an increase in MP

Shock) decreases stock market returns, in line with the evidence in Thorbecke (1997) and

Bernanke and Kuttner (2005). After directly controlling for the monetary policy shock,

the relation between stock return and FOMC day is weakened. There is a long tradition

in understanding the contemporaneous response of stock price to monetary policy. Rozeff

(1974) finds that a substantial fraction of stock return variation is related to monetary news.

Our main interest is on the response of prt to monetary policy variables because prt

serves as a proxy for the expected return. Column (3) of Table 6 shows a negative response

to monetary tightening, which translates into an increase in the market discount rate.22

Therefore, the decline of stock price during monetary tightening (a negative realized return)

is attributed to the discount-rate increase. Column (6) delivers the same message using εprt .

If we use the traditional price-dividend ratio as a proxy for the expected return, we

shall not see any response to monetary policy shock (as shown in Column (4)), in particular,

22This is related to Patelis (1997) who finds some return predictive power of monetary policy variables.
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because the response of εprt to monetary policy shock is missed. Our new return predictor

prt reveals new information about how the expected return varies with monetary policy.

Finally, since the residuals from projecting pdt on prt (i.e, εpdt ) strongly forecast dividend

growth (Table 3), we regress it on monetary policy variables. We do not find significant

relations. Therefore, monetary policy does not seem to affect the cash-flow expectation.

To sum up, monetary policy has a strong impact on stock prices mainly through the

discount rate – expansionary monetary policy tends to lower the discount rate, and thereby,

raise the stock price, leading to higher realized returns. Since the expected return becomes

lower, the impact of monetary policy on stock price tends to revert over time.

Correlation with macroeconomic variables. Table 7 shows that the expected stock

return comoves with variables that reflect the conditions of macroeconomy, financial markets,

financial intermediaries, uncertainty, and sentiment.

The expected return is countercyclical. It is positively correlated with unemployment

and negatively correlated with consumption growth, fixed investments, and GDP deflector,

suggesting that a major fraction of variation in the expected return is from the business

cycle. The expected return is also positively correlated with the term spread and weakly

correlated with the default spread (Baa-Aaa) (Fama and French (1989)). The expected

return comoves with cay, as suggested by Lettau and Ludvigson (2001), but prt outperforms

cay in return forecasting (Figure 3), especially out of sample. The fact that many of these

cyclical variables fail to predict return as strongly as prt does is likely because (1) we need

better measurements (e.g., see Savov (2011) for consumption), (2) most are only available

at lower (quarterly) frequencies, or (3) each of them reflects only a fraction of variation in

the expected return but prt is a comprehensive measure (sufficient statistics).23

The expected return exhibits strong negative correlation with broker-dealer leverage

23For example, Lamont (2000) finds that the nonresidual investment does not forecast returns, and suggests
that investment plans are more sensitive to risk premia. In contrast, our measure of expected return is highly
correlated with nonresidual investment, suggesting that the findings of Lamont (2000) are likely to be biased
by the noise in the measures of expected returns. Pástor and Stambaugh (2009) propose a predictive system
to address the imperfect correlation between expected returns and predictors.
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Table 7: The Correlations between Macro Variables and the Expected Return

This table reports the correlation between the in-smaple fitted expected returns and macroecnomic variables.
The variables are divided into four categories. 1) Macroeconomic: nominal GDP Growth, Industrial Produc-
tion Growth (“IP Growth”), Chicago Fed National Activity Index (“CFNAI”), Unemployment Rate, Real
Consumption Growth, Total Business Inventories, Nonresidential Fixed Investment (nominal), Residential
Fixed Investment (nominal), and GDP Deflator are all from FRED database. 2) Financial: Term Spread and
Default Spread (“Baa-Aaa”) are from FRED. cay is from Lettau and Ludvigson (2001). 3) Intermediary:
Broker/Dealer leverage (“B/D Leverage”) is from Adrian, Etula, and Muir (2014); Broker/Dealer 1(5) year
average CDS spreads (“B/D 1(5) Year Avg. CDS”) is from Gilchrist and Zakraj̆sek (2012); ROA of banks
(“ROA Banks”) is from FRED. 4) Uncertainties: CBOE 1-month VIX index (“VIX”) and Chauvet and Piger
(2008)’s smoothed U.S. recession probabilities estimates for given month (“CP Recession”) are from FRED;
Economics policy uncertainties (“EPU”) is from Baker, Bloom, and Davis (2016); Survey of Professional
Forecasters recession probability estimates (“SPF Recession”) is from the Philadelphia Fed. 5) Sentiments:
Sentiment Index (both raw and orthogonalized against several macro variables), Number of IPOs (“IPO #”)
and close-end fund NAV discount (“Close-end Discount”) are all from Baker and Wurgler (2006).

r̂pr p-value

Macroeconomic:
GDP Growth 0.08 (0.38)
IP Growth 0.03 (0.48)
CFNAI 0.07 (0.18)
Unemployment 0.38 (0.00)
Cons. Growth -0.43 (0.00)
Business Inventories -0.08 (0.14)
Nonres. Fixed Investment -0.47 (0.00)
Res. Fixed Investment -0.31 (0.01)
GDP Deflator -0.35 (0.00)

Financial:
Term Spread 0.27 (0.00)
Baa-Aaa 0.09 (0.07)
cay 0.29 (0.00)

Intermediary:
B/D Leverage -0.55 (0.00)
B/D 1 Year Avg. CDS 0.21 (0.02)
B/D 5 Year Avg. CDS 0.32 (0.00)
ROA Banks -0.43 (0.00)

Uncertainties:
VIX -0.25 (0.00)
EPU 0.17 (0.00)
CP Recession -0.03 (0.47)
SPF Recession 0.13 (0.17)

Sentiments:
Sentiment Index -0.43 (0.00)
Sentiment Index (orth.) -0.44 (0.00)
IPO # 0.10 (0.05)
Close-end Discount 0.32 (0.00)

34



(Adrian and Shin (2010); Adrian, Moench, and Shin (2013)). This indicates that when

dealer banks increase their leverage to acquire risky assets or to extend credit to hedge

funds through prime brokerage services, the expected return tends to be low. The positive

correlation between the expected return and broker-dealer CDS spread suggests that the net

worth of financial intermediaries may also play a role in the variation of expected return (He

and Krishnamurthy (2013); He, Kelly, and Manela (2017)). We also find that the expected

return comoves with the profitability of commercial banks. Overall, the expected return is

closely associated with conditions of the financial intermediation sector.

Interestingly, the expected return tends to be high when VIX is low. This finding

has important implications on the dynamics of risk-return trade-off (Lettau and Ludvigson

(2010)).24 Our finding is related to Moreira and Muir (2017), who show that a trading

strategy that scales up when the expected volatility declines tend to generate profits unex-

plained by common risk factors.25 The expected return has a positive correlation with policy

uncertainty (EPU), but the correlations with recession probabilities are mixed.

Finally, we show that the expected return tends to be low when sentiment is high. The

sentiment index (raw and orthogonalized to macro factors) is from Baker and Wurgler (2006),

together with IPO volume and closed-end fund discount (inversely related to sentiment).

4 Asymmetric Predictability

In this section, we study conditional return predictability. We find that predictability is

asymmetric – stronger following a down market (Table 8). The results hold outside the U.S.

(Figure 5). We evaluate related theories that imply asymmetric predictability in Table 9.

24VIX may not capture the risks associated with changes in investment opportunities, which can be an
important component of risk (Guo and Whitelaw (2006)).

25A similar risk-return relation shows up in the cross section of stocks, as shown by strategies that explore
low-risk anomalies, such as idiosyncratic volatility (Ang, Hodrick, Xing, and Zhang (2009)), risk parity
(Asness, Frazzini, and Pedersen (2012)), and betting against beta (Frazzini and Pedersen (2014)).
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Table 8: Conditional Return Prediction

This table reports the results of conditional return prediction. We run regressions monthly. Column (1) and
(4) show the results of Equation (20)) and (21) respectively (intercept omitted in the table). Column (2)
and (5) have only the down-market indicator and the past market excess return respectively. Column (3)
and (6) add prt to Column (2) and (5). Coefficient estimates are shown followed by Newey and West (1987)
and Hodrick (1992) t-statistics, and the adjusted R2 is reported in the last row.

(1) (2) (3) (4) (5) (6)

I{rt−12,t<r
f
t−12,t}

× prt -0.180

Newey-West t (-3.810)
Hodrick t [-2.977]

I{rt−12,t≥rft−12,t}
× prt -0.108

(-2.981)
[-1.751]

I{rt−12,t<r
f
t−12,t}

0.257 -0.038 -0.031

(1.000) (-0.750) (-0.901)
[0.987] [-0.670] [-0.558]

prt -0.137 -0.140 -0.137
(-5.005) (-5.496) (-4.949)
[-2.735] [-2.776] [-2.739](

rt−12,t − rft−12,t
)
× prt 0.269

(1.462)
[1.099]

rt−12,t − rft−12,t -1.037 0.083 0.065
(-1.358) (0.680) (0.732)
[-1.080] [0.545] [0.432]

R2 0.261 0.012 0.246 0.264 0.008 0.243

4.1 Asymmetric return predictability: evidence

Conditional return prediction. We decompose prt into two components, prt×I{rt−12,t<r
f
t−12,t}

and prt × I{rt−12,t≥rft−12,t}
, depending on whether the cumulative market return in the past

twelve months, rt−12,t, is below or above the risk-free rate, rft−12,t (one-year zero-coupon bond

yield). The return prediction model is now

rt,t+12 = α+βDprt×I{rt−12,t<r
f
t−12,t}

+βUprt×I{rt−12,t≥rft−12,t}
+βII{rt−12,t<r

f
t−12,t}

+εt,t+12. (20)

Thus, the return predictive power of prt following down and up markets are captured by βD

and βU respectively.

Column (1) of Table 8 reports the regression results. Following a down market, prt
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strongly predicts the market return at one-year horizon. The predictive power is much

weaker following an up market, i.e., when the market outperforms the risk-free benchmark.

In fact, βD is almost twice βU in both magnitude and the t-statistic. The midpoint between

βD and βU is very close to the coefficient of prt as a univariate predictor. This decomposition

by the previous market condition reveals a sharp asymmetry in return predictability.

Column (2) and (3) of Table 8 show that the down-market indicator itself does not

predict future returns or together with prt. When both the down-market indicator and prt

are used as predictors, the predictive coefficient on prt is almost identical to the predictive

coefficient in the univariate regression, and the t-statistics and R2s are almost identical.

Column (4) of Table 8 reports the results of an alternative specification,

rt,t+12 = α + βprt + ρ0

(
rt−12,t − rft−12,t

)
+ ρ1

(
rt−12,t − rft−12,t

)
× prt + εt,t+12. (21)

Adding the interaction term and the past market excess return only changes the predictive

coefficient of prt by very little (in comparison with Table 2), but makes the coefficient more

statistically significant. Column (6) shows that adding the lagged market excess return itself

also does not significantly change the predictive coefficient of prt, and the lagged market

excess return does not forecast the future return.

Time series momentum and reversal. The regression of Equation (21) also shows that

return autocorrelation depends prt. This is related to the studies on return autocorrelation

(Fama and French (1988); Poterba and Summers (1988)) that find positive return autocorre-

lations at monthly and shorter horizons, and negative autocorrelations at annual and longer

horizons. However, the evidence is not without debate (Kim, Nelson, and Startz (1991)).

Unconditional return autocorrelation is not significant at one-year horizon in Column

(5). But as suggested by Column (1) and (4) of Table 8, the relation between past and

future returns is a function of prt. In Column (4), the autocorrelation coefficient is ρ0 +

ρ1prt. With the mean of prt equal to 3.992 (Table 1), the average of return autocorrelation
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Figure 5: Conditional Predictability across Countries. Figure 5 reports the results of conditional
prediction (regression of Equation (20)) for different countries. The candle graph shows the estimates of βD
(red) and βU (blue) together with the one Hodrick (1992) standard error band.

coefficient is only 0.037. When prt is one-standard deviation above, the autocorrelation

increases from 0.037 to 0.180, showing momentum. When prt is one-standard deviation

below, the autocorrelation is −0.106, showing reversal. Campbell, Grossman, and Wang

(1993) find that daily return autocorrelation depends on volume. Huang, Jiang, Tu, and Zhou

(2017) find that one-year autocorrelation differs in good and bad times.26 Our results suggest

that autocorrelation depends on the relative valuation of long- vs. short-term dividends.

Figure 5 reports the results of conditional prediction (Equation (20)) for different

countries. The candle graph shows the estimates of βD (red) and βU (blue) with one Hodrick

(1992) standard error band. It is clear that except Japan, the return predictive power of prt

is stronger following down markets. Table 12 in the appendix reports detailed results.

Our finding of asymmetric return predictability is related to the evidence on stronger

return predictive power of other variables (e.g., the price-dividend ratio) during downturns.27

Henkel, Martin, and Nardari (2011) show that the return predictive power of price-dividend

26Moskowitz, Ooi, and Pedersen (2012) study time-series momentum in futures market.
27Cujean and Hasler (2017) build an equilibrium model with counter-cyclical investors’ disagreement to

explain why stock return predictability is concentrated in bad times.
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ratio and short rate (Ang and Bekaert (2007)) appear non-existent during business cycle

expansions but sizable during contractions. Considering a combination of predictors, Rapach,

Strauss, and Zhou (2010) find that during recessions, the return is more predictable. Dangl

and Halling (2012) propose a dynamic prediction model with a time-varying coefficient to

account for conditional predictability. Farmer, Schmidt, and Timmermann (2018) find return

predictability is concentrated in several short periods.

4.2 Asymmetric return predictability: related theories

Two theories based on financial intermediation (He and Krishnamurthy (2013)) and behav-

ioral bias (Barberis, Huang, and Santos (2001)) produce asymmetry in return predictability.

Intermediary asset pricing. Panel A of Figure 12 in Appendix II.3 is from He and Kr-

ishnamurthy (2013). It plots the risk premium against the state variable, which is financial

intermediaries’ share of aggregate wealth. He and Krishnamurthy (2013) model intermedi-

aries as agents with exclusive access to risky assets. They manage wealth for the rest of

economy (“households”), but their capacity depends on their wealth due to a typical agency

friction. When intermediaries are rich, their capacity is sufficient and the risk premium moves

with the aggregate wealth, showing little variation. When intermediaries are poor, the ca-

pacity constraint binds and the risk premium varies with intermediaries’ wealth, fluctuating

widely. The asymmetry of risk-premium variation implies asymmetric predictability.

Related, our down-market indicator is motivated by the observation of Benartzi and

Thaler (1995) that investors tend to evaluate fund performances annually because they

receive most comprehensive reports once a year.

Prospect theory. Panel B of Figure 12 is from Barberis, Huang, and Santos (2001). Their

model is built upon two ideas. First, investors are loss-averse (Kahneman and Tversky

(1979)). Gains and losses are defined with the risk-free rate as a benchmark. Second, the

degree of loss aversion depends on prior gains and losses against a reference point (Thaler
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Table 9: Evaluating Related Theories

This table reports the results of annual return prediction conditioning on three variables: the past twelve-
month market excess return, the intermediary net worth ηt in He, Kelly, and Manela (2017) (whose sample
ends in 2012), and zt constructed following Barberis, Huang, and Santos (2001). We construct negative and
positive indicator variables by comparing these three conditioning variable with zero, average, and one (as
suggested by the theory) respectively. The specifications of Column (1) to (3) have the interaction terms
between indicator variables and prt, the negative indicator variable, and the intercept (omitted in the table).
The specifications of Column (4) to (6) have the negative indicator variables and the intercept (omitted in
the table). For each right-hand side variable, the coefficient estimate is shown followed by Newey and West
(1987) and Hodrick (1992) t-statistics. For each specification, the adjusted R2 is reported in the last row.

rt−12,t − rft−12,t ηt − ηt z − 1 rt−12,t − rft−12,t ηt − ηt z − 1

Negative × prt -0.180 -0.247 -0.195
Newey-West t (-3.810) (-2.340) (-5.221)
Hodrick t [-2.977] [-2.101] [-2.990]

Positive × prt -0.108 -0.152 -0.101
(-2.981) (-4.549) (-3.133)
[-1.751] [-2.111] [-1.714]

Negative 0.257 0.279 0.382 -0.038 0.023 0.020
(1.000) (0.697) (2.240) (-0.750) (0.473) (0.541)
[0.987] [0.549] [1.296] [-0.670] [0.455] [0.441]

R2 0.261 0.314 0.265 0.012 0.006 0.004

and Johnson (1990)). Panel B of Figure 12 shows that the expected return barely moves

when zt is below one. zt reflects prior losses (if < 1) or gains (if > 1). Only after prior losses,

the expected return exhibits large variation. This implies asymmetric predictability.

Evaluating related theories. Table 9 compares our results of conditional return prediction

with those from specifications suggested by He and Krishnamurthy (2013) and Barberis,

Huang, and Santos (2001). For each model, we construct negative and positive indicator

variables by comparing the conditioning variable with a benchmark value, which is zero for

our past excess return, average (η) for intermediary capital of He, Kelly, and Manela (2017),

and one for zt of Barberis, Huang, and Santos (2001). Column (1) and (4) repeat the results

in Column (1) and (2) in Table 8.

Empirical models implied by He and Krishnamurthy (2013) and Barberis, Huang,

and Santos (2001) produce results similar to our model using the past excess return as

conditioning variable. The predictive coefficients in downturns are twice as large. Column
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(1), (2), and (3) also have adjusted R2 of similar magnitude. However, both theories imply

that the negative indicator itself should also predict returns, which is not the case in data.

This again suggests that while different theories may capture particular sources of expected

return variation, prt is more of a composite statistic.

5 Conclusion

We find strong evidence of stock return and cash-flow predictability. The ratio of divi-

dend strip prices (prt) predicts the market return, and the prt-adjusted price-dividend ratio

predicts the dividend growth. Shocks to prt are priced in the cross section as implied by

ICAPM. The expected return (proxied by prt) responds strongly to monetary policy shocks

and comoves with the conditions of macroeconomy and financial markets. Moreover, return

predictability is asymmetric – stronger following market downturns.

In asset pricing literature, return and cash-flow predictability are closely tied to the

decomposition of stock market volatility (Campbell and Shiller (1988)). Our findings can be

incorporated into this paradigm to understand the relative importance of news on the dis-

count rate and cash flow. Moreover, prt can be constructed for individual firms with options

data. It used to study the cross-sectional variation of stock returns and the decomposition

of firm-level volatility into discount-rate and cash-flow news (Vuolteenaho (2002)).

The price ratios can also be constructed in every asset class as long as futures, forwards,

or options data are available, and especially for assets without explicitly defined dividends

such as foreign currencies, commodities, and cryptocurrencies. Whether price ratios predict

returns of other assets, and if so, how it changes our understanding of the discount-rate

dynamics within and across asset classes, are interesting directions for future research.
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Appendix I: Derivation

I.1 Derivation of the state-space model

We start with the Campbell-Shiller decomposition of price-dividend ratio

vt =
κ

1− ρ +
∞∑
j=1

ρj−1Et [∆dt+j − rt+j] .

By law of iterated expectation, we can replace ∆dt+j and rt+j with their time t + j − 1

expectations:

vt =
κ

1− ρ +
∞∑
j=1

ρj−1Et [gt+j−1 − µt+j−1]

=
κ

1− ρ +
∞∑
j=1

ρj−1Et [(δ0 + δ′Ft+j−1)− (γ0 + γ ′Ft+j−1)]

Define φ0 as κ+δ0−γ0
1−ρ , and stack the factor coefficients into ψ = (δ′,γ ′). Denote the row

vector (1,−1) as ι . We can rewrite the equation

vt =φ0 +
∞∑
j=1

ρj−1ιψ′Et [Ft+j−1]

=φ0 +
∞∑
j=1

ρj−1ιψ′Λj−1Ft

=φ0 + ιψ′

(
∞∑
j=1

ρj−1Λj−1

)
Ft

=φ0 + ιψ′ (1− ρΛ)−1 Ft.

Define φ′ as ιψ′ (1− ρΛ)−1. We have the factor decomposition of price-dividend ratio.
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I.2 Deriving the Sharpe ratio of market-timing strategy

Following Campbell and Thompson (2008), we assume that the excess return can be decom-

posed as follows:

rt+1 = µ+ xt + εt+1

where µ is unconditional mean. The predictor xt has mean 0 and variance σ2
x, independent

from the error term εt+1. For simplicity, we assume that the mean-variance investor has

relative risk aversion coefficient γ = 1. When using xt to time the market, the investor

allocates

αt =
µ+ xt
σ2
ε

to the risky asset and on average earns excess return of

E (αtrt+1) = E
(

(µ+ xt) (µ+ xt + εt+1)

σ2
ε

)
=
µ2 + σ2

x

σ2
ε

The variance of market-timing strategy is

Var (αtrt+1) = Var

[
(µ+ xt) (µ+ xt + εt+1)

σ2
ε

]

The (squared) market-timing Sharpe ratio s21 can be written as

s21 =
[E (αtrt+1)]

2

Var (αtrt+1)
= A · µ

2 + σ2
x

σ2
ε

where A is a constant that depends on V ar [(µ+ xt) (µ+ xt + εt+1)] and (µ2 + σ2
x)/σ

2
ε .

Given the buy-and-hold Sharpe ratio s0,

s20 =
µ2

σ2
x + σ2

ε
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and the predictive regression R2,

R2 =
σ2
x

σ2
x + σ2

ε

,

we obtain the relationship between the buy-and-hold and market-timing Sharpe ratios as

s21 = A · µ
2 + σ2

x

σ2
ε

= A · µ2 + σ2
x

(σ2
x + σ2

ε) (1−R2)
= A · s

2
0 +R2

1−R2

When the predictor has no predictive power, we know that R2 = 0 and s0 = s1. We therefore

pin down the constant A = 1 and obtain

s1 =

√
s20 +R2

1−R2
. (22)

I.3 Solving the structural model

We follow directly Lettau and Wachter (2007) when solving the price of one-year dividend, so

we do not repeat the derivation details here. For the price of all dividends, we first conjecture

that the market price-dividend ratio is exponential-affine in the state variables, that is

pdt = ln (St/Dt) = A+Bxt + Czt.

Next, we use the log-linearizion of Campbell and Shiller (1988), i.e.,

rt+1 = κ0 + κ1pdt+1 − pdt + ∆dt+1,

and substitute this log market return into the no-arbitrage condition

Et [Mt+1 exp{rt+1}] = 1.
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to obtain

Et
[
exp

{
−rf − 1

2
x2t − xεd,t+1 + κ0 + κ1pdt+1 − pdt + ∆dt+1

}]
= 1,

where ∆dt+1 = g + zt + σdεt+1 from Equation (11) and εd,t+1 = (σd/‖σd‖)εt+1 as in Lettau

and Wachter (2007). Note that pdt+1 can also be written as a linear combination of time

t state variables and time t + 1 shocks because xt+1 and zt+1 are given by Equation (13)

and (12) respectively. Therefore, we can take all time-t measurable terms outside of the

expectation and only leave t+ 1 shocks in it:

exp

{
−rf − 1

2
x2t + κ0 − pdt + g + zt + κ1A+ κ1B (1− φx) x̄+ κ1Bφxxt + κ1Cφzzt

}
Et [exp {−xtεd,t+1 + κ1Bσxεt+1 + κ1Cσzεt+1 + σdεt+1}] = 1. (23)

Using the Gaussian moment-generating function, we rewrite the term within expectation as

Et [exp {−xtεd,t+1 + κ1Bσxεt+1 + κ1Cσzεt+1 + σdεt+1}]

= exp

{
1

2
(κ1Bσx + κ1Cσz + σd) (κ1Bσx + κ1Cσz + σd)

′
}

{
+ (κ1Bσx + κ1Cσz + σd)

σ′d
‖σd‖

xt +
1

2
x2t

}

Equation (23) holds only if the coefficient on xt and zt are zero, so we have the coeffi-

cients of xt equal to

−B + κ1Bφx + (κ1Bσx + κ1Cσz + σd)
σ′d
‖σd‖

= 0,

and the coefficient on zt equal to

−C + 1 + κ1φzC = 0.
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From these two equations, we solve

B =

σdσ
′
z

‖σd‖
κ1C +

σdσ
′
d

‖σd‖

1− κ1φx − σdσ′x
‖σd‖

κ1
,

and

C =
1

1− κ1φz
.

Note that x2t is canceled out. By setting all the constant terms in the exponential equal to

zero, we can solve the constant A in our conjecture of pdt. Hence, we confirm the conjecture.

Next, we solve the expected market return.

Et [rt+1] =κ0 + κ1Et [pdt+1]− pdt + Et [∆dt+1]

=κ0 + κ1A+ κ1BEt [xt+1] + κ1CEt [zt+1]− A−Bxt − Czt + g + zt

=κ0 + κ1A+ κ1B (1− φx)x+ κ1Bφxxt + κ1Cφzzt − A−Bxt − Czt + g + zt

= [κ0 + (κ1 − 1)A+ g + κ1B (1− φx)x] +B (κ1φx − 1)xt + [C (κ1φz − 1) + 1] zt

= [κ0 + (κ1 − 1)A+ g + κ1B (1− φx)x] +B (κ1φx − 1)xt.

Note that the coefficient on zt equals zero because C = 1
1−κ1φz .

Appendix II: Additional Results

II.1 Alternative out-of-sample sample splits

In the main text, we report out-of-sample forecasting tests based on a 1988 sample split

date, but recent forecast literature suggests that sample splits themselves can be data-mined

(see Hansen and Timmermann (2012) and Rossi and Inoue (2012)). To demonstrate the

robustness of out-of-sample forecasts to alternative sample splits, Figure 6 plots out-of-

sample annual return predictive R2 as a function of the sample split for a variety of predictors.

We consider a sample split as early as 1993. The latest split we consider is Jun 2012 (5-year
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Figure 6: Out-of-sample R2 by Sample Split Date.This graph reports out-of-sample R2 with different
sample split dates of 1-year return prediction. The first and last out-of-sample split date are Jan 1993 and
Jun 2012 respectively.

prior to the end of our sample), which uses a 24.5-year training sample.

For early sample splits, say 1994, the training (i.e., estimation) sample is relatively

short, so the precision of coefficient estimate is poor, which contributes to the low out-of-

sample R2 that we see in the early years. As the sample split date progresses, the estimation

sample extends, and the evaluation sample starts to exclude more data from earlier dates

in the calculation of out-of-sample R2. Excluding the dotcom burst, i.e., out-of-sample split

starting 2002 or later, leads to a relatively low R2 for both prt and pdt, suggesting that both

predictors perform well during the dotcom burst. Using data starting from the 2007-09 crisis,

pdt delivers a higher out-of-sample R2 than prt. The reason is that its denominator, i.e., the

rolling sum of dividends, reacts to the crisis sluggishly, so the decrease of pdt is larger than

the decrease of prt throughout the crisis, coinciding with the slump of market return. After

the financial crisis, prt outperforms pdt out-of-sample.
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Table 10: One-month Return Prediction

This table reports the results of predictive regression (Equation (8)). The left-hand side variable is the
return of S&P 500 index in the next month. We consider four the right-hand side variables (i.e., predictors),

prt, pdt, ε
pr
t , and εpdt , and the results are reported in Column (1) to (4) respectively. The β estimate is

shown followed by Hodrick (1992) t-statistic and the in-sample adjusted R2. We run the regression monthly.
Starting from December 1997, we form out-of-sample forecasts of return in the next month by estimating
the regression with data only up to the current month, and use the forecasts to calculate out-of-sample R2.
ENC statistic (Clark and McCracken (2001)), and the p-value of CW statistic (Clark and West (2007)).

prt pdt εprt εpdt

β -0.010 -0.015 -0.011 0.004
Hodrick t [-2.197] [-2.006] [-0.959] [0.215]

R2 0.017 0.014 0.005 0.000
OOS R2 0.009 0.007 -0.009 -0.012
p(ENC) < 0.10 < 0.10 > 0.10 > 0.10
p(CW ) 0.078 0.129 0.427 0.170

II.2 Monthly return prediction

Table 10 reports the results. The predictive coefficient is large in magnitude and statistically

significant. A decrease of prt by one standard deviation adds 0.53% to the expected monthly

return (annualized to 6.55%). The out-of-sample R2 of 0.9% implies a large investment

gain for those who rebalance portfolio monthly and use prt to time the market. For a

mean-variance investor, Campbell and Thompson (2008) show that in comparison with a

buy-and-hold strategy, the proportional increase in the expected return from observing prt

is
(

R2

1−R2

)(
1+S2

S2

)
, where R2 is the out-of-sample R2 and S2 is the squared Sharpe ratio of

the market. Given a monthly Sharpe ratio of 0.1570 (annualized to 0.544), an out-of-sample

R2 of 0.9% implies a 36.5% proportional increase of expected return from market timing.

The difference in return predictive power between pdt and prt is smaller than that at

annual horizon. pdt has an out-of-sample R2 of 0.7%, and the residual of prt after projecting

on pdt does not predict monthly return. Therefore, the additional return predictive power

of prt beyond pdt is mainly at longer horizons, which, as suggested by our exponential-affine

model, is likely due to a declining persistence of expected dividend growth over the horizon.
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II.3 Additional figures
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Figure 7: prt from Futures and Option Data. This graph reports prt constructed from futures and
option data (from Binsbergen, Brandt, and Koijen (2012) from January 1996 and October 2009).
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Figure 8: Principal Components of prt across Countries. This figure plots the first three principal
components of prt in US, UK, France, Spain, Japan and Australia. The legend also reports percentage of
variance explained by each principle component.
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Figure 9: Futures-to-spot Ratio of International Stock Indices. This graph plots 1-year futures-to-
spot ratio of international stock indices. There are 4 countries: Canada, Italy, Netherlands, and Sweden.
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Figure 10: φz Estimates from State-Space Model with Correlated Shocks. This figure reports the
expected dividend growth autoregressive coefficient φz point estimates and t-values in unrestricted state-
space models as in Section 2.4 with different correlations of ∆d and z shocks. The correlations of ∆d and z
shocks range from -0.9 to 0.9 and the volatility of ∆d shock is calibrated to the estimated σ̂D from state-space
model with uncorrelated shocks. Panel (a) uses annual dividend growth (non-overlapping) of S&P 500 index
and Panel (b) uses annual dividend growth (non-overlapping) of CRSP NYSE/AMEX/NASDAQ Cap-Based
index.
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Figure 11: Autocorrelations of Cash-flow Expectation, εpdt , across Countries. This graph plots

autocorrelations of εpdt at lags from one to ten for the U.S., the U.K., Australia, Spain, France, and Japan,
which constitute our international sample for return prediction.
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Figure 12: Expected Return from Asset Pricing Theories. Panel A is Figure 2 (Panel A) of He
and Krishnamurthy (2013). The expected excess return of the risky asset is plotted against intermediaries’
share of aggregate wealth. A decline of w/P means that intermediaries become relatively undercapitalized
due to losses. The dashed line splits the region where intermediaries are unconstrained in raising external
funds, and the region where intermediaries are constrained in raising external funds because the principal-
agent problem cannot be resolved under low net worth of intermediaries. Panel B is Figure VI (Panel A)
of Barberis, Huang, and Santos (2001). The expected market return (in percent) is plotted against zt that
measures prior losses. High values of zt mean that the representative investor has accumulated prior losses
that increase risk aversion. The dashed line shows the constant risk-free rate.
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II.4 Additional tables

Table 11: Correlations with other common return predictors

This table shows the correlations of alternative return predictors with both prt and pdt from 1988 to 2016.
Most alternative predictors are from Goyal and Welch (2007) that include the default yield spread (dfy),
the inflation rate (infl), stock variance (svar), the cross-section premium (csp), the dividend payout ratio
(de), the long-term yield (lty), the term spread (tms), the T-bill rate (tbl), the default return spread (dfr),
the dividend yield (dy, log difference between current-period dividend and lagged S&P 500 index price), the
long-term rate of return (ltr), the earnings-to-price ratio (ep), the book to market ratio (bm), the investment-
to-capital ratio (ik), the net equity expansion ratio (ntis), the percent equity issuing ratio (eqis), and the
consumption-wealth-income ratio (cay). SII is the short interests index from Rapach, Ringgenberg, and
Zhou (2016) (1988-2014). kp is predictive factor extracted from 100 book-to-market and size portfolios from
Kelly and Pruitt (2013). SVIX is option-implied lower bound of 1-year equity premium from Martin (2017)
(1996-2012). ZCB1Y is 1-year zero coupon bond yield from Fama-Bliss.

pr pd

pr 1.000 0.874
pd 0.874 1.000
bm -0.790 -0.827
tbl -0.173 -0.199
lty -0.378 -0.393
ntis -0.041 0.134
infl -0.108 -0.073
ltr 0.005 -0.042
svar 0.161 -0.041
csp 0.355 0.427
cay -0.384 -0.381
ik 0.616 0.631
ep -0.554 -0.442
de -0.247 -0.472
dfy -0.067 -0.284
dfr -0.031 -0.012
tms -0.241 -0.214
dy -0.883 -0.989
SII 0.047 -0.047
kp -0.728 -0.642
SVIX 0.047 -0.295
ZCB1Y -0.205 -0.215
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Table 12: Country-by-country unconditional and conditional return predictions

This table reports the results of international country-by-country return predictions for US, UK, France,
Spain, Japan and Australia. Panel A and B tabulate the results of unconditional (Equation (8)) and
conditional (Equation (20)) return predictions respectively for each country. The coefficients estimates are
followed by Newey and West (1987) t-statistic (with 18 lags) and Hodrick (1992) t-statistic. Intercept
estimates are untabulated.

US UK FRA ESP JPN AUS

Panel A: Unconditional predictions

prt -0.138 -0.195 -0.050 -0.093 -0.040 -0.123
Newey-West t (-4.719) (-2.613) (-0.889) (-1.837) (-2.520) (-9.938)
Hodrick t [-2.743] [-2.475] [-0.790] [-1.275] [-3.081] [-2.792]

Obs 344 280 203 261 272 167
R2 0.238 0.127 0.009 0.054 0.027 0.152

Panel B: Conditional predictions

I{rt−12,t<r
f
t−12,t}

-0.012 -0.051 -0.086 -0.102 -0.097 0.020

(-0.398) (-1.149) (-1.156) (-1.684) (-1.211) (0.528)
[-0.249] [-0.919] [-1.026] [-1.434] [-1.258] [0.365]

I{rt−12,t<r
f
t−12,t}

× prt -0.109 -0.078 -0.055 -0.075 -0.035 -0.066

(-3.828) (-5.265) (-0.767) (-2.588) (-2.120) (-9.371)
[-2.949] [-2.821] [-0.856] [-1.208] [-2.782] [-2.904]

I{rt−12,t>r
f
t−12,t}

× prt -0.069 -0.044 -0.002 -0.049 -0.056 -0.053

(-3.145) (-2.102) (-0.825) (-1.424) (-2.537) (-1.400)
[-1.829] [-1.866] [-0.573] [-1.196] [-2.600] [-1.553]

Obs 344 280 203 261 272 167
R2 0.255 0.162 0.058 0.102 0.066 0.156
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Table 13: Risk Prices – AR(1) Shocks

This table reports the price of market risk and pr risk estimated using Fama-MacBeth method and Gener-
alized Method of Moments (GMM). We use the two-stage GMM estimator with efficient weight matrix. prt
shock is measured by AR(1) residual (υprt ) estimated using the full sample. The full asset universe (“All”)
includes the twenty five Fama-French portfolios (sorted by size and book-to-market ratio), ten momentum
portfolios, ten investment portfolios, and ten profitability portfolios. We also estimate pr risk price using
twenty five value-size, momentum-size, investment-size, and profitability-size portfolios. The data of monthly
portfolio returns are from Kenneth R. French’s website. Each column corresponds to one set of assets. Each
estimated price of risk is follwed by the t-statistic in parenthesis. *, **, and *** denote 5%, 2%, and 1%
level of statistical significance respectively. We also report mean absolute pricing error (MAPE) and R2.

All Fama-French 25 Momentum 25 Investment 25 Profitability 25
(1) (2) (3) (4) (5)

Fama-MacBeth
υprt −0.202∗∗∗ −0.203∗ −0.382∗∗∗ 0.099 -0.108

(-4.067) (-2.203) (-3.764) (1.686) (-1.751)

rt − rft 0.009∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(4.130) (4.147) (4.000) (4.207) (4.103)
MAPE 0.206% 0.184% 0.238% 0.218% 0.241%
R2 0.639 0.665 0.710 0.678 0.694

GMM
υprt −0.343∗∗∗ −1.096∗∗∗ −0.312∗∗∗ 4.840 −0.064∗

(-8.770) (-3.366) (-5.493) (0.606) (-2.312)

rt − rft 0.010∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.010∗ 0.013∗∗∗

(4.971) (3.711) (4.471) (2.002) (5.839)
MAPE 0.088% 0.047% 0.071% 0.071% 0.156%
R2 0.730 0.678 0.667 0.720 0.726
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Table 14: The Correlations Between pr Shocks and U.S. Stock Market Factors

This table documents the correlations between prt shocks and market excess return, size factor (SMB), value
factor (HML), profitability factor (RMW), investment factor (CMA), and momentum factor. The factor
returns are obtain from Kenneth R. French’s website. We consider two versions of prt shocks, the first
difference (∆prt ) and AR(1) residual (υprt ) estimated using full sample.

Mkt-RF SMB HML RMW CMA Momentum

∆prt 0.104 -0.019 -0.052 -0.057 -0.062 -0.127
υprt 0.081 -0.006 -0.031 -0.034 -0.035 -0.113
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Table 15: State-Space Model of Aggregate Dividends

This table reports the estimation results of (1) unrestricted state-space model in Section 2.4, (2) restricted
state-space model (i.e., φz = 0), and for comparison, (3) MA(1) model (∆dt+1 = g + σDεt+1 + ρσDεt),
and (4) AR(1) model (∆dt+1 = g + γ∆dt + σDεt+1) of the aggregate dividend growth series. Panel A
uses annual dividend growth (non-overlapping) of S&P 500 index and Panel B uses annual dividend growth
(non-overlapping) of CRSP NYSE/AMEX/NASDAQ Cap-Based index (i.e., the annual growth of total cash
payment to shareholders in the U.S. stock market). Log likelihood (“LogL”), AIC, and BIC are reported.
t-stats are in the squared bracket.

φ̂z ĝ σ̂d σ̂z ρ̂ γ̂ LogL AIC BIC

Panel A: S&P 500 dividend

Unrestricted 0.27 0.04 0.00 0.12 106.35 -201.31 -189.40
[1.29] [3.19] [0.00] [2.33]

Restricted 0.04 0.09 0.09 100.76 -195.51 -186.5
[4.34] [0.21] [0.21]

MA(1) 0.04 0.11 0.39 109.02 -212.04 -203.1
[3.28] [15.04] [5.78]

AR(1) 0.03 0.12 0.28 106.42 -206.84 -197.91
[3.21] [15.30] [3.77]

Panel B: CRSP NYSE/AMEX/NASDAQ dividend

Unrestricted -0.08 0.06 0.00 0.15 43.96 -79.92 -69.8
[-0.06] [3.86] [0.00] [0.12]

Restricted 0.06 0.11 0.11 43.67 -81.34 -73.8
[3.62] [0.10] [0.10]

MA(1) 0.06 0.15 -0.09 44.00 -82.00 -74.4
[3.94] [6.99] [-1.02]

AR(1) 0.06 0.15 -0.08 43.96 -81.93 -74.39
[3.89] [6.98] [-0.87]
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Table 16: Kostakis, Magdalinos, and Stamatogiannis (2015) IVX-Wald Test

This table reports test results on the predictive coefficient β in Table (2). IVX-Wald is the Wald statistic
from Kostakis, Magdalinos, and Stamatogiannis (2015) to test H0 : β = 0 against H1 : β 6= 0. The test is
designed to be robust to the persistence of predictor. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

prt pdt εprt εpdt

IVX-Wald 8.08∗∗∗ 1.67 5.55∗∗ 0.86
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