
 

 

 

 

 

 

Outsourcing IT and Technological Differentiation: Evidence from Digital Startups 

 

Stephen Michael Impink 

New York University, Stern School of Business 

August 31, 2022 

 

Abstract: Does outsourcing IT impact the breadth of a firm’s technological innovation? With the advent 
of cloud services, firms are licensing IT instead of developing it internally. Despite this growing trend, we 
know little about how early-stage resource acquisition decision affects technology adoption, innovation, 
and longer-term performance. When firms outsource their IT, they develop a supplier relationship with a 
cloud services provider and receive valuable resources related to their cloud provider’s platform. However, 
these cloud providers control which resources they develop and share, which technologies they suggest, 
and how well technologies fit with their platform, potentially impacting the nature of innovation. Using 
panel data on app-developing startups, I find that startups using cloud platforms adopt larger product 
development technology bundles, consisting of developer frameworks and tools core to coding digital 
product applications. But these technology bundles become more similar to those of others on cloud 
platforms to fit with the cloud platform’s underlying technology and reduce the coordination costs 
associated with using a larger number of interdependent technologies. To differentiate their products, 
startups adopt larger data analytics technology bundles that are increasingly dissimilar from others on cloud 
platforms, producing more robust and unique data resources. Lastly, adopting more similar production 
technology bundles (i.e., having a better technological fit) and less similar analytics technology bundles 
(i.e., having richer data resources) relates to increased performance. 
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1. Introduction 

Entrepreneurs develop innovations that fuel economic progress (Gans et al., 2019; Guzman and Stern, 2020; 

Kerr et al., 2014). Yet digitization and the use of big data raise numerous unanswered questions about the 

nature of entrepreneurial innovation (Greenstein et al., 2013; Lerner and Nanda, 2020). To survive and 

scale, young startups must acquire the Information Technology (IT) assets necessary to develop their 

products (Bessen et al., 2018, 2022; DeStefano et al., 2020; Jin and McElheran, 2019). Outsourcing IT asset 

development to cloud providers has become increasingly common, particularly for new firms that need 

access to IT quickly.1 Despite this growing trend, we know little about how this early-stage resource 

acquisition decision affects technology adoption, innovation, and longer-term performance. The need for 

IT forces firms to determine whether they “make” or “buy” these resources early in their existence before 

developing their products (Lacity et al., 2009; Schneider and Sunyaev, 2016; Susarla et al., 2009), 

potentially creating a tradeoff between efficiencies gained from outsourcing and the ability to differentiate 

digital products. 

Outsourcing has implications for the firms’ structure, partnerships, and control over production 

(Coase, 1937; Williamson, 1979, 1998), which may influence the breadth of innovation. When firms make 

IT assets in-house, they hire specialized technical labor, purchase computing hardware (e.g., servers, 

mainframes) from many manufacturers and distributors, acquire physical space to house their IT 

infrastructure, and sign long-term IT services agreements, increasing their capital expenditure and 

expanding their firm’s structure horizontally. Alternatively, when firms outsource (i.e., the “buy” scenario), 

they lease subscription-based cloud IT services from a single technology firm, adapt the base IT platform 

through co-invention, and develop their products on that infrastructure, structuring the firm narrowly to 

focus on their product. Cloud services have become more sophisticated and secure, making them 

increasingly challenging to replicate and raising the cost of developing comparable IT capabilities 

 
1 The use of cloud services has become so prolific that Gartner (2018) suggests firms not using cloud services will 
soon be as rare as firms not using the internet. 
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internally.2 The initial capital expenditure of internal IT development may be too high for cash-strapped 

startups and their investors to bear, especially compared to highly discounted introductory offers from cloud 

providers that share technological resources that lower development costs.3 The decision to either internally 

develop or externally license IT assets was once a strategically important source of differentiation. 

However, now, due to the benefits of quickly and cheaply accessing high-quality cloud IT services, it is 

difficult for digital-first startups to rationalize internal IT development, even if that means forgoing aspects 

of technological differentiation. 

 My research question asks whether and how outsourcing IT development impacts the breadth of 

technological innovation. On the one hand, since capital requirements are lower, VC investors can provide 

more startups with enough money to start product development (i.e., “spray and pray” investing: Ewens et 

al., 2017). Possibly more startups are “experimenting” with their business models and quickly testing their 

product ideas (Kerr et al., 2014; Koning et al., 2022). On the other hand, we have little insight into how 

these changes affect the nature of resulting innovations (Lerner and Nanda, 2020; Ewens et al., 2017). In 

fact, despite potential increases in aggregate production at the industry level, there are many reasons why 

one could expect outsourcing IT development to a few large technology firms to constrain startups from 

adopting more diverse technology bundles and producing more differentiated products than firms 

developing their IT internally. First, startups use services from a single cloud supplier instead of many 

disparate suppliers, limiting access to a broader array of resources and expertise. Second, outsourcing 

constrains startups’ ability to customize aspects of their IT.4 Third, outsourcing creates a supplier 

relationship that provides all startups with the same platform-related resources. Startups use these resources 

 
2 Similarly, Bloom and Pierri (2018) discuss the increased pace of cloud adoption for smaller, newer firms in an HBR 
article (https://hbr.org/2018/08/research-cloud-computing-is-helping-smaller-newer-firms-compete). I depict cloud 
platform adoption rates for startups in my sample that are 3 or more years old in Appendix Figure C.1. 
3 When outsourcing, there are “co-invention” costs that startups incur when adapting the IT infrastructure and their 
processes. Bresnahan et al. (1996) describe co-invention as users adapting the initial invention to make it more 
economically valuable for their needs amid the shift from mainframes to client/servers computing in the 1990s. In the 
case of internal development, a startup would be “inventing” on their own. Moreover, there are costs of determining 
the compatibility technologies with each other and with the underlying IT platform.  
4 More specifically, using a cloud platform can constrain startups’ abilities to customize aspects of runtime, 
middleware, virtualization, and networking capabilities. 
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to co-invent on the platform to meet their production needs but potentially make similar adaptations to other 

startups using the same shared resources. Fourth, in addition to co-invention, product development requires 

platform-specific investment in complementary assets (i.e., asset specificity; sunk cost), increasing the fit 

of the startup’s technologies with one platform and limiting cross-compatibility with other platforms. Fifth, 

investors, stretched thin from funding more startups, have less bandwidth to tailor their expertise and 

guidance to each startup’s specific needs.5 

This paper examines unique panel data on technology adoption for ~3,400 high-tech, app-

producing startups with a web-based or mobile (i.e., Android, iOS) application (app) to examine the impact 

of outsourcing IT. The main analysis relies on an OLS difference-in-differences research design with firm-

level fixed effects to control for time-invariant aspects of firms and year-level fixed effects to control for 

variation correlated with time.6 I use Coarsened exact matching (CEM), based on observable firm 

characteristics, to ensure that startups using cloud platform services are demographically comparable to 

startups not using these services.7 Then I use an instrumental variable approach and a double machine 

learning model to show results consistent with a causal argument. The instrumental variable approach uses 

Google’s late 2015 decision to open source TensorFlow,8 an AI development framework enabling firms to 

train neural network algorithms, as an instrument to adjust regression estimates for potentially omitted 

variables and reverse causality. Next, as an alternate way to address potentially omitted variables, such as 

hard-to-observe measures of startup quality and founder ability that may relate to technology adoption, I 

use a double machine learning model based on a random forest algorithm (Chernozhukov et al., 2018). 

Lastly, I explore two mechanisms that increase the effect of adding cloud platform services on technology 

adoption dissimilarity: a stronger customer-supplier relationship and the need for technological fit. 

 
5 Ewens et al. (2018) notes that VCs are less likely to join startups’ boards. 
6 As robustness for this staggered difference-in-differences model with two-way fixed effects, I estimate pre and post 
aggregate estimates, average treatment effects (De Chaisemartin and d'Haultfoeuille, 2020), fuzzy difference-in-
differences/local average treatment effects (De Chaisemartin and d'Haultfoeuille, 2018), and heterogeneity-robust 
instantaneous treatment effects (Athey and Imbens, 2022; De Chaisemartin and d'Haultfoeuille, 2020). 
7 I base these CEM models on firm’s age, location (region), size, industry   
8 TensorFlow is a quasi-exogenous shock to AI production, reducing the costs associated with AI development and 
increasing the value of complementary AI-related labor (Rock, 2019). https://github.com/tensorflow 



5 
 

These analyses show that startups adopt more technologies after adding cloud platform services. 

Moreover, using cloud platform services affects the breadth of technology adoption, depending on the 

technology’s type, its interdependency with other technologies, and its needed fit with the IT platform’s 

underlying technologies for products to work effectively. I examine two types of technologies: product 

development and data analytics technologies. 

Product development technologies are developer tools and frameworks, such as angular, next, and 

django, which enable programmers to build, test, organize, and update code necessary in app development. 

Bundles of these development technologies become more similar to those used by potential rivals – other 

app-producing startups in my sample – as apps will only work effectively if these technologies are 

compatible and fit with the IT platform. As an example based on traditional manufacturing processes, 

product development technologies are like individual machines used in an assembly line, and each 

technology provides some interrelated function in production. The development technology bundle 

represents all the interdependent “machines” a firm uses to develop its product. These machines must fit 

with the assembly line process and other machines used in production for the resulting products to work 

effectively. 

Data resources are valuable to digital firms, particularly AI-producing firms that need data to train 

algorithms. Firms use data analytics technologies to collect, analyze, and reconfigure data, and these more 

unique and robust data resources aid in product design improvements and decision-making. For example, 

data analytics technologies like matomo and parse enable startups to analyze their website traffic to 

determine user location and demographics. Others like improvely and optimizely enable a/b testing to create 

experiment settings that provide valuable data as outputs. Unlike product development technologies, these 

analytics technologies are more modular and less interdependent, rendering the fit with the IT platform and 

compatibility of these technologies with each other less important to producing needed data resources. 

Moreover, they do not necessarily interact with the app or impede its functionality.9  

 
9 These technologies are connected to the startup’s web domain and powered by the cloud and could be used in many 
ways. One example does relate to the app; for instance, they could analyze the telemetry data from their app's usage. 
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Investors reward startups for adopting more similar product development technology bundles and 

more distinct data analytics technology bundles than others, supporting that startups may benefit from 

streamlining their app development “assembly line” to focus on accessing data that enhance product 

differentiation. A secondary analysis of startup description changes before and after adding cloud platform 

services helps interpret these effects, suggesting that end products become more differentiated after 

adopting cloud, driven by more diverse data analytics technologies. Altogether, this paints a picture of a 

high-performing digital startup as standardizing its development technologies to fit with its other 

development technologies and supplier’s platform and then differentiating its products by using robust and 

unique data resources from more distinct analytics technologies. 

My paper makes several contributions. First, I contribute to a developing research agenda in high-

tech entrepreneurship (Bessen et al., 2018, 2021; Dushnitsky and Stroube, 2021; Ewens et al., 2018; Lerner 

and Nanda, 2020) and, more broadly, digitization (Cowgill and Tucker, 2019; Furman and Seamans, 2019; 

Goldfarb and Tucker; 2019; Tucker, 2019) by showing how technology adoption changes when using cloud 

platform services. Furthermore, I show meaningful relationships between changes in technology adoption 

and measures of product differentiation and venture performance.10 Next, I contribute to the literature on 

resource sharing and the nature of technological innovation (Baumol, 2001; Boudreau, 2012; Gulati, 1995; 

Mowery et al., 1998; Stuart, 2000; Stuart et al., 1999) by examining how suppliers’ shared resources and 

the need for technological fit with the supplier’s platform influence technology adoption. Lastly, I use the 

context of digital entrepreneurship to contribute to the literature on transaction cost economics (Nagle et 

al., 2020; Tadelis and Williamson, 2012; Williamson, 1979, 1998) by showing that startups using cloud 

suppliers with a higher market (i.e., more control) adopt relatively more similar bundles of platform-related 

technologies than startups using lower market share cloud providers. 

 
However, many other examples do not relate to their app at all; for example, they could analyze their and competitors’ 
website traffic or general market trends.   
10 Performance measures include any funding, VC funding, deal size, duration on web domain, patents. 
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 This paper proceeds as follows. Section 2 provides an overview of related theories on outsourcing 

and innovation, focusing on how outsourcing reduces a startup’s control over production and affects a firm's 

partnerships and structure. Section 3 introduces the context of high-tech startups developing apps and 

provides insight into two mechanisms, resource sharing and the need for technological fit, influencing 

technology adoption and the breadth of innovation. The following two sections describe my sample and 

data, technology adoption measures (Section 4), and the research design (Section 5). Then, section 6 reports 

these findings, robustness analyses related to these findings, and econometric approaches used to support 

that my findings are consistent with a causal interpretation. Section 7 examines the implications of 

technology adoption on product differentiation and venture performance. The last section (Section 8) 

discusses these findings and concludes. 

 

2. The impact of outsourcing on innovation 

The decision to outsource relates to a broad literature on transaction cost economics that extends the 

neoclassical economic perspective by adapting contracting theory to address optimal organizational 

structures and governance models (Coase, 1937; Williamson, 1979, 1998). Coase (1937) provides the initial 

argument that firms will outsource when the market offers lower costs than internal production. However, 

drawing on learnings of coordination across multidivisional firms11, Klein (1980) and Williamson (1979) 

highlight the limitations of contracts, explaining that inefficiencies arise from splitting surplus rents ex-post 

and that boundedly rational suppliers are potentially opportunistic. Moreover, Aghion and Tirole (1993) 

expand this literature by discussing optimal ownership arrangements amongst firms, suppliers, and third-

party investors and the appropriability of resulting innovations. Supplier opportunism in outsourcing 

arrangements leads to potential inefficiencies, such as switching costs (Monteverde and Teece, 1982), 

hostage due to credible threats (Williamson, 1983), corresponding asset-specific investments (i.e., sunk 

 
11 Williamson (1975) discusses the advent of the multidivisional firm, and issues of sharing and collaboration across 
internal departments.  
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costs; Riordan and Williamson, 1985), and uncertainty associated with contract terms and the frequency of 

exchange (Grossman and Hart, 1986). 

The literature on outsourcing pulls from research examining the inefficiencies associated with 

contracting and co-financing, interweaving an understanding of these inefficiencies into more nuanced 

discussions of the impact of outsourcing on supplier control, partnerships, and organizational structure. 

First, outsourcing the development of production inputs increases a supplier's control over their 

customer’s current technologies (Rysman and Simcoe, 2008) and future technologies (Greenstein, 1993). 

Firms often adopt technologies compatible with their supplier’s platform or technologies (Simcoe, 2012). 

They make complementary asset-specific investments12 and engage in co-invention activities with their 

supplier to increase their fit with the supplier’s technologies (Bresnahan et al., 1996). These investments 

may lead firms down a particular technological path (Arthur, 1994; Pfeffer and Salancik, 2003; Schilling, 

1999), increasing their reliance on that supplier for future technologies (e.g., hostage; Williamson, 1983) 

and impacting competitive outcomes (Rivkin, 2000; Siggelkow, 2001). Switching costs increase over time 

as these firms make compounding sunk investments and progress along this technological path, suggesting 

that outsourcing will limit the technological breadth of innovations in the long run. 

Second, the decision to outsource creates a supplier relationship that affects future partnerships 

(Combs and Ketchen, 1999; Madhok and Tallman, 1998; Young-Ybarra and Wiersema, 1999), which in 

turn influences the firm’s technologies (Gulati, 1995; Mowery et al., 1998; Stuart, 2000, et al., 1999) and 

innovations (Ahuja, 2000; Baumol, 2001; Hagedoorn and Schakenraad, 1990). Suppliers determine which 

resources they develop and whether they share those resources with the broader ecosystem. If they do share 

resources, they determine which resources to share and which partners receive them. Moreover, suppliers 

determine the compatibility of their shared technologies with other technologies, further constraining 

technology adoption. 

 
12 Investments are unrecoverable (i.e., sunk) and asset-specific, fitting only with the current platform. Firms would 
likely have to make similar investments in complementary assets and increased compatibility again if they changed 
platforms, raising switching costs and “locking” the startup to their providers (Monteverde and Teece, 1982).  
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However, despite this undue influence on future technologies and innovations, resource-strapped 

entrepreneurial ventures may cease to exist without access to these early resources (Stuart et al., 1999). 

These “access relationships” (Stuart, 2000), including customer-supplier relationships, technology 

exchange agreements, and one-directional technology flows13, enable firms to access needed resources to 

develop their products. Moreover, these interfirm relationships create synergies that overwhelm the benefits 

of internal development in many cases (Madhok and Tallman, 1998; Silverman, 1999) and mitigate hold-

up issues amongst network participants when information is dispersed widely across firms in an industry 

(Powell et al., 1996). These relationships complement the codification of the transaction terms, 

strengthening governance mechanisms (Poppo and Zenger, 2002). Moreover, the benefits from 

collaboration provide insight into why firms may depart from the resources-based perspective that internal 

development of rent-generating resources enables firms to collect excess returns from imperfections in 

strategic factor markets (Barney, 1986) and reduces the threat of imitation (Montgomery, 1994; Peteraf, 

1993). 

Third, firms’ outsourcing decisions impact their organizational structure. Firms choosing to make 

a resource must vertically integrate the inputs of that resource’s production, which diversifies the firm to 

focus on developing an additional product (Argyres and Zenger, 2012; Brynjolfsson et al., 1994; Teece, 

1982). Having to focus on an additional product line can impede progress for two reasons. First, in digital 

industries, having multiple production lines may prevent benefits from scaling. This ability to scale digital 

resources rapidly (Fazli et al., 2018) coupled with the firm being more vertically narrow scope (i.e., enabling 

a greater focus on product development) may create a situation where the potential gains of being able to 

scale a single product quickly14 outweigh the transaction cost inefficiencies from outsourcing (Cachon and 

Harker, 2002; Giustiziero, 2021). Second, it may be difficult for firms to develop processes and products 

simultaneously (Henderson and Clark, 1990). Moreover, aspects of firm structure may impair the firm's 

 
13 Hagedoorn and Schakenraad (1990, p.5) provide an exhaustive list, including direct investment, joint research 
corporations, joint ventures, and joint R&D agreements. 
14 Research suggests that productivity gains (Aral et al., 2012) and IT discounts (Benzina, 2019) are associated with 
scaling and increased firm size. 
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ability to remain flexible and adjust levels of product and process R&D. This inflexibility could affect short-

run innovation and the ability to adjust and benefit from sequencing process and product-related research 

activities (Athey and Schmutzler, 1995). When nascent firms initially outsource process-related R&D, their 

structure would be more focused on product-related R&D. For digital firms, this focus on digital products 

would manifest in firms acquiring richer data resources or the means enabling enhanced data collection, 

recombination, and use. 

Lastly, the literature also considers the technological environment’s dynamism and the pace of 

technological change in examining the decision to outsource. Vertical integration is more effective when 

the likelihood of technological obsolescence is high (Balakrishnan and Wernerfelt, 1986). Outsourcing may 

be more beneficial in digital industries where technological development is fast-paced and quickly renders 

prior technologies obsolete (Aral et al., 2012; Cachon and Harker, 2002; Giustiziero, 2021). High-tech firms 

may benefit from outsourcing due to the rapid pace of technological change, forgoing upfront investment 

in the internal development of quickly deteriorating IT assets. 

 

3. High-tech startups developing apps on cloud platforms 

Though subscription-based cloud services are fairly new, since 2006, they have fundamentally changed 

how startups procure IT assets. This paper primarily focuses on cloud platform services (PaaS), a specific 

type of cloud service which enables startups to host technologies on their web domain and develop and test 

apps. These platforms are a “layered architecture of digital technology” (Yoo et al., 2010) with a governance 

model (Rochet and Tirole, 2003; Parker et al., 2017). Cloud providers also offer hardware infrastructure 

services (IaaS), leased cloud-based computers and servers, that are less consequential to the nature of digital 

innovation than platform services but important in the context of IT spending, hardware development, and 

productivity. 

High-tech startups outsource IT platform development to access difficult-to-develop resources 

from their suppliers, avoid investing in deteriorating technologies, focus more on products, and benefit from 



11 
 

scaling a single digital product. Outsourcing may constrain the breadth of innovation when firms adopt 

technologies to fit with their suppliers’ technologies, co-invent with the same shared resources as others, or 

alter their firms' structure to facilitate outsourcing in a similar way to others. Supplier control grows over 

time as startups make additional sunk, asset-specific investments to fit their cloud platform and as cloud 

providers consolidate, increasing monopsony costs. Moreover, incentives to innovate dissipate as these 

platforms grow larger (Boudreau, 2012), suggesting that the emergence of several large cloud suppliers 

may further reduce the breadth of innovation. Still, others argue the opposite, that large platforms are multi-

dimensional product spaces offering limitless possibilities for technology recombination (Caves, 2000; 

Parker et al., 2017; Zittrain, 2006) 

Two mechanisms, the need for technological fit and the influence of suppliers’ sharing resources, 

provide insight into how outsourcing impacts the breadth of innovation. These mechanisms are interrelated, 

influencing technology adoption directly and the allocation of time and programming labor amongst app 

development and data analytics activities indirectly.  

Need for technological fit. Startups will adopt increasingly similar technologies when the fit amongst 

interdependent technologies or between the bundle of technologies and the underlying cloud platform’s 

technologies is important for the outcome. In the case of product development technologies, this outcome 

is developing a working app. For data analytics technologies, the outcome is producing data resources. 

First, the need for technological fit amongst interdependent technologies impacts the breadth of 

technology adoption and innovation. The potential for technological incompatibility increases with the size 

of a firm's technology bundle, as it is increasingly difficult to combine many highly interdependent 

technologies in innovation (i.e., complexity catastrophe; Fleming and Sorenson, 2001). Firms using larger 

bundles of interdependent technologies incur increased coordination costs associated with managing fit, 

incentivizing them to use more standardized development technologies with known compatibilities. Data 

analytics technologies do not face similar constraints as they are less interdependent. Second, the need for 

technological fit with the cloud platform’s underlying technologies affects the nature of innovation. A 
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startup’s initial fit with its development platform is strategically significant, as startups may be unable to 

incur the added cost of changing ill-fitting technologies or adapting technologies to fit the platform.15 These 

costs are relatively higher for development technologies, as they are less modular, potentially requiring 

many technologies to be exchanged or adapted. Given these fit-related costs, startups may benefit from 

entrenching themselves with a single provider’s recommended development technologies, following a 

particular technological trajectory and incurring fewer costs of maintaining fit. 

Customer-supplier relationship. Young digital startups have few customers and lack relationships with 

other firms but quickly establish a relationship with the technology firm supplying their cloud services. 

Larger technology firms have IT resources and data in abundance. The largest cloud services providers – 

Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure – have startup-related 

corporate programs that share resources with their customers.16 These corporate accelerator programs share 

generalized resources like traditional accelerators (Hochberg, 2016; Yu, 2020) yet also provide technical 

resources (i.e., software, compatibility documentation, expertise, and troubleshooting) related to their cloud 

platform. Unlike traditional accelerator programs, these corporate programs are often open to any viable 

startups. This relationship is a conduit for resources to pass from the supplier to the customer. Resource 

sharing likely intensifies for startups with the potential to be valuable customers. For instance, customers 

using multiple cloud services from the same provider (i.e., both platform and infrastructure services) 

probably have a stronger relationship. This stronger relationship may unlock additional shared resources 

that reduce coordination and adaptation costs yet increase technological constraints associated with 

coordinating fit across two types of cloud services products.  

 
15 Once startups develop their apps on their supplier’s platform, moving their product to another platform or 
internalizing production is costly. There are fees for offloading data. Moreover, fit-enhancing investments in a specific 
platform do not necessarily transfer to another platform, and firms may have to replicate some of those investments 
on the new platform. Startups may even need to hire different programmers as coding requirements are not universal 
across platforms. It may be less costly for a firm to abandon its app on one cloud platform and start development from 
ground zero on a different platform than to move its app. 
16 To give a sense of the scale and breadth of these programs, Amazon AWS even has an accelerator specifically 
focused on providing resources to startups focused on space travel. https://www.geekwire.com/2021/amazon-web-
services-launches-space-accelerator-final-frontier-startups/ 



13 
 

Access to a cloud provider’s shared technologies, processes, and technological compatibility 

guidance could save programmers time. Instead of dealing with development technology compatibility 

issues, programmers could experiment with data analytics technologies. There is a fixed pie of available 

resources, and startups that more efficiently build a functional app have more resources to develop data 

analytics capabilities. The potential of shifting resources from one important activity to another aligns with 

recent research findings that using standardized or low-code development tools can support highly 

innovative activities (Miric et al., 2021; Dushnitsky and Strobe, 2021), and it suggests that using more 

standardized development tools does not necessarily limit product differentiation. In this case, there is a 

potential substitution effect between using standardized product development technologies, reducing 

coordination and adaptation costs, then shifting those resources towards the developing analytics 

capabilities that produce data resources that aid in product differentiation. Firms benefit from developing 

data analytics capabilities (Brynjolfsson et al., 2021; Provost and Fawcett, 2013, Tambe, 2014). These 

benefits may be even larger for firms with a digital app, enabling them to examine their app’s usage data 

(Chatterji and Fabrizio, 2014), or firms producing AI, enabling them to source, clean, and recombine 

training data (Furman and Seamans, 2019; Bessen et al., 2022). In the case of digital app production, product 

differentiation stems from utilizing unique or more robust data that is challenging for rivals to replicate.17 

 

4. Data 

Before starting the quantitative analyses, I informally interviewed fifteen high-tech startup founders to 

understand the IT asset outsourcing decision better. Most founders and early technical employees determine 

which cloud provider to use before product development. All the startups I interviewed used cloud platform 

services, and about half used hardware/infrastructure services. One startup initially used internally 

developed IT to produce its marketing app from 2013 to 2017, citing security issues of working with 

 
17 That data then could be used to make business decisions (e.g., product design decisions, marketing decisions, 
customer, and partner acquisitions decisions) and, in the case of AI-developing startups, to train algorithms. 
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sensitive data and competitively significant algorithms in the cloud. Several founders mentioned that their 

end-customers’ industry influences their decision to use cloud services. One healthcare startup felt pressure 

to develop on the Microsoft Azure platform because Azure offered HIPAA-compliant cloud services 

earlier, which enabled Azure to develop an early foothold in that vertical. Some startups responded that 

they joined a particular platform to access free software, services, cloud credits, or corporate accelerator 

programs. However, most startups I contacted revealed that highly discounted offers facilitated through 

their accelerator or incubator programs influenced their decision to join a particular cloud platform. A few 

mentioned adding a second cloud provider to access more free cloud credits for a tangential project or from 

“blob” storage.18  

The initial cloud decision impacts the startups’ future technological compatibility and 

complementarity as it is challenging to switch platforms. For instance, several startups reported being 

unable to change cloud providers because they would have to “rebuild their entire product” on the new 

platform.19 Founders discussed programming labor as a constraint: “it is hard to find (replace) a good 

programmer.” Some mentioned having to hire a programmer with different coding preferences if they 

switched to Azure, a platform requiring more extensive knowledge of C# than GCP or AWS, arguing that 

it would be costly to find other programmers. Others suggested that they cannot backstep and start over if 

they already have a functioning app, which is often a milestone for investors. Developing a functioning app 

and landing a few early customers are clear initial goals.  

4.A. Firm demographics 

To examine how outsourcing IT affects innovation in this context, I establish a sample of startups with a 

digital app from multiple data providers. I use data from Crunchbase20 and Pitchbook21 to compile a list of 

 
18 Blob storage lets developers store unstructured data on the cloud. This data can be accessed from anywhere in the 
world and can include audio, video, and text. Blobs are grouped into "containers" that are tied to user accounts. 
19 Only one startup changed to a new primary cloud provider after product development; however, the change 
coincided with the startup founder hiring a prior executive from the new cloud provider. 
20 Crunchbase provides data about startups and sources its data in four ways: venture programs, machine learning, an 
in-house data team, and the Crunchbase community. 
21 Pitchbook is a software-as-a-service company that delivers data, research and technology covering private capital 
markets, including venture capital, private equity, and M&A transactions. 
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active high-tech startups in IT or software-related industries. Then I use data from Apptopia22 and startup 

descriptions to confirm these startups have a mobile or website-based app and an active web domain. To 

capture higher-growth potential startups, I exclude older firms (>10 years old), larger firms (more than 500 

employees), and firms in China.23 These criteria yield a sample of 3,434 high-tech startups that develop an 

app as their product. Most of the startups in the sample operate in more developed economies (~90%), with 

the bulk of the startups located in the Americas (56% SD 0.05) or Europe (27% SD 0.04). Startups in the 

sample were founded between 2012 and 2020, are 4 (SD 2.4) years old, and have about 45 (SD 63) 

employees. One-fifth of these startups target customers in the financial services and healthcare industries. 

Many describe themselves as developing commercial AI products (38% SD 0.49) or using machine learning 

in production (9% SD 0.29). I provide additional details on the startup demographics of the sample of 

startups in Table 1.A. under the heading Demographics. 

4.B. Founder measures 

I build measures on startup founders from three data sources: Mantheos24, AIdentified25, and manually 

collected data from public LinkedIn26 profiles. In our sample, 12% (SD 0.33) of startups have founders at 

least one founder with prior IT experience, including 5% (SD 0.22) with prior hardware development 

experience and 7% (SD 0.25) with prior Big Tech experience (Amazon: 1%, Google: 3%, Microsoft: 3%). 

On average, 44% (SD 0.50) of startups have a founder with a technical27 undergraduate or graduate major; 

21% (SD 0.41) have an advanced degree (i.e., master’s or doctorate) in a field other than business 

 
22 Apptopia’ s data intelligence platform enables brands to analyze critical competitive signals and gain insights across 
mobile applications and connected devices. 
23 As a potential limitation, third-party data sources may not be representative of the underlying population. Our 
English-language data sources underrepresent the number of startups in China or from certain emerging countries 
where the English language is less common. Additionally, founders from these countries will be underrepresented on 
LinkedIn. Yet, even in English-language developed markets a small number of very young startups may intentionally 
trying to stay under the radar. Results from this sample will be more valid for developed market, where data-
representativeness issues are less of a concern. 
24 Mantheos is a business intelligence company providing accurate, clean, and structured data aggregation on demand. 
They are currently out of business (4/25/2022) after being sued by LinkedIn.  
25 AIdentified reveals best paths for sales teams, account execs and brands to connect to hyper-targeted, qualified 
prospects using predictive analytics and next level AI-based relationship intelligence mapping. 
26 LinkedIn is an employment-oriented online service that operates via websites and mobile apps. 
27 Technical degrees include including math, physics, computer science, statistics, or data science. 
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administration; 24% (SD 0.43) have a master’s degree in business administration (MBA). From text 

analysis of founder’s names, I determine (with 95%) confidence that 13% (SD 0.33) of startups have a 

female founder or CEO. 28 These estimates reflect the low participation of females in the population of high-

tech entrepreneurship. I provide additional details on the founder demographics of the sample of startups 

in Table 1.A. under the heading Founders. 

4.C. Cloud services provider measures 

I collect firm-level cloud services and technology adoption data across time (2012-2021) for these startups 

from BuiltWith.29 This provider offers information on cloud services (i.e., PaaS, IaaS, storage) and 

technologies connected to the startup’s web domain by making “HTTP requests” and analyzing website 

code to determine which “back end” technologies startups adopt.30 Since each of these startups has a digital 

app as its product, information on the adoption of domain-based technologies provides insight into web and 

mobile app development. Most startups in my sample develop their app on a cloud platform (85%) and 

license cloud hardware infrastructure services (79%). I identify ten technology firms that license cloud 

services. The largest suppliers are Amazon, Google, and Microsoft (Big Tech CSPs, 78%).31 The other 

seven suppliers offer more niche (e.g., fintech digital currency mining) or less expensive technology 

services: Alibaba, Digital Ocean, IBM, OVH, Oracle, and Linode (Other CSPs, 7%). These cloud providers 

also offer hardware infrastructure services that provide high-power virtual machines with processors 

(GPUs) and solid-state hard drives (SSD), which are particularly valuable in AI development.32 The 

remaining startups (15%) do not have cloud-based platforms connected to their web domain. I provide 

additional details on the cloud providers in Table 1.B.33  

 
28 I used the “gender” library in R, SSA method, focused on English language birth names common in the 1980s. 
29 BuiltWith returns all the technologies connected to a web domain, covering more than 59k technologies across 
analytics, advertising, hosting, frameworks, CMS, and more.  
30 Prior research in strategy uses similar data from BuiltWith: Koning et al., 2022 (A/B testing technologies); 
Dushnitsky and Stroube, 2021 (connection with Shopify technologies). I connect to BuiltWith’ s API to download this 
data on each startup’s web domain; all startups included have an active website. More information on BW: 
https://techcrunch.com/2012/02/16/ builtwith-reveals-the-tech-used-by-the-130-million-web-sites-that-matter-most 
31 Amazon AWS 64% of total startups in the sample. 
32 E.g., Amazon Elastic Compute (EC2), Google Compute Engine, Cloud AutoML, and Azure Machine Learning 
33 Despite the richness of this data, there are several limitations. First, I assume that startups with a supplier relationship 
participate in programs that share resources. Next, there are differences between cloud providers with startup 
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4.D. Technology adoption measures 

Though I have data on all domain-connected technologies for each startup, this paper does not focus on 

“front end” technologies (e.g., website hosting, fonts, e-commerce, payment, etc.) or organizational 

technologies (e.g., customer relationship management, sales tools, workforce management, email hosting, 

etc.). Instead, it focuses on product development technologies (e.g., content management systems, content 

delivery networks, frameworks, and security) and analytics technologies (e.g., data analytics, collection, 

and telemetry) that are essential for high-tech startups that develop apps and run their business. I list all the 

technologies included in the analyses and their descriptions in Appendix D, and I provide more information 

on cleaning the BuiltWith data in Appendix A.1. 34 

Technology Bundle Size. First, I calculate the firm-year technology bundle size, a count of technologies 

connected to the web domain, using a similar approach to Berman and Israeli (2022). Startups use an 

average of 50 (SD 27) technologies, ranging from 1 to 252. Startups using a cloud platform have larger 

technology bundles (53 SD 27) than startups not using a cloud platform (36 SD 19). On average, firms use 

8 (SD 4) product development technologies and 6 (SD 6) analytics technologies.35 

Technology Bundle Dissimilarity. Next, I calculate firm-year technology dissimilarity for product 

development and analytics technologies based on pairwise cosine similarity each year to address my 

research question, focused on relative changes to the breadth of innovation of app-producing firms in my 

sample. The dissimilarity measure I calculate is the same as angular distance, based on prior strategy and 

 
programs, a resource-sharing conduit, and startups without these programs. Cloud providers with programs share 
resources with greater intensity than those without. Third, I cannot pinpoint which technologies startups added as a 
direct result of sharing. Fourth, and related to the prior point, I cannot determine which other non-technology 
resources, like technical and business expertise, are shared formally through programs or informally through increased 
network connectedness. 
34 Even though I make all attempts to clean and organize technologies based on the provided categories and 
descriptions of technologies, there is the chance that startups onboard a technology and not use it. Some of these 
technologies have a licensing cost and are likely to be off boarded quickly; however, free technologies, especially 
those not requiring substantial space, could linger. Alternately, they could use product development technologies in a 
way that is unrelated to application development. 
35 Additionally, I calculate the number of Big Tech technologies (13 SD 6), premium/subscription technologies as 
defined by BuiltWith (3 SD 4) and open source technologies (1 SD 1) as defined by analysis of their descriptions. 
(Table 1.C.) 
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economics research (Seamans and Zhu, 2014; Sweeting, 2010; Wang and Shaver, 2014).36 In my case, the 

coordinates are firm-year vectors of technologies, taking the value 1 when both startups do not use the 

technology and 0 when both startups use the technology, configuring a positive semidefinite matrix. The 

resulting dissimilarity measure will be bound by [0,1], taking the value of 1, the maximum distance, when 

there is no overlap of any technologies in a given year, and the value of 0 when there is perfect overlap. 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡 = �𝑐𝑐𝑐𝑐𝑑𝑑−1 �
𝑉𝑉𝑖𝑖𝑡𝑡 ∗ 𝑉𝑉𝑖𝑖𝑡𝑡

∥ 𝑉𝑉𝑖𝑖𝑡𝑡 ∥∥ 𝑉𝑉𝑖𝑖𝑡𝑡 ∥
��

𝜋𝜋
2

�      (1) 

where, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡 refers to the pairwise angular distance of the focal firm and rival37, i refers 

to the focal firm, j refers to the rival, t takes on the value of the year, and (𝑉𝑉𝑖𝑖𝑡𝑡 ∗ 𝑉𝑉𝑖𝑖𝑡𝑡) is the firm-level pairwise 

dot product, normalized by the length of each vector (∥ 𝑉𝑉𝑖𝑖𝑡𝑡 ∥∥ 𝑉𝑉𝑖𝑖𝑡𝑡 ∥) so the technology bundle size will not 

impact measurement. 

 For the main analysis, I calculate the mean of the angular distance for each focal startup with 

respect to other app-developing startups in the comparison panel (e.g., all startups, startups using a CSP, 

startups using Big Tech CSP, startups using Amazon AWS, etc.) from the disaggregated data. For instance, 

when I calculate this mean measure for focal startups in the Amazon AWS panel, it only includes pairwise 

matches of firms that use the Amazon AWS platform. The average bundle dissimilarity is 0.78 (SD .07) for 

product development technologies and 0.66 (SD 0.12) for analytics technologies. 

 I provide additional details on measure construction in Appendix A.2., kernel density estimates 

in Appendix Figure C.2, and summary statistics in Table 1.C. under the heading Technology Adoption. I 

depict the relationship between product development and analytics technology bundle dissimilarity before 

and after using cloud platform services in Figure 1. 

 
36 An example of this measure comes from astronomy, where the angular distance is the angle between two “sightlines” 
of two far-away objects. 
37 Rival firms are defined as any other high-tech app-producing startup in my sample.  
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4.E. Funding measures.  

I create and use indicator variables for whether startups received any funding (71% SD 0.45; including 

seed/angel funding), follow-on funding (52% SD 0.5; at least two rounds of funding), venture capital 

funding (61% SD 0.49), or higher reputation venture capital funding (9% SD 0.28). Next, I create a firm-

year measure of deal size (5.1 SD 7.1, log) and an aggregate measure of total funding (11.9 SD 6.2, log).38 

As another performance measure, I use data on website visit duration (3.1 SD 3.3, log minutes) from 

SimilarWeb39 and an indicator variable for if startups have a patent (4% SD 0.18) from IPQwerty.40 Though 

many young high-tech startups do not patent, this measure captures some aspects of proprietary innovation. 

Only 5% (SD 0.21) of startups have closed, and 6% (SD 0.24) of startups have been acquired. Startups in 

my sample are young, so we do not yet have a clear indication of which startups will survive, opening the 

door for future research in the years to come. I report correlations of these measures with firm demographics 

measures (Appendix Table A.3.), technology measures (Table A.4.), and performance measures (Table 

A.5.), and I provide additional descriptive statistics in Table 1.C. under the heading Performance. 

 

5. Research Design 

I construct a relatively homogenous sample of active startups less than ten years old with fewer than 500 

employees and an existing app. Then I use Coarsened exact matching (CEM; Iacus et al., 2012) based on 

observables: age, employment size, region, industry vertical (healthcare, financial services) across 

comparison groups (i.e., cloud platform versus no cloud platform, Big Tech cloud platform versus other 

vendor’s cloud platform, Amazon AWS platform versus other vendor’s cloud platform) to weight 

regressions. This matching procedure is consistent with the argument that startups using a cloud platform 

 
38 Also, I create indicator variables for participating in an accelerator (19% SD 0.39) or having direct funding from a 
Big Tech firm (3% SD 0.26). 
39 SimilarWeb is a digital intelligence provider for enterprise and small to mid-sized business customers. The platform 
provides web analytics services and offers its users information on their clients' and competitors' web traffic and 
performance. 
40 IPQwerty applies a series of contextual clues to help differentiate between similar company names, then separates 
each into the correct IP profile. 
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are not observably different from those not using a cloud platform. I provide summary statistics on sample 

means before and after matching on the right side of Tables 1.A. and 1.C. and depict these changes in 

Appendix A.6. 

 For the main specification, I use an OLS difference-in-differences approach with two-way fixed 

effects to model the impact of using a cloud platform on technology adoption. This approach assumes that 

the treatment and control groups have parallel trends even if no firms are treated (Abadie 2005). I compare 

the trends for the control and treatment groups in Appendix Figure C.3. Development technology bundle 

size and dissimilarity show parallel trends across all years, as does analytics bundle size. However, analytics 

differentiation shows parallel trends only up until 2019.41 

𝑑𝑑𝑖𝑖𝑡𝑡 =  𝛽𝛽1𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑡𝑡 + 𝛽𝛽3𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑡𝑡     (2) 

where, 𝑑𝑑𝑖𝑖𝑡𝑡 refers to the dependent variables: technology bundles size and dissimilarity measures; 

𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 refers to an indicator variable that takes the value 1 if a startup uses a cloud platform 

and 0 otherwise; 𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑡𝑡 refers to the year-level fixed effect; 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖 refers to the firm-level fixed effect. 

I cluster standard errors at the firm level. In these models, I match and weight regression according to the 

treatment, using a cloud platform versus not using a cloud platform, which drops 21 unmatched firms. To 

overcome potential estimation issues from a staggered difference-in-differences model with two-way fixed 

effects, I estimate aggregated pre- and post-treatment estimates, average treatment effects, local average 

treatment effects, and heterogeneity-robust instantaneous treatment effects for robustness. 

 Next, I use the following specification to compare different platforms. I use difference-in-

differences OLS regression models with the matching approach adjusted to the comparison level (i.e., 

Platform X vs. Platform Y). For example, when comparing startups on the AWS platform versus those on 

a different platform, I would match to ensure that startups using AWS are similar to those not using AWS. 

𝑑𝑑𝑖𝑖𝑡𝑡 =   𝛽𝛽1(𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑖𝑖𝑡𝑡 = 1) + 𝛽𝛽2(𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑖𝑖𝑡𝑡

= 1) + 𝛽𝛽3𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑡𝑡    (3) 

 
41 Discussed more in Section 6.D. Robustness. See Appendix Table B.3. model (6) for analysis during the period 
where parallel trends exist. 
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where, 𝑑𝑑𝑖𝑖𝑡𝑡 refers to the dependent variable: technology bundle size or dissimilarity measures, 

𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝 𝑖𝑖𝑡𝑡 refers is an indicator variable that takes the value 1 if the startup uses cloud services 

from Platform X and 0 otherwise, 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑑𝑑𝑐𝑐𝑝𝑝𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝 𝑖𝑖𝑡𝑡 refers is an indicator variable that takes the value 1 

if the startup uses cloud services from Platform Y and 0 otherwise. Similar to specification (2), this 

specification includes firm and year-level fixed effects, and standard errors are clustered at the firm level. 

 

6. Impact of cloud platforms on technology adoption 

6.A. Selection results 

Empirical insight into firm-level decisions to adopt cloud platform services is scarce in prior research 

(Schneider and Sunyaev, 2016; Yang and Tate, 2012), partly because adoption is endogenous. Startups are 

not randomly assigned to different IT development conditions or cloud platforms. Instead, founders and 

early IT employees chose to develop internally or adopt services from a specific cloud provider. I examine 

selection based on founder characteristics, industry, headquarters location, age, and funding from a Big 

Tech cloud provider using a time-series probit specification in Table 2.42  

In model (1), I examine cloud platform adoption. The startup’s age is a significant driver of cloud 

platform adoption (+0.64 SD 0.01), as startups make these decisions around the time they reach product 

development. Startups selling into healthcare, a more highly regulated industry, are less likely to use a cloud 

platform (-0.14 SD 0.07). Additionally, in Europe, where data regulation (e.g., GDPR) is more intense, 

startups were less likely to adopt cloud platform services (-0.20 SD 0.04), raising a potential concern that 

European entrepreneurs are missing out on the benefits of cloud if indeed there are benefits.43 Firms with 

earlier funding from one of the three largest cloud providers are more likely to adopt a cloud platform 

(+0.29 SD 0.11). As anticipated, startups with a founder with hardware experience are less likely to adopt 

 
42 As a limitation of this selection analyses, certain characteristics may not be observable or are not captured in the 
data I collected. Moreover, the size of the founding team and combinations of the founding team's characteristics could 
affect selection in a way unaccounted for by my model. 
43 And supporting the notion that Americans may do (cloud) I.T. better others too (Bloom et al., 2012)  
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a cloud platform as they have an increased capability to develop IT internally. Lastly, founders with an 

MBA or advanced technical degree are more likely to use cloud platform services. 

In model (2), I examine the selection of a Big Tech versus other smaller cloud platform providers 

for the treatment group. I find that startup’s age and having a founder with an MBA relates to higher 

adoption of a Big Tech cloud provider. Alternately being in Europe relates to greater adoption of a smaller 

cloud provider, potentially due to greater regulation of the largest technology firm or negative consumer 

sentiment in Europe.44 These results remain in model (3), which compares the selection of Amazon AWS 

versus other providers. 

6.B. Main results 

I examine how technology adoption changes when startups add cloud platform services. I find that bundles 

of product development technologies (Table 3, model (1): +0.43 SD 0.02) and analytics technologies 

(model (8): +0.52 SD 0.02) become larger. Estimates increase when adding firm-level fixed effects (models 

(2) and (9)) and decrease when adding year-level fixed effects (models (3) and (10)).45 Adding both firm 

and year-level fixed effects reduces estimates of product development technologies (model (4): +0.30 SD 

0.02) and analytics technologies (model (11): +0.24 SD 0.02), but results remain positive and significant. 

These estimates remain similar weighting regression based on the matching procedure and dropping 21 

unmatched startups, controlling for potential differences between the control and treatment groups based 

on observable demographic variation (models (5) and (12)). Lastly, the ratio of development technologies 

to all other technologies slightly increases (model (7): +0.012 SD 0.003). Additionally, in Appendix Table 

B.1., I report additional results for Big Tech (i.e., developed and licensed by Amazon, Google, or 

Microsoft), paid/subscription, and open source technology bundle size. 

Product development technology breadth. Technology bundle size provides limited information about the 

breadth of innovation. Regardless of if startups use more technologies, their apps will not work effectively 

 
44 Table 2 model (4) uses a multinomial time series probit model and finds similar results to model (2) based on the 
full sample. 
45 When firm-level fixed effects are added, 290 single observations/firms are dropped. These firms have no pre/post 
cloud adoption variation.  
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unless these technologies fit with their production needs, other interdependent technologies, and IT. As 

anticipated, product development technology bundles become less dissimilar (i.e., more similar) to other 

startups in the sample when they use cloud platform services, as they have similar fit constraints pushing 

them toward a similar technological path. Product development technology bundles become more dissimilar 

(model (1): -0.041 SD 0.002). Building from this base model, I add firm-level fixed effects (model (2): -

0.089 SD 0.002), year-level fixed effects (model (3): -0.025 SD 0.002), and both firm and year-level fixed 

effects (model (4): -0.028 SD 0.002). Lastly, results remain similar when I weight regressions and drop 21 

unmatched firms, in addition to including fixed effects (model (5) -0.028 SD 0.002; coefficients depicted 

in Figure 2).  

Next, I examine two mechanisms, the need for technological fit and the strength of the customer-

supplier relationship, to provide evidence consistent with a causal relationship. First, startups using larger 

bundles of development technologies incur increased costs of coordinating among a larger bundle of 

interdependent technologies. Product development technologies are interdependent and must remain 

compatible for the app to work effectively. Moreover, the larger bundle of technologies must still fit with 

the cloud platform’s underlying technologies. As such, the bundle of product development technologies 

becomes even more similar (Table 4 model (6), Platform x H. Tech Count: -0.056 SD 0.003).  

As a second mechanism, startups with a stronger cloud provider relationship will likely have access 

to additional shared resources yet face more development technology constraints from fitting with 

additional cloud services products. Startups are more entrenched in a single cloud provider’s technology 

when they license cloud hardware infrastructure services (e.g., virtual machines providing computing 

power) in addition to cloud platform services. These shared resources may mitigate fit issues but also guide 

firms down the same development path based on the type of app they are developing. Product development 

technologies become more similar when startups use both platform and infrastructure services (Table 4 

model (7), Platform x IaaS: -0.032 SD 0.002), which makes them face the same new set of additional fit-

related constraints and provides them with the same resources that lead them to similar technical solutions. 
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Analytics technology breadth. Alternatively, technologies enabling firms to collect, analyze, and recombine 

data become more dissimilar when using cloud platform services (Table 4 model (12): +0.087 SD 0.005; 

coefficients depicted in Figure 2).46  

Since these technologies are not related to the mechanics of product development, startups can use 

large and more diverse analytics technology bundles without fit and compatibility-related issues reducing 

product efficacy. The need for technological fit is less important to their outcome, producing data resources 

that firms can use broadly to accomplish their business objectives. Data analytics technologies are less 

interdependent than development technologies, with every technology producing representative numerical 

output. They are also more modular than development technologies, which are a cog in a larger development 

process. Without these constraints, having a larger analytics technology bundle enables the adoption of a 

more diverse data analytics technology bundle (model (13), Platform x H. Tech Count: +0.108 SD 0.005). 

When startups have a stronger cloud provider relationship, it increases development technology 

similarity and creates efficiencies that reduce cost (reiterating the finding from model (7)). It is plausible 

that these efficiency gains enable startups to shift unused resources toward developing data analytics 

capabilities. Moreover, additional shared resources enable the adoption of a more diverse analytics 

technology bundle as they are modular and less affected by fit constraints from adopting additional cloud 

services products (model (14), Platform x IaaS: +0.086 SD 0.005). 

Cloud platform market share comparison. I examine heterogeneity by platform market share, calculated as 

the share of startups in my sample on each platform. Amazon AWS has the largest market share supplying 

about 79% of startups in my sample; Google GCP is the next largest with around 5%.47 Based on analyses 

of the treatment group, using higher market share platforms relates to reduced product development 

technology bundle dissimilarity (Table B.2. model (1): -0.08 SD 0.01) and increased analytics technology 

bundle dissimilarity (model (4): +0.09 SD 0.03). The effect remains similar when using specification (3) to 

 
46 In Table 4 models (8)-(11), I provide a similar build-up to support these results as in the preceding section, adding 
firm fixed effects, year fixed effect, firm and year fixed effects, and firm and year fixed effects with matching. 
47 2,466 startups use a single cloud platform; 467 startups use more than one cloud provider’s platform. Analysis in 
Appendix Table B.2 only includes firms that use a single cloud provider. 
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compare startups using one of the largest three cloud providers (Big Tech CSPs: AWS, GCP, and MS 

Azure) versus any other smaller cloud provider (Other CSPs: Alibaba, Digital Ocean, IBM, OVH, Oracle, 

and Linode) in models (2) and (5) and comparing firms that use Amazon AWS platform to firms that do 

not (models (3) and (6)). 48 

Heterogenous Treatment Effects. Firms with fewer employees use more standardized development 

technology bundles and more diverse analytics technology bundles after adopting cloud platform services 

(Appendix Figure C.5.). These smaller firms are more labor constrained, potentially making the tradeoff 

between focusing on development and analytics capabilities starkly apparent. Additionally, startups located 

in cities with higher concentrations of VC firms (e.g., San Francisco Bay Area, London, New York, Boston) 

use more diverse analytics technology bundles after they adopt cloud platform services, despite having a 

similar level of development technology bundle dissimilarity (Appendix Figure C.6.). This finding suggests 

that these hubs potentially enable increased analytics technology dissimilarity, yet there are several 

plausible mechanisms. For instance, more robust analytics technologies could be a hot topic for investors, 

increasing startup awareness. Though, cities with higher concentrations of investors also have more 

technology firms. These firms could increase awareness of the benefit of more robust and unique data 

resources amongst themselves, potentially by hiring each other employees.49 Moreover, these technology 

hubs have a higher proportion of programmers and tech-focused labor than other cities. 

6.C. Identification 

Instrumental variable approach. To address endogeneity issues stemming from unobservable variables and 

reverse causality, I use the release of an open source50 version of TensorFlow in late 2015 as a quasi-

exogenous shock to AI startups’ adoption of cloud services. TensorFlow is an AI framework that enables 

 
48 I graph technology dissimilarity on the event timeline starting for AWS versus not AWS from year 0, the year the 
startup outsourced (treatment group only), in Appendix Figure C.4. Also, I compare summary statistics for startups 
by platform in Table 1.D. 
49 Other aspects of location are not significant, however, heterogeneity by VC location suggests there is potential to 
explore spatial spillovers in additional research. For instance, distance from a VC funding/technology hub is likely to 
be more influential on technology adoption than other location features.  
50 Apache 2.0 opensource license 
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firms to develop and train deep learning algorithms. Google’s decision to develop and release TensorFlow 

enabled AI-producing firms using cloud services to be more productive and their complementary labor 

more valuable, enabling them to customize this AI framework to their development needs (Rock, 2021).51 

After the open source release, TensorFlow could be used on any cloud platform, not just Google’s platform. 

However, it took another year for Amazon to develop an Amazon Machine Image (AMI) that easily enabled 

the use of TensorFlow on their platform.52 

This instrumental variable approach includes the interaction between two binary variables: startups 

that 1) benefit from TensorFlow (i.e., startups that adopted Google Cloud Platform in 2016 or Amazon 

AWS in 2017) and 2) develop AI products (i.e., startups that benefit from AI frameworks like 

TensorFlow).53 Including an interaction term between two binary variables increases the strength of the 

first-stage regression without biasing estimation (Aghion et al., 2005; Bun and Harrison, 2018), yielding 

significant first-stage F-statistics (K-P Wald F: 102, C-D Wald F: 105) consistent with the argument that 

the instrument is adequately powered. Using TensorFlow directly relates to AI startups adopting a cloud 

platform. In support of the exclusion restriction, TensorFlow does not directly relate to the breadth of 

technology adoption or constrain the adoption of other technologies.54 

In the first-stage regression, the TensorFlow shock relates to increased cloud platform adoption 

(Table 5.A., Tensor: +0.24 SD 0.018), particularly for AI-producing startups (Tensor x AI: +0.29 SD 0.024). 

The second-stage regression results remain directionally similar and significant. The impact of cloud 

services increases product development dissimilarity (i.e., development technology bundles become even 

 
51 Other recent research also supports that complementarities exist between AI and human labor (Choudhury et al., 
2020; Krakowski et al., 2022; Tong et al., 2021). 
52 Though other AI frameworks were released around this same time, TensorFlow was the most popular. Keras was 
released in March 2015; Microsoft’s Cognitive Toolkit (CNTK) was released in January 2016; Facebook’s PyTorch 
was released in September 2016. Amazon’s Sagemaker, released in November 2017, and open sourced in 2019.  
53 I provide details on the instrumental variable approach specification in Appendix A.7. 
54 There are two potential limitations I wanted to address. First, though I discussed TensorFlow's higher market share 
and the release timing of other competing frameworks, it is possible that I am gauging the effect of TensorFlow and 
other frameworks. I try to overcome this by building my TensorFlow measure to exclude startups on Google’s cloud 
platform, who were less able to benefit from TensorFlow’s open source release but could still benefit from the release 
of other platforms. Second, though many programmers tout the versatility of TensorFlow, there could be some 
technologies that are indeed dependencies and influence the breadth of innovation (on the margins). However, I cannot 
find any documentation that suggests this. 
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more similar) from -0.027 SD 0.002 (main analysis repeated in Table 5.B. model (1)) to -0.051 SD 0.016 

(IV approach, model (2)). Analytics dissimilarity remains similar, slightly increasing from +0.087 SD 0.005 

(main analysis repeated in model (4)) to +0.089 SD 0.018 (IV approach, model (5).55 

Double machine learning. As another method of addressing endogeneity from potentially omitted variables 

(Belloni et al., 2014), I use double machine learning following Chernozhukov et al. (2018) to estimate the 

treatment and outcome using a random forest machine-learning algorithm trained with 64 firm-level control 

variables. This approach divides the sample in half, using half the observations to train the model and the 

other half for prediction, and calculates Neyman orthogonal scores to estimate the causal parameter 

(Chernozhukov et al., 2018; Neyman, 1959; Wooldridge, 1991). I then take the first differences based on 

the machine learning models’ prediction of the (1) treatment and (2) outcome and run an OLS regression 

with firm and year-level fixed effects. 

Similar to the instrumental variable approach, the double machine learning approach dampens the 

effect of cloud platform service adoption, down about 40% from the base model (Table 5.B. model (3), 

development dissimilarity: -0.015 SD 0.002; model (6), analytics dissimilarity: +0.053 SD 0.004). 

However, this additional analysis support that the effect remains and is significant. I then test coefficient 

stability (Oster, 2019; development dissimilarity: 𝛿𝛿 = 3.08, analytics dissimilarity: 𝛿𝛿 = 1.35) to support 

that effect is unlikely to be negated by unobserved variables.56 I describe this approach in Appendix A.8. 

6.D. Robustness 

Since my panel is unbalanced, I re-run the main analysis on a sample of firms with data before and after 

the cloud adoption event, dropping all firms that added cloud platform services in their first year of existence 

(Table B.3. model (1), development dissimilarity: -0.027 SD 0.02; model (5), analytics dissimilarity: +0.092 

SD 0.005). Next, I re-run the main analysis on firms greater than three years old with data from 2012 to 

 
55 I realize that an instrumental variable approach does not solve all related endogeneity issues; yet, in conjunction 
with my main analysis, these findings provide more confidence in the scale and direction of my findings. As robustness 
for this approach, I examined the effect of TensorFlow’s release on all firms (not just AI startups) and results are not 
significant in the second stage. 
56 Based on Oster (2019), a 𝛿𝛿 = 3.08 is interpreted as the impact of unobserved variables would need to be 3x greater 
than the impact of observed variables for the effect to change signs. Impacts greater than 1x are highly unlikely (<5%).  



28 
 

2018 to overcome potential concerns that: (a) startups have less choice over whether they outsource to cloud 

platforms in more recent years, (b) cloud services are fundamentally different in earlier years, and (c) 

parallel trends impact analytics technology bundle dissimilarity measures before 2018 (model (2), 

development dissimilarity: -0.026 SD 0.03; model (6), analytics dissimilarity: +0.082 SD 0.006). Third, I 

include a firm-level investor overlap measure as a control for resource sharing from investors (model (3), 

development dissimilarity: -0.033 SD 0.04; model (7), analytics dissimilarity: +0.079 SD 0.008). 57 For 

example, firms with the same investors may receive similar guidance (e.g., “talk to Sue about how to build 

that feature,” “hire the new programmer with X skill or through Y recruiting agency,” or “join Z startup 

programs”). Fourth, to show the robustness of my main results to potential selection issues, I include the 

inverse of the Mill’s ratio derived from the probit analysis reported as a control (model (4), development 

dissimilarity: -0.025 SD 0.09; model (8), analytics dissimilarity: +0.086 SD 0.005). The main effect remains 

similar when using Heckman’s selection approach.58 

Fifth, to ensure a single cloud provider does not drive the effect, I run the main specification for 

each cloud provider: AWS, GCP, MS, and Other; results remain similar (Table B.4.). Sixth, I show the 

results of an alternate dependent variable, a technology adoption dissimilarity measure based on if a 

particular technology is more or less commonly used by startups in the sample (Table B.5.).59 Seventh, I 

show that my analysis holds in several key industries and verticals: AI, ML, Financial Services and 

Healthcare (Table B.6.). Eight, to support that spatial autocorrelation, stemming from technological 

spillovers from technology hub locations, does not impact the validity of my results, I show that results for 

city-level subsamples for San Francisco, London, and New York are similar in direction and significance 

to the main results (Table B.7.). 

 
57 Using this methodology, I create an investor dissimilarity measure based on if startups have overlapping investors 
for the firms that have investors. For example, on the extremes, this measure takes a higher value if two firms have 
the same investors and takes the value of 0 if they have no investors in common. Mean investor dissimilarity is 0.59 
SD 0.08. 
58 Using Table 2 model (1) as the base probit specification, I calculate the invers Mill’s ratio (IMR) based on (Appendix 
A.9; Heckman, 1979) I adjust estimates of the main results through Heckman’s selection procedure based on founders’ 
observable characteristics (Heckman, 1979). 
59 I provide more detail on how this alternate dependent variable measure is constructed in Appendix A.10. 
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 Ninth, as robustness for my staggered difference-in-differences model with two-way fixed effects, 

I use several approaches to estimate treatment effects. In the most straightforward approach, I collapse my 

data to pre and post estimates for a balanced panel of 873 firms (i.e., switchers) that change from not using 

cloud platform services to using cloud platform services. This two-period model suggests the impact of 

outsourcing cloud platform services on technology adoption dissimilarity to be more intense (Table B.8. 

model (1), development dissimilarity: -0.086 SD 0.002; model (5), analytics dissimilarity: +0.129 SD 

0.005). In another approach, I report the average treatment effect (ATE), computed as the difference 

between the average treatment received by switchers after their first switch and the treatment they would 

have received if they had never switched (models (2) and (6); De Chaisemartin and d'Haultfoeuille, 2020). 

Additionally, I use a fuzzy difference-in-differences approach to estimate the local average treatment effect 

(LATE; models (3) and (7); De Chaisemartin and d'Haultfoeuille, 2018). In the last approach, I estimate 

heterogeneity-robust instantaneous treatment effects (ITE) to estimate the treatment in each period (models 

(4) and (8); Athey and Imbens, 2022; De Chaisemartin and d'Haultfoeuille, 2020).60 Moreover, this 

approach estimates prior periods before the outsourcing event, confirming that pre-trends are not an issue. 

Tenth, I use disaggregated pairwise data (35 million observations) to address potential issues from 

the treatment effect spillovers (i.e., stable unit treatment violations assumption; SUTVA). This more 

granular data enables me to calculate the pairwise angular distance for stable rivals, including all the focal 

startups and only the rival startups that do not change their technologies. Results on this subset are similar, 

suggesting that spillovers from the treatment effect did not change the results (Table B.9. model (1), 

development dissimilarity: -0.027 SD 0.003; model (9) analytics dissimilarity: +0.083 SD). Then lastly, I 

include firm, rival, and year-level fixed effects to show that results are robust to all combinations of these 

effects (models (8) and (16)). 

 

 
60 Moreover, under the Common Trends Assumption, further analyses of switchers support that all switchers who 
received the treatment have positive weight. STATA package: twowayfeweights; De Chaisemartin and d'Haultfoeuille 
(2020). 
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7. Implications for product differentiation and performance  

Product Differentiation. Analyses of technology adoption are interesting in their own right, especially given 

the close gap between development technologies and end-product in the app production context. In this 

paper, they serve as a proxy for innovation because objectively collected product data from these young, 

small startups are challenging to find at scale. This is both a limitation of this current study and an 

opportunity for future research. 

As another proxy of product differentiation, I measure startup description and patent description 

differentiation using text analysis.61 Though these measures are likely closer proxies of product innovation, 

the smaller sample size is relatively small as fewer startups changed their descriptions after adding cloud 

services (193 startups) or have patented before and after adding cloud services (20 startups). Moreover, the 

reasons prompting startups to change their description are unclear.  

From these data, I find a correlation between using a cloud platform and having more differentiated 

startup descriptions (Table 6 model (1): +0.016 SD 0.004). This correlation increases when startups use 

more dissimilar data analytics technology bundles (model (3), Platform x Ana. Dissimilarity (cont.): +0.027 

SD 0.009), corroborating that more distinct analytics technology bundles aid in product differentiation. 

Next, an analysis of patent descriptions before and after adding cloud platform services for this 

unfortunately small number of startups yields a similar correlation (model (4): +0.007 SD 0.004). This 

correlation (weakly) increases when startups use more distinct data analytics technology bundles (model 

(6), Platform x Ana. Dissimilarity (cont.): +0.048 SD 0.028). Despite these data limitations, these analyses 

provide additional insight into the relationship between types of technologies, the fit with the cloud 

platform, and the differentiation of end-product apps. 

Performance. Performance analyses are correlational and focus on the treatment group of startups using a 

cloud platform. Decreased development technology dissimilarity relates to decreased funding (Table 7 

 
61 Calculation: quanteda is an R package for managing and analyzing textual data developed by Kenneth Benoit, Kohei 
Watanabe, and other contributors. The European Research Council supported its initial development. Summary 
statistics are reported in Table 1.C. under the heading Product Differentiation. 
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model (5): -3.3 SD 1.2), and decreased analytics technology dissimilarity relates to increased performance 

(model (6): +2.3 SD 0.71). I depict these relationships with bin scatter plots replicating the main 

specification in Figure 3. A similar relationship holds for binary measures of any funding and follow-on 

funding. 62  Lastly, I examine the average duration spent on a startup’s web domain and an indicator variable 

for patents as an additional dependent variable. I find a significant correlation between adopting bundles of 

more similar development technologies and increased web traffic (model (7): -3.56 SD 0.48) and patenting 

(model (9): -0.08 SD 0.023).  

Performance results align with my interpretation of the main results that startups using more similar 

development technologies benefit from increased fit among their interdependent technologies and with the 

cloud platform’s underlying technologies. Moreover, startups benefit when adopting a more diverse bundle 

of analytics technologies, aligning with my interpretation that these technologies produce data as an output 

that aid in product differentiation. 

 

8. Discussion and Conclusion 

Given the importance of data-centric entrepreneurship and AI development to future macroeconomic 

growth, it is paramount to understand how the rise of several large cloud platforms that share tons of 

resources with the startup ecosystem affects the breadth of technological innovation. Cloud platforms are 

here to stay. They continue to grow in capabilities and scale and provide services that are becoming 

increasingly difficult to replicate. Cloud providers enable access to IT and share resources, making it easier 

for startups to fund entry and develop their digital products. However, gains from innovation are about 

more than increased entry and the count of innovations. Less differentiated innovations may benefit the 

economy less, driving lower productivity growth than anticipated. 

 
62 For robustness, I use alternate dependent variables, including VC backed, higher reputation VC, closed and acquired, 
to support this interpretation further (Table B.10). Additionally, I examine the interaction between an indicator 
variable for larger bundles of technologies and higher levels of technology dissimilarity (Table B.11). 
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My findings contribute to understanding how cloud platform adoption impacts the breadth of 

technologies used to develop digital innovations. More specifically, the impact of the cloud on the breadth 

of innovation depends on whether interdependencies among technologies and fit issues with the platform 

hinder the technology’s functionality in producing its intended outcome. However, when interdependencies 

and fit create compatibility issues, shared resources present a solution, guiding startups down a 

technological path to alternate compatible technologies. Moreover, some evidence suggests that investors 

reward adopting more standardized, similar bundles of technologies when there are fit constraints. Perhaps 

this indicates that top-performing startups of a particular vintage converge on adopting the latest and 

greatest bundle of compatible product development technologies at a given time. Using more standardized 

technologies or tools reduces coordination and adaptation costs and saves time.   

For resource-strapped startups, these unspent technical resources and be redeployed on other firm 

objectives like building data analytics capabilities. It is plausible that startups repurpose programming labor 

to experiment with which data analytics technologies are necessary to ascertain needed data.63 These 

technologies are less constrained by fit and interdependencies and become more distinct from other startups 

after adopting cloud services. Moreover, coupled with limited technical constraints, the substitution of 

programming labor likely enables the adoption of more diverse data analytics technologies, enabling them 

to collect and use data resources suited to their needs and aiding in product differentiation. Furthermore, 

this narrative aligns with the finding from the analysis of changes in startup descriptions; more diverse data 

analytics technologies are important for digital product differentiation. 

I employ numerous econometric approaches (i.e., matching, instrumental variable, firm fixed 

effects, double machine learning) to provide results consistent with a causal argument based on observed 

and unobserved variation to rule out alternate explanations and adjust estimates of potentially omitted 

variables. Though I cannot entirely dispel threats to causal identification: all analyses yield similar results; 

 
63 This interpretation fits with correlation between development and analytics technology differentiation in Figure 1 
in two ways. First, there is a negative correlation, consistent with a substitution effect. Next, the relationship is only 
significant after startups adopt cloud services. 
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an Oster test suggests that the risk of an unobservable variable negating my findings is low; the instrumental 

variable approach provides some evidence that reverse causality is not a significant concern. 

Evidence supports that European startups are slower to adopt cloud services than similar firms in 

other developed markets. However, there is limited evidence of the heterogeneous effects of adopting cloud 

platform services on technology adoption by country or region. Startups in Europe may be missing the 

potential benefits of adopting cloud platform services more quickly, enabling programmers to focus less on 

development tools and more on analytics capabilities. National boundaries seem less important to cloud 

platform adoption's impact than startup proximity to a large technology hub city (San Francisco, New York, 

London). Startups in or near these cities use more diverse analytics technologies, suggesting a potentially 

nuanced spatial relationship between technological differentiation and distance from these hubs. Estimating 

these technology differentiation spillovers remains an interesting avenue for future research. 

By comparing startups using cloud providers with and without startup programs, this paper 

contributes to the literature on interfirm alliances by showing the impact of the customer-supplier 

relationship and the nature of innovation. There are significant differences in technology adoption for 

startups using the largest three cloud platforms with startup programs compared to those using smaller cloud 

platforms that do not have these programs. Programs that share platform-related resources lower the costs 

of coinventing on the platform and selecting other compatible technologies. 

Though these findings suggest that product innovation remains robust presently, they also raise 

concerns that cloud providers can curate which bundles of compatible technologies are used in high-tech 

product development, directly and indirectly altering technology adoption. Technology firms managing 

these cloud platforms control all the levers. They choose which features to build into the platform, which 

resources to develop and share with startups, and which technologies are more and less compatible with 

their platform. Using providers with more monopsony power (i.e., control) relates to adopting more similar 

development technologies yet more diverse analytics technologies, providing insight into how startups 

differentiate digital products while using more standardized development tools. Tying back to transaction 

cost economics, firms become more dependent on their suppliers over time, potentially enabling cloud 
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suppliers with higher market share to exert control over technology adoption in a way that may not yet 

manifest in the inability to differentiate products. Despite increased control, the importance of analytics 

capabilities and richer data resources in enabling high-tech startups to differentiate their products will 

remain constant.  

This gradual increase in supplier control will not bode well for startups competing against their 

cloud providers in downstream markets. It posits an interesting question for future research: Will startups 

be able to effectively differentiate their products when competing against one of these larger technology 

firms in downstream markets? Startups’ analytics capabilities and data resources pale in comparison to 

those of the largest technology firms (Benzina, 2019; Iansiti, 2021; Khan, 2016; Scott-Morton et al., 2019). 

In addition to having less robust data-related technologies, capabilities, and resources, startups share tons 

of information about their products and industries with their cloud providers through these corporate startup 

programs. Cloud providers can use startup feedback and platform usage data64 to improve their platform, 

products, and strategies, and this information is likely competitively valuable when aggregated across many 

startups. In the most egregious cases, technology firms could use this information to make acquisitions 

directly shaping the technological landscape (Cunningham et al., 2019; Zingales et al., 2021). In a likelier 

scenario, they could use this information and control over their platform’s compatibilities to advance their 

and their largest customers’ strategies and goals. 

 
64  Passively provided data is often referred to as telemetry and is a user’s digital footprint on the platform, or usage 
“exhaust” (Chatterji and Fabrizio, 2014). 



Tables and Figures 

Table 1.A. – Demographics and Founders Summary 
  Unmatched Matched 
  All Startups No CSP CSP All Startups No CSP CSP 

  Mean  SD Min Max Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD 
Demographics                             
Age 4.0 2.4 0.0 9.0 3.0 2.3 4.3 2.3 4.2 2.3 4.2 2.4 4.2 2.3 
Employment 45 63 1 375 35 50 47 66 40 55 39 55 41 55 
Employment (<10 emp., dummy) 0.36 0.48 0 1 0.41 0.49 0.35 0.48 0.36 0.48 0.38 0.49 0.36 0.48 
Healthcare 0.09 0.29 0 1 0.10 0.30 0.09 0.28 0.09 0.29 0.10 0.30 0.09 0.29 
Finance 0.09 0.28 0 1 0.07 0.25 0.09 0.29 0.08 0.28 0.07 0.25 0.09 0.28 
AI 0.38 0.49 0 1 0.37 0.48 0.39 0.49 0.39 0.49 0.40 0.49 0.38 0.49 
Machine Learning 0.09 0.29 0 1 0.08 0.27 0.10 0.30 0.10 0.29 0.09 0.29 0.10 0.29 
US 0.49 0.50 0 1 0.41 0.49 0.51 0.50 0.50 0.50 0.47 0.50 0.51 0.50 
UK 0.06 0.25 0 1 0.06 0.24 0.07 0.25 0.06 0.24 0.04 0.21 0.07 0.25 
France 0.03 0.17 0 1 0.02 0.14 0.03 0.18 0.03 0.16 0.01 0.11 0.03 0.18 
Germany  0.03 0.16 0 1 0.04 0.20 0.02 0.15 0.02 0.15 0.03 0.17 0.02 0.15 
Canada 0.04 0.20 0 1 0.04 0.21 0.04 0.20 0.04 0.20 0.05 0.22 0.04 0.20 
Americas 0.56 0.50 0 1 0.47 0.50 0.58 0.49 0.58 0.49 0.54 0.50 0.58 0.49 
Asia (ex. China) 0.13 0.34 0 1 0.15 0.35 0.13 0.33 0.14 0.34 0.17 0.37 0.13 0.33 
Europe 0.27 0.44 0 1 0.34 0.47 0.25 0.43 0.25 0.43 0.25 0.43 0.25 0.43 
Founders                             
IT Experience 0.12 0.33 0 1 0.10 0.30 0.13 0.34 0.12 0.33 0.11 0.31 0.13 0.33 
Hardware Experience 0.05 0.22 0 1 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.23 0.05 0.21 
Big Tech Experience 0.07 0.25 0 1 0.04 0.20 0.07 0.26 0.06 0.25 0.04 0.21 0.07 0.26 
Technical Major 0.44 0.50 0 1 0.32 0.47 0.47 0.50 0.44 0.50 0.33 0.47 0.46 0.50 
Advanced Degree 0.21 0.41 0 1 0.18 0.39 0.22 0.41 0.21 0.41 0.19 0.39 0.22 0.41 
MBA 0.24 0.43 0 1 0.17 0.37 0.25 0.44 0.23 0.42 0.17 0.37 0.25 0.43 
Female 0.13 0.33 0 1 0.12 0.33 0.13 0.33 0.13 0.34 0.12 0.33 0.13 0.34 
Notes: Unmatched summary statistics are calculated at the firm-year level for all firms in the sample. Matched summary statistics use Coarsened 
exact matching (CEM): age #10, employment size #10, healthcare, financial services, and region #4 based on the treatment, cloud platform versus 
no cloud platform, dropping 21 unmatched firms in the main analyses. All firms included in the sample have a digital app, have an active web 
domain, are listed as active on Crunchbase or Pitchbook, are ten or fewer years old, have fewer than 500 employees, and are not located in China. 
All demographic information is from Crunchbase and Pitchbook. Information on gender is from an analysis of founder names in R. Founders’ 
background measures are calculated at the firm-year level and based on data from AIdentified, Mantheos, Pitchbook, and manual collection of 
public profiles on LinkedIn.   



Table 1.B. – CSP Adoption Panel Summary 
  Startups (3,434) Observations (19,678) 

  
No 

CSP PaaS IaaS IaaS/ 
PaaS 

No/Before  
CSP PaaS IaaS IaaS/ 

PaaS 
All 501 2,933 2,739   1,916/1,949 15,813 13,318   
                  
AWS Only   1,181 1087 92%   7,845 6,714 86% 
GCP Only   204 180 88%   867 696 80% 
Azure Only   48 47 98%   358 300 84% 
Other CSP   121 73 60%   955 398 42% 
AWS/GCP   509 503 99%   1,823 1,710 94% 
AWS/Azure   133 133 100%   751 699 93% 
GCP/Azure   10 10 100%   54 53 98% 
AWS/GCP/Azure   75 75 100%   226 218 96% 
Mixed (Big Tech & Other)   652 631 97%   2,934 2,530 86% 
Notes: Cloud services provider information is from BuiltWith. IaaS is cloud infrastructure services, 
licensed by firms to access computation capability from PCs and servers. PaaS is cloud platform services, 
licensed by firms to host and develop applications.  



Table 1.C. – Technology, Product, and Performance Summary 
  Unmatched Matched 
  All Startups No CSP CSP All Startups No CSP CSP 

  Mean  SD Min Max Mean  SD Mean  SD Mean  SD Mean  SD Mean  SD 
Technology Adoption                             
All 49.9 26.5 1 252 36.0 18.9 53.3 26.9 49.6 25.8 39.1 20.2 52.3 26.4 
Development Tech Count 8.2 4.1 1 27 5.5 3.1 8.8 4.1 8.1 4.0 5.9 3.2 8.7 4.0 
Analytics Tech Count 6.4 5.5 0 39 3.5 3.2 7.1 5.7 6.3 5.3 3.9 3.6 6.9 5.5 
Big Tech Count 12.5 6.3 0 46 8.0 4.2 13.6 6.2 12.4 6.1 8.7 4.5 13.3 6.0 
Premium/Paid Count 3.5 3.7 0 27 1.3 1.9 4.0 3.8 3.4 3.5 1.6 2.2 3.8 3.6 
Open Source Count 1.2 1.2 0 7 0.9 1.1 1.3 1.2 1.2 1.2 0.9 1.1 1.3 1.2 
Development Dissimilarity 0.78 0.07 0 1.00 0.81 0.08 0.77 0.07 0.78 0.07 0.80 0.08 0.77 0.07 
Analytics Dissimilarity 0.66 0.12 0 1.00 0.59 0.17 0.68 0.09 0.67 0.11 0.61 0.16 0.68 0.09 
Product Differentiation               
Firm Description 0.86 0.04 0.56 0.97 0.86 0.04 0.86 0.04 0.86 0.04 0.86 0.04 0.86 0.04 
IP Description  0.93 0.02 0.83 0.99 0.93 0.02 0.93 0.02 0.93 0.02 0.93 0.02 0.93 0.02 
Performance                             
Funding 0.71 0.45 0 1 0.53 0.50 0.76 0.43 0.72 0.45 0.59 0.49 0.75 0.43 
Follow-on Funding 0.52 0.50 0 1 0.31 0.46 0.57 0.49 0.53 0.50 0.39 0.49 0.56 0.50 
VC Backed 0.61 0.49 0 1 0.42 0.49 0.65 0.48 0.61 0.49 0.48 0.50 0.64 0.48 
Higher Rep. VC 0.09 0.28 0 1 0.04 0.20 0.10 0.30 0.08 0.28 0.05 0.23 0.09 0.29 
Deal Size (log) 5.1 7.1 0 22 5.0 6.8 5.1 7.1 4.9 7.0 4.6 6.8 5.0 7.0 
Funds Raised (cumulative, log) 11.9 6.2 0 22 8.9 7.0 12.6 5.8 11.9 6.1 9.8 6.9 12.5 5.8 
Acquired 0.06 0.24 0 1 0.02 0.14 0.07 0.26 0.06 0.24 0.03 0.17 0.07 0.25 
Closed 0.05 0.21 0 1 0.04 0.20 0.05 0.22 0.05 0.22 0.04 0.19 0.05 0.22 
Accelerator 0.19 0.39 0 1 0.13 0.33 0.20 0.40 0.19 0.39 0.14 0.35 0.20 0.40 
Big Tech Funding  0.02 0.15 0 1 0.01 0.11 0.03 0.16 0.02 0.15 0.02 0.12 0.03 0.16 
SimilarWeb Visit Duration 3.1 3.3 0 12 1.9 2.8 3.4 3.3 3.1 3.2 2.3 3.0 3.3 3.3 
Patents 0.04 0.18 0 1 0.03 0.17 0.04 0.19 0.04 0.18 0.04 0.18 0.04 0.18 
Notes: Unmatched summary statistics are calculated at the firm-year level for all firms in the sample. Matched summary statistics use Coarsened 
exact matching (CEM): age #10, employment size #10, healthcare, financial services, and region #4 based on the treatment, cloud platform versus 
no cloud platform, dropping 21 unmatched firms in the main analyses. All firms included in the sample have a digital app, have an active web 
domain, are listed as active on Crunchbase or Pitchbook, are ten or fewer years old, have fewer than 500 employees, and are not located in China. 
Information on technologies is from BuiltWith. Funding information is from Crunchbase or Pitchbook. Patent information is from IPQwerty. Web 
traffic information is from SimilarWeb. 



Table 1.D. – Platform Comparison Summary 

  
Amazon 

AWS 
Google 

GCP 
Microsoft 

Azure Other CSP 

  Mean  SD Mean  SD Mean  SD Mean  SD 
Technology Adoption                 
All 52.77 27.2 47.68 23.4 49.35 23.1 49.43 24.4 
Development Tech Count 8.83 4.1 7.30 3.6 8.62 3.9 8.10 3.7 
Analytics Tech Count 7.14 5.6 5.75 4.8 5.73 4.8 5.74 4.9 
Big Tech Count 13.53 6.1 12.43 5.3 13.71 5.7 11.41 5.7 
Premium/Paid Count 4.02 3.7 2.74 3.1 2.78 2.9 3.01 3.3 
Open Source Tech Count 1.32 1.2 0.88 1.1 1.21 1.2 1.09 1.2 
Development Dissimilarity 0.77 0.07 0.77 0.07 0.80 0.08 0.78 0.07 
Analytics Dissimilarity 0.68 0.08 0.69 0.10 0.67 0.10 0.66 0.09 
Product Differentiation         
Startup Description 0.86 0.04 0.86 0.05 0.87 0.03 0.86 0.03 
IP Description 0.93 0.02 0.93 0.01 0.93 0.01 0.93 0.01 
Performance                 
Funding 0.77 0.42 0.66 0.47 0.75 0.44 0.69 0.46 
Follow-on Funding 0.58 0.49 0.49 0.50 0.54 0.50 0.49 0.50 
VC Backed 0.67 0.47 0.59 0.49 0.56 0.50 0.57 0.50 
Higher Rep. VC 0.10 0.30 0.09 0.28 0.06 0.25 0.05 0.22 
Deal Size (log) 5.10 7.1 4.76 7.0 3.98 6.4 4.29 6.6 
Funds Raised (cumulative, log) 12.8 5.6 11.3 6.5 11.8 5.7 11.3 6.2 
Acquired 0.08 0.27 0.03 0.18 0.01 0.10 0.06 0.23 
Closed 0.05 0.22 0.05 0.22 0.06 0.24 0.06 0.24 
Accelerator 0.20 0.40 0.18 0.38 0.26 0.44 0.17 0.38 
Big Tech Funding  0.02 0.13 0.02 0.16 0.11 0.32 0.02 0.14 
SimilarWeb (unique visits) 3.4 3.3 3.2 3.0 3.0 3.3 2.9 3.2 
Patents 0.03 0.18 0.07 0.25 0.03 0.16 0.03 0.16 
Notes: Summary statistics are calculated for firms in the sample that use a single primary cloud provider: 
AWS, GCP, Azure, or Other cloud providers (e.g., Linode, Digital Ocean, etc.)  
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Table 2 – Probit Selection Analysis 
  (1) (2) (3) (4) mprobit 

Treatment, DV is: 
Platform vs. 

No Plat. 
Big Tech vs. 
Other Plat. 

AWS Only 
vs. Not AWS 

No/Before (0); Big (1); 
Other (2) 

        =1 =2 
[0,1] Healthcare -0.139** 0.078 -0.022 0.065 -0.028 
  (0.065) (0.075) (0.074) (0.046) (0.075) 
[0,1] Prior Big Tech  0.289*** 0.003 -0.120** 0.133 -0.265 

Funding (0.107) (0.069) (0.059) (0.087) (0.163) 
Age (log) 0.644*** 0.438*** 0.333*** -0.022 -0.136 

  (0.013) (0.009) (0.008) (0.055) (0.086) 
[0,1] Europe -0.199*** -0.263*** -0.257*** -0.445*** 0.233*** 

  (0.044) (0.050) (0.050) (0.029) (0.043) 
[0,1] Founder -0.183** 0.077 0.024 -0.091 -0.005 

 OEM/HW Exp.  (0.076) (0.070) (0.063) (0.061) (0.098) 
[0,1] Founder  0.192*** 0.128*** 0.083*** 0.101*** -0.316*** 

MBA (0.041) (0.034) (0.030) (0.032) (0.056) 
[0,1] Founder  0.201*** -0.037 -0.020 0.245*** 0.076* 

Technical Degree (0.035) (0.030) (0.027) (0.027) (0.044) 
Observations 19679 17762 17762 19679 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using firm-year level data and a time 
series probit (average effect) model, comparing startups that use certain cloud platforms. Model (1) is 
the base for the Heckman selection model calculation of the inverse of the Mill’s ratio and includes all 
startups. Models (2) and (3) include only the treatment group (17,762 observations), whereas model (4) 
used a multinomial probit specification, including the base case No/Before (0); Big (1); Other (2).  
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Table 3 - Technology Bundle Size 

DV is log of : Development Technology Count Ratio: 
Count/All  

  (1) (2) (3) (4) (5) (6) (7) 
[0,1] Cloud 0.429*** 0.583*** 0.371*** 0.295*** 0.290*** 0.150*** 0.012*** 
 Platform (0.015) (0.018) (0.015) (0.019) (0.020) (0.025) (0.003) 
[0,1] IaaS           0.102***   
            (0.030)   
Platform x            0.353***   

IaaS           (0.021)   
R2 0.100 0.491 0.168 0.588 0.586 0.594 0.502 
                

  
Development Technology Count Ratio: 

Count/All  
  (8) (9) (10) (11) (12) (13) (14) 

[0,1] Cloud 0.515*** 0.612*** 0.444*** 0.235*** 0.225*** 0.052* 0.003 
 Platform (0.019) (0.023) (0.020) (0.024) (0.024) (0.029) (0.002) 
[0,1] IaaS           0.118***   
            (0.041)   
Platform x            0.301***   

IaaS           (0.027)   
R2 0.0733 0.560 0.125 0.641 0.646 0.652 0.565 
                
Observations 19679 19389 19679 19389 18802 18802 18802 
Firms 3434 3144 3434 3144 3123 3123 3123 
Firm FE No Yes No Yes Yes Yes Yes 
Year FE No No Yes Yes Yes Yes Yes 
CEM No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are clustered at the 
firm level in parentheses below the coefficients. Cloud Platform is an indicator variable for adopting cloud 
platform services from a cloud services provider. Models (6) and (13) examine the interaction between using 
cloud platform services and IaaS (an indicator variable for using cloud infrastructure services) to estimate the 
impact of having a stronger relationship with a cloud provider. Models (5-7) and (12-14) drop unmatched startups 
and weight regressions based on Coarsened exact matching (CEM): age #10, employment size #10, healthcare, 
financial services, and region #4.  
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Table 4 - Technology Bundle Dissimilarity 
DV is: Development Dissimilarity 

  (1) (2) (3) (4) (5) (6) (7) 
[0,1] Cloud -0.041*** -0.089*** -0.025*** -0.028*** -0.028*** -0.018*** -0.017*** 
 Platform (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) 
[0,1] H. Tech Count           -0.022***   
            (0.003)   
Platform x           -0.056***   

H. Tech Count           (0.003)   
[0,1] IaaS             -0.004 

              (0.005) 
Platform x             -0.032*** 

IaaS             (0.002) 
R2 0.0470 0.385 0.355 0.668 0.673 0.701 0.675 
                

DV is: Analytics Dissimilarity  
  (8) (9) (10) (11) (12) (13) (14) 

[0,1] Cloud 0.096*** 0.140*** 0.084*** 0.093*** 0.087*** 0.098*** 0.097*** 
 Platform (0.004) (0.006) (0.004) (0.005) (0.005) (0.005) (0.006) 
[0,1] H. Tech Count           0.089***   
            (0.007)   
Platform x           0.108***   

H. Tech Count           (0.005)   
[0,1] IaaS             0.017 

              (0.011) 
Platform x             0.086*** 

IaaS             (0.005) 
R2 0.110 0.502 0.185 0.575 0.577 0.590 0.577 
                
Observations 19679 19389 19679 19389 18802 18802 18802 
Firms 3434 3144 3434 3144 3123 3123 3123 
Firm FE No Yes No Yes Yes Yes Yes 
Year FE No No Yes Yes Yes Yes Yes 
CEM No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are clustered at the firm level 
in parentheses. CSP is an indicator variable for adding a CSP (PaaS). Weighting is based on CEM: age #10, employment size 
#10, healthcare, financial services, and region #4. In models (6) and (13), H. Tech count is an indicator variable for startup-
level above-median development and analytics bundle size. In models (7) and (14) IaaS is an indicator variable for using CSP 
cloud infrastructure services.  
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Table 5.A. – IV (First Stage) 
  IV  

DV is: Cloud Platform 
[0,1] Tensor  0.24*** 
  (0.018) 
[0,1] AI 0.08*** 
  (0.015) 
Tensor x AI 0.29*** 
  (0.024) 
Observations 18802 
Firms 3123 
K-P Wald F 102 
C-D Wald F 70 
K-P LM 105 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients in the first stage are estimated using OLS with 
standard errors clustered at the firm level. Tensor is an indicator variable for if the open source release 
of TensorFlow benefits the startup (i.e., the startup adopted Google GCP in 2016 or Amazon AWS in 
2017). AI is an indicator variable for if the startup develops a commercial AI product. This model 
includes an interaction for AI and Tensor to capture the firms that benefit the most (i.e., those that use 
TensorFlow in AI development.) 

Table 5.B. – IV (Second Stage) and DML 
  (1) (2) (3) (4) (5) (6) 

DV is: Development Dissimilarity Analytics Dissimilarity 
Model: Base IV DML Base IV DML 

[0,1] Cloud -0.028*** -0.051*** -0.015*** 0.087*** 0.089*** 0.053*** 
 Platform (0.002) (0.016) (.002) (0.005) (0.018) (0.004) 
Observations 18802 18802 18802 18802 18802 18802 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients in the second stage are estimated using OLS with 
firm-level and year-level fixed effects in all models; standard errors are clustered at the firm level. All 
models include Coarsened exact matching (CEM) based on age #10, employment size #10, healthcare, 
financial services, and region #4), dropping 21 unmatched firms. Model (1) is the main result repeated 
from Table 4 model (4), and model (4) is the main result repeated from Table 4 model (8); Models (2) 
and (5) use the first stage estimation in Table 5.B. above as an instrument to adjust coefficients. Models 
(3) and (6) use a double machine learning approach (DML) to estimate coefficients with ~65 
potentially omitted variables. 



Table 6 – Technological Dissimilarity and Product Differentiation 
  (1) (2) (3) (4) (5) (6) 

DV is: Startup Description 
Differentiation 

IP Description 
Differentiation 

[0,1] Cloud Platform 0.016***     0.007*     
  (0.004)     (0.004)     
Dev. Dissimilarity (cont.)   -0.015     -0.072   
    (0.022)     (0.063)   
Platform x   0.005     -0.070   
Dev. Dissimilarity   (0.025)     (0.065)   
Analytics Dissimilarity (cont.)     0.004     0.044 
      (0.008)     (0.033) 
Platform x     0.027***     0.048* 
Ana. Dissimilarity     (0.009)     (0.028) 
Observations 382 382 382 40 40 40 
R2 0.0698 0.0694 0.0692 0.0282 -0.0127 0.0476 
Firms 191 191 191 20 20 20 
Firm FE No No No No No No 
Year FE Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with year-level fixed 
effects in all models; standard errors are clustered at the firm level. In models (1)-(6), the panel is 
balanced, with one observation for each startup before and after adding cloud platform services. 
Models (3) and (6) include an interaction between adopting a cloud platform and a continuous 
measure of analytics dissimilarity. 

 
Table 7 – Technology Adoption Bundle Dissimilarity and Performance Outcomes 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
DV is: Funded Follow-on Funding Deal Size (log) Web Visit Dur. (log) Patent 

Development -0.796***   -0.888***   -3.306***   -3.558***   -0.084***   
Dissimilarity (0.068)   (0.073)   (1.215)   (0.484)   (0.023)   

Analytics   0.166***   0.124***   2.309***   -0.250   0.012 
Dissimilarity   (0.043)   (0.045)   (0.711)   (0.342)   (0.013) 

Observations 17628 17628 17628 17628 17628 17628 9200 9200 17628 17628 
R2 0.691 0.686 0.690 0.685 0.165 0.165 0.428 0.422 0.820 0.820 
Firms 2799 2799 2799 2799 2799 2799 2053 2053 2799 2799 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects in all models; standard 
errors are clustered at the firm level. Includes only the treatment group, startups using cloud platform services. 



 

 

Figure 1 – Technology Bundle Dissimilarity Comparison  
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These charts use a bin scatter (50 points) with year fixed effects and coarsened exact matching (CEM), to depict the 
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that the 𝑏𝑏1 < 𝑏𝑏2 and 𝑐𝑐1 > 𝑐𝑐2. In the scenario where startups use a cloud platform, consider the profit function: 𝛱𝛱 =
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Figure 2 – Cloud Platform Adoption Event 
 

Product Development Technology Bundle Dissimilarity 
 

  
 

Cloud platform adoption year (-1, the year before adoption, is the base) 
 

Analytics Technology Bundle Dissimilarity 
 

  
 

Cloud platform adoption year (-1, the year before adoption, is the base) 
 

Coefficients are estimated using Chaisemartin and D’Haultfoeuille (2020) to account for issues arising in a two-way 
fixed-effect design that does not differentiate between observations that have never been treated or have not yet been 
treated. Each point is the coefficient of the effect based on “switchers” in a given year. These estimates are robust to 
dynamic effects (#5) and do not display parallel trends (#4). Standard errors are clustered at the firm level and 
bootstrapped (#50). Models drop and weight regressions based on CEM: age #10, employment size #10, healthcare, 
financial services, and region #4. The adoption event is year 0; the base period for the regressions is the year prior to 
the adoption, -1.  
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Figure 3 – Technology Dissimilarity and Performance 
 

Product Development Technology Bundle Dissimilarity 

 
 
 

Analytics Technology Bundle Dissimilarity 

 
 

 
To visualize the regression specification, these charts use a bin scatter (100 points) residualized on firm and year 
effects with CEM matching.  
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Appendices 

 

Appendix A 

 

Note A.1. – BuiltWith Technology Data 

BuiltWith provides the name of the technology and the category of that technology. I create a new set of 
categories that include relevant development technologies from these categories. Here is a list of all 
technology categories, many of which are “front end” or administrative, unrelated to product development. 
These omitted technologies include the following BuiltWith categories: Accounting, Ads, Collaboration, 
Communications, Content Management, Content Marketing, CRM, Demand Generation, Design, Digital 
Marketing, E-commerce, Email Hosting, Finance, Hiring, Marketing Automation, Payments, Product 
Management, Productivity, Sales, SEO and Search Marketing, SEO Headers, Servers, Shopping, Web 
Hosting, Web Server, Workforce Management Additionally, I drop technologies related: 

• Languages (e.g., French, Spanish, English, etc.) 

• Error messages (i.e., common name invalid, domain not resolving)  

• Schema 

From the BuiltWith data, after the cleanups, I have the following categories of “backend” technologies: 1) 
Product development technologies: developer frameworks (API, developer tools, DevOps, and programming 
languages), security, content delivery network, and 2) Analytics technologies. I list and describe the 
technologies used in this study in Appendix D.  

 

Note A.2. – Measures Descriptions 

Technology Adoption 

• All Technologies is a measure of any technologies connected to the startup’s domain, including 
front-end and back-end technologies.  

• Product Development Technologies are backend, data infrastructure technologies (e.g., Content 
Management Systems, Content Delivery Networks, Frameworks, Security, and) that are core to 
product development 

• Analytics Technologies are backend data collection and analysis technologies that are core to 
accruing and repurposing data. 

• Big Tech Technologies are technologies providers by Amazon, Google, or Microsoft. 

• Paid/Subscription Technologies are proprietary technologies that startups way a royalty to access, 
based on information provided by BuiltWith. 

• Open source Technologies are freely available technologies that startups can adapt and customize. 
These technologies are described as open source in their description in BuiltWith. 
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Startup and Patent Descriptions 

Patent descriptions are from patent abstracts (WIPO, USPTO) provided by IPQwerty. Of the sample, 156 
firms have 880 patents combined. Similar methods have been used to construct patent text similarity in the 
strategy literature by Arts et al. (2017). I omit words used infrequently (i.e., proper nouns) or very often 
(e.g., the, and, but, or, he, she, it, etc.), removing “outliers” at the 5% and 95% level. I then stem words, 
remove numbers, punctuation, hyphens, and web addresses, and tokenize the counts of the analyzed words. 
This text is then vectorized by word, creating a sparse matrix: 0 if the word is not shared in a pairwise match; 
1 if the word is shared. I calculate the angular distance in the same manner as above using specification (1). 
Mean startups description differentiation is 0.83 (SD 0.04) and patent description differentiation is .93 (SD 
0.02).  
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Tables A.3.-A.5. – Correlation Tables 

 

Table A.3. – Correlation (Demographics) 

    (1) (2) (3) (4) (5) 

(1) Dev. Sim 1         

(2) Data Sim -0.21* 1       

(3) Age -0.40* 0.25* 1     

(4) Employees -0.090* 0.073* 0.067* 1   

(5) Americas -0.0012 0.11* 0.013+ 0.018* 1 

(6) EU -0.016* -0.067* -0.0066 -0.065* -0.68* 

 

Table A.4. – Correlation (Technologies) 

    (1) (2) (3) (4) (5) (6) 

(1) Dev. Sim 1           

(2) Data Sim -0.21* 1         

(3) Dev. Tech Ct. -0.56* 0.25* 1       

(4) Data Tech Ct. -0.47* 0.32* 0.65* 1     

(5) IaaS -0.25* 0.22* 0.32* 0.29* 1   

(6) AI 0.24* -0.12* -0.11* -0.11* -0.071* 1 

(7) Tensor 0.070* -0.018* -0.013+ -0.021* 0.010 0.034* 

 

Table A.5. – Correlation (Funding) 

    (1) (2) (3) (4) (5) 

(1) Dev. Sim 1         

(2) Data Sim -0.21* 1       

(3) Funds Raised (log) -0.21* 0.18* 1     

(4) Funded -0.19* 0.16* 0.79* 1   

(5) VC Backed -0.21* 0.15* 0.68* 0.79* 1 

(6) Invest. Sim -0.12* 0.078* 0.22* 0.078* 0.15* 

Notes: + p<0.10; * p<0.05  
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Note A.6. – CEM Matching Procedure 

I use the cem package from STATA to match and weight startups based on the following criteria: 

• Age; 10 quantiles 

• Employee; 10 quantiles 

• Regions (4; Asia, Americas, EU, MEA) 

• Healthcare (0,1) 

• Finance (0,1) 

 

 

Note A.7. – Instrumental variable research design 

Below is the first-stage regression equation of the instrumental variable:  

𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 =  𝛽𝛽1𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑐𝑐𝑑𝑑𝑖𝑖𝑡𝑡 +  𝛽𝛽2𝐴𝐴𝐴𝐴𝑖𝑖𝑡𝑡 +  𝛽𝛽3(𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑐𝑐𝑑𝑑 𝑖𝑖𝑡𝑡  × 𝐴𝐴𝐴𝐴𝑖𝑖𝑡𝑡) +  𝜀𝜀𝑖𝑖𝑡𝑡    (𝑍𝑍. 1)  

where, 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 refers to the binary dependent variable: adopting cloud versus not, 𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑐𝑐𝑑𝑑𝑖𝑖𝑡𝑡 refers 
to an indicator variable take the value 0 if there is no TensorFlow benefit and 1 if there is a Tensor Flow 
benefit (i.e., startup adopts Google’s platform in 2016 or adopts Amazon AWS platform in 2017), 𝐴𝐴𝐴𝐴𝑖𝑖𝑡𝑡 refers 
to an indicator variable that takes the value 1 if the firm develops commercial AI and 0 otherwise, and 
𝑑𝑑𝑏𝑏𝑏𝑏𝑑𝑑𝑐𝑐𝑑𝑑 𝑖𝑖𝑡𝑡  ×  𝐴𝐴𝐴𝐴𝑖𝑖𝑡𝑡 is the interaction between the two binary variables.  

 

  

-0.1 0.0 0.1 0.2 0.3 0.4
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Employment (<10)
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Note A.8. – Double machine learning with orthogonalization  

I use double machine learning following Chernozhukov et al. (2018) to examine the causal parameter 𝜃𝜃, a 
scalar that adjusts the regression coefficient, by using a random forest machine-learning algorithm.65 
Specification Z.4 is the main predictive model, and specification Z.5 constructs Neyman orthogonal scores 
(Chernozhukov et al., 2018; Neyman, 1959; Wooldridge, 1991). 

𝑑𝑑𝑏𝑏𝑐𝑐ℎ_𝑏𝑏𝑑𝑑𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡 = 𝜃𝜃𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 + 𝑔𝑔0(𝑥𝑥𝑖𝑖𝑡𝑡) + 𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡 +  𝜍𝜍𝑖𝑖𝑡𝑡 (Z.2) 

𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 = 𝑑𝑑0 (𝑥𝑥𝑖𝑖𝑡𝑡) +  𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡 + 𝜐𝜐𝑖𝑖𝑡𝑡   (Z.3) 

where 𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑡𝑡 is an indicator variable for all observed years (2012 through 2021); 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 refers 
to an indicator variable that takes the value 1 if the firm adopts the cloud platform and 0 otherwise; 𝑥𝑥𝑖𝑖𝑡𝑡 is a 
vector of covariates error terms;  𝜍𝜍𝑖𝑖𝑡𝑡 and 𝜐𝜐𝑖𝑖𝑡𝑡 are normally distributed (0,1) error terms.  

 This approach uses orthogonalization to overcome regularization biases (i.e., issues associated with 
overfitting the model). The sample is initially randomly ordered, and then 50% of the sample is used from 
training and the remaining 50% for prediction. In the model, I include every possible covariate from the data 
I have collected on these firms, including more than 60 measures on patents, website traffic, firm 
demographics, and performance. The algorithm determines which of those variables should be added to the 
model. I calculate the differences between the true parameter and test estimates resulting from specifications 
(Z.4) and (Z.5), adjusting the main specification (2) to estimate the coefficient of interest 𝛽𝛽1. 

(𝑑𝑑𝑏𝑏𝑐𝑐ℎ_𝑏𝑏𝑑𝑑𝑝𝑝𝑝𝑝𝑖𝑖𝑡𝑡 −  𝑑𝑑𝑏𝑏𝑐𝑐ℎ_𝑏𝑏𝑑𝑑𝑝𝑝𝑝𝑝𝚤𝚤𝑡𝑡� ) = 𝛽𝛽1(𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝑖𝑖𝑡𝑡 − 𝑐𝑐𝑏𝑏𝑐𝑐𝑏𝑏𝑏𝑏_𝑝𝑝𝑏𝑏𝑑𝑑𝑑𝑑𝑝𝑝𝑐𝑐𝑑𝑑𝑑𝑑𝚤𝚤𝑡𝑡� )  + 𝛽𝛽2𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑡𝑡 +
𝛽𝛽3𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑡𝑡       (Z.4) 

 

Note A.9. – Heckman selection and the inverse Mill’s ratio 

To control for this potential selection issue, I use Heckman’s selection equation to calculate the inverse of 
the Mill’s ratio (IMR) to control regression from a probit regression comparing two outcomes (i.e., the 
decision to add a cloud platform versus not, or the decision to add a certain cloud platform). I use IMR as a 
control in the second stage of the regression to address potential selection issues.  

𝑑𝑑𝑏𝑏𝑐𝑐𝑝𝑝𝑑𝑑𝑑𝑑𝑐𝑐𝑏𝑏𝑖𝑖 = 𝑤𝑤𝑖𝑖𝛾𝛾 + 𝜀𝜀𝑖𝑖  (Z.5) [Selection equation] 
     

𝜆𝜆 = 𝜙𝜙(𝑤𝑤𝑖𝑖𝛾𝛾)
Φ(𝑤𝑤𝑖𝑖𝛾𝛾)

    (Z.6) [inverse Mill’s ratio] 

where, 𝑑𝑑𝑏𝑏𝑐𝑐𝑝𝑝𝑑𝑑𝑑𝑑𝑐𝑐𝑏𝑏𝑖𝑖 refers to an indicator variable that takes the value 1 based on the treatment outcome (CSP, 
Other CSP, Amazon) at the observation level. For example, when comparing the impact of using a CSP, the 
variable takes the value 1 if a firm uses a CSP, otherwise 0. 𝑤𝑤𝑖𝑖 is a vector of demographic (e.g., industry, 
age), funding (e.g., prior Big Tech funding), and founder (e.g., hardware or IT work experience, technical 
education) indicator variables plausibly correlated with adoption.  

 

  

 
65 I use the rforest package in STATA with 100 iterations, minimum leaf sized adjusted to 10. 
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Note A.10. – Average install base of technology bundles dissimilarity measure  

The average install base of the technology bundle is a measure firm-level average of the technology-level 
average number of startups in my sample using each technology.  

     𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑡𝑡 =
∑ 𝑝𝑝𝑖𝑖𝑑𝑑𝑎𝑎𝑝𝑝_𝑐𝑐𝑝𝑝𝑐𝑐𝑎𝑎𝑡𝑡𝑗𝑗𝑗𝑗𝑥𝑥
𝑗𝑗=1

𝑥𝑥
    (Z.7) 

Where, i takes on the value of the firm id, t takes on the value of the year, j takes on the value of the 
technology, x is the total count of technologies for each firm in year t, and 𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑𝑏𝑏_𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑑𝑑𝑖𝑖𝑡𝑡 is the total number 
of users by technology-year in the sample.  
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Appendix B – Additional analyses and robustness 

 

Table B.1. – Other Technology Counts 
  (1) (2) (3) (4) (5) (6) 

DV is log of : All Big  Ratio: 
Big/All Open  Premium Ratio: 

Open/Prem 
[0,1] CSP PaaS 0.249*** 0.308*** 0.119*** 0.329*** 0.021*** -0.003** 
  (0.021) (0.019) (0.020) (0.024) (0.004) (0.001) 
Observations 18802 18802 18802 18802 18802 18802 
R2 0.634 0.647 0.571 0.729 0.549 0.500 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes No Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS; standard errors are 
clustered at the firm level. All models drop and weight regressions based on CEM: age #10, 
employment size #10, healthcare, financial services, and region #4. 

 

Table B.2. – Platform Market Share 
  (1) (2) (3) (4) (5) (6) 

DV is:     
Market Share -0.077***     0.087***     
  (0.011)     (0.025)     
Big Tech   -0.016***     0.031***   
    (0.004)     (0.006)   
Not Big Tech   base     base   
          
AWS     -0.025***     0.009* 
      (0.003)     (0.005) 
Not AWS     base     base 
          
Observations 11588 9588 7530 11588 9588 7530 
R2 0.690 0.344 0.334 0.560 0.0799 0.0575 
Firms 2225 2466 1609 2225 2466 1609 
Firm FE Yes No No Yes No No 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Matched No Yes Yes No Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level 
and year-level fixed effects in all models; standard errors are clustered at the firm level. Models 
that use the treatment sample do not include CEM matching. 
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Table B.3. – Combined Robustness  
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: Development Dissimilarity Analytics Dissimilarity 
  Balanced bf. 2018 Inv. Diff. IMR Balanced bf. 2018 Inv. Diff. IMR 

[0,1] Cloud  -0.027*** -0.026*** -0.033*** -0.025*** 0.092*** 0.082*** 0.079*** 0.086*** 
Platform (0.002) (0.003) (0.004) (0.002) (0.005) (0.006) (0.008) (0.005) 

Investor     -0.017       0.022   
Differentiation     (0.012)       (0.021)   

Inv. Mills Rat.       0.089***       -0.008 
        (0.007)       (0.012) 

Observations 17045 8445 9319 18802 17045 8445 9319 18802 
R2 0.680 0.683 0.698 0.680 0.548 0.639 0.554 0.577 
Firms 2779 2198 1799 3123 2779 2198 1799 3123 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects 
in all models; standard errors are clustered at the firm level. All models are weighted using CEM. 

 

Table B.4. –  Platform Subsamples 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: Development Dissimilarity Analytics Dissimilarity 
[0,1] AM -0.029***       0.074***       
  (0.003)       (0.007)       
[0,1] GCP   -0.026***       0.086***     
    (0.006)       (0.012)     
[0,1] MS     -0.008       0.082***   
      (0.010)       (0.014)   
[0,1] Other       -0.021***       0.090*** 
        (0.005)       (0.012) 
Observations 18802 18802 18802 18802 18802 18802 18802 18802 
R2 0.671 0.668 0.667 0.667 0.562 0.553 0.551 0.554 
Firms 3123 3123 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects 
in all models; standard errors are clustered at the firm level. All models are weighted using CEM. Only includes startups 
that use a single cloud platform provider. 
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Table B.5. – Alternative DV: Average Installed Base  
  (1) (2) (3) (5) (6) (7) 

DV is: Development Tech Stack (Avg. 
IB) Analytics Tech Stack (Avg. IB) 

[0,1] Cloud 0.089*** 0.090*** 0.071*** -0.143*** -0.100*** -0.161*** 
Platform (0.020) (0.022) (0.024) (0.024) (0.025) (0.031) 

[0,1] H. Tech Count   0.006     -0.282***   
    (0.016)     (0.031)   
Platform x   0.092***     -0.351***   

H. Tech Count   (0.021)     (0.027)   
[0,1] IaaS     0.011     0.005 

      (0.033)     (0.044) 
Platform x     0.097***     -0.136*** 

IaaS     (0.021)     (0.026) 
Observations 18802 18802 18802 18802 18802 18802 
R2 0.818 0.818 0.818 0.702 0.715 0.702 
Firms 3123 3123 3123 3123 3123 3123 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
CEM Weighted Yes Yes Yes Yes Yes Yes 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-
level fixed effects in all models; standard errors are clustered at the firm level. All models are weighted 
using CEM. 

 

Table B.6. – Industry Subsamples 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: Development Dissimilarity Analytics Dissimilarity 
  AI ML Financial Healthcare AI ML Financial Healthcare 

[0,1] Cloud -0.030*** -0.026*** -0.020*** -0.031*** 0.084*** 0.075*** 0.058*** 0.089*** 
Platform (0.004) (0.008) (0.007) (0.009) (0.008) (0.015) (0.019) (0.014) 

Observations 6872 1651 1574 1719 6872 1651 1574 1719 
R2 0.666 0.723 0.688 0.651 0.567 0.561 0.505 0.538 
Firms 1239 319 268 313 1239 319 268 313 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects in 
all models; standard errors are clustered at the firm level. All models are weighted using CEM. 
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Table B.7. – City Level Subsamples 
  (1) (2) (3) (4) (5) (6) 

DV is: Development Dissimilarity Analytics Dissimilarity 

  San 
Francisco London  New York San 

Francisco London  New York 

[0,1] Cloud -0.028*** -0.034*** -0.050*** 0.101*** 0.130*** 0.075*** 
Platform (0.006) (0.010) (0.008) (0.013) (0.024) (0.023) 

Observations 2765 866 1530 2765 866 1530 
R2 0.668 0.655 0.689 0.547 0.560 0.536 
Firms 452 142 244 452 142 244 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and 
year-level fixed effects in all models; standard errors are clustered at the firm level. All models are 
weighted using CEM. 

 

Table B.8. – Staggered DiD with Two-way Fixed Effects Robustness 
  Development Dissimilarity Analytics Dissimilarity 

  Pre/Post ATE LATE ITE Pre/Post ATE LATE ITE 
  (1) (2) (3) (4) (5) (6) (7) (8) 
[0,1] Post -0.086***       0.129***       
  (0.002)       (0.005)       
[0,1] CSP PaaS   -0.011*** -0.014*** -0.021***   0.036*** 0.139*** 0.051*** 
    (0.002) (0.007) (0.02)   (0.004) (0.014) (0.005) 
Observations 1746 3284 19082 5539 1746 3284 19082 5539 
R2 0.579 0.0058     0.380 0.0191     
Firms 873     873 873     873 
Year FE Yes Yes No No Yes Yes No No 
CEM Weights Yes Yes Yes Yes Yes Yes Yes Yes 
SE Clustered 

(ID) 
Clustered 
(ID) 

Bootstrap Clustered 
(ID) 

Clustered 
(ID) 

Clustered 
(ID) 

Bootstrap Clustered 
(ID) 

Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS. All models drop and weight regressions based 
on CEM: age #10, employment size #10, healthcare, financial services, and region #4, and all models cluster standard error at 
the firm level.  
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Table B.9. – Disaggregated Data: SUTVA and Focal/Rival Effects 

  

Stable 
Rivals 

Base Focal FE Rival FE Focal & 
Rival FE 

Focal & 
Year FE 

Rival & 
Year FE 

Focal, 
Rival & 
Year FE 

DV is: Development Dissimilarity 

  (1) (2) (3) (4) (5) (6) (7) (8) 
[0,1] CSP PaaS -0.027*** -0.076*** -0.088*** -0.098*** -0.105*** -0.028*** -0.031*** -0.029*** 
  (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.002) (0.003) 
 R2 0.716 0.0278 0.504 0.0571 0.526 0.710 0.262 0.710 
                  
  Analytics Dissimilarity 

  (9) (10) (11) (12) (13) (14) (15) (16) 
[0,1] CSP PaaS 0.083*** 0.114*** 0.115*** 0.132*** 0.130*** 0.088*** 0.106*** 0.096*** 
  (0.005) (0.006) (0.005) (0.006) (0.005) (0.005) (0.006) (0.005) 
 R2 0.622 0.0469 0.577 0.0519 0.582 0.613 0.0811 0.614 
                  
Observations 8013783 34461926 34461926 34461926 34461926 34461926 34461926 34461926 
Firms 3123 3123 3123 3123 3123 3123 3123 3123 
Focal Firm FE Yes No Yes No Yes Yes No Yes 
Rival Firm FE No No No Yes Yes No Yes Yes 
Year FE Yes No No No No Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level fixed effects in 
all models; standard errors are clustered at the firm level.   
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Table B.10. – Additional Performance Measures 
  (1) (2) (3) (4) (5) (6) (7) (8) 

DV is: VC Backed VC Rep. Closed Acquired 
Development -0.721***   -0.195***   0.016   0.011   

Dissimilarity (0.066)   (0.035)   (0.015)   (0.025)   
Analytics   0.115***   0.013   0.000   0.031*** 

Dissimilarity   (0.041)   (0.021)   (0.008)   (0.011) 
Observations 17628 17628 17628 17628 17628 17628 17628 17628 
R2 0.751 0.747 0.817 0.816 0.948 0.948 0.960 0.960 
Firms 2799 2799 2799 2799 2799 2799 2799 2799 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level 
fixed effects in all models; standard errors are clustered at the firm level.  

 

Table B.11. – Funding Outcomes (Interaction) 
  (1) (2) (3) (4) (5) (6) 

DV is: 
Funded Follow-on 

Funding 
Deal size 

(log) 
Funded Follow-on 

Funding 
Deal size 

(log) 

Development Bundle             
L. Size x  0.053*** 0.042*** -0.225       

Less Diss. (0.009) (0.010) (0.202)       

L Size x  base 
      

More Diss.       
H. Size x  0.108*** 0.121*** 0.837***       

Less Diss. (0.009) (0.010) (0.193)       
H. Tech x  0.094*** 0.084*** 0.825***       

More Diss. (0.010) (0.011) (0.199)       
Analytics Bundle             

L. Size x        
base 

Less Diss.       

L. Size x        0.012 -0.000 0.330* 
More Diss.       (0.010) (0.011) (0.183) 

H. Size x        0.099*** 0.101*** 0.653*** 
Less Diss       (0.011) (0.012) (0.231) 

H Size x        0.093*** 0.115*** 0.694*** 
More Diss.       (0.010) (0.010) (0.190) 

Observations 17628 17628 17628 17628 17628 17628 
R2 0.691 0.689 0.166 0.690 0.690 0.165 
Firms 2799 2799 2799 2799 2799 2799 
Firm FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Notes: * p<0.1, ** p<0.05, *** p<0.01. Coefficients are estimated using OLS with firm-level and year-level 
fixed effects in all models; standard errors are clustered at the firm level. 
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Appendix C – Additional Figures 

 

Figure C.1. – Percentage of startups (>3 years old) outsourcing IT to cloud platforms 
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Figure C.2. – Kernel Density (Cloud Platform vs. No Cloud Platform) 

 

Technology Bundle Size 

                         Development Technologies                                                           Analytics Technologies 

        
 

 

Technology Bundle Dissimilarity 

                       Development Technologies                                                           Analytics Technologies 

        
 

 

Cloud Platform       No Cloud Platform  

0
.1

.2

0 5 10 15 20 25
C  f T h

   

  

 

  

   

  

 

   

 
 

 

   

 

  

   

  

0
.1

.2
 

0 10 20 30
  

   

  

 

   

 

 

 

   

 
  

   

  

 
  

   

  

0
5

10

.6 .7 .8 .9 1
 

   

 

 

 

   

 

  

   

  

 

  

   

  

 

   

 

0
5

10
 

.2 .4 .6 .8 1
 

   

 

  

   

  

 

  

   

  

 

   

 

 

 

   

 

  

   

  

 

  

   

  

 

   

 
 

 

   

 

D
en

si
ty

 

D
en

si
ty

 

D
en

si
ty

 

D
en

si
ty

 

Technology Count Technology Count 

Technology Dissimilarity Technology Dissimilarity 



 

66 
 

Figure C.3. – Difference in Technologies by Cloud Platform versus No Cloud Platform 
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Figure C.4. – Technology Dissimilarity (AWS vs. Not AWS) 

 

Development Technology Bundle Dissimilarity 

 
Years since adopting cloud platform services 

 

Analytics Technology Bundle Dissimilarity 

 
Years since adopting cloud platform services 

Notes: These graphs plot the precited difference in technology dissimilarity for startups using AWS versus not using 
AWS. Includes only the treatment groups (i.e., startups using cloud platform services) based on specification (3).    
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Figure C.5. – Heterogeneity in Technology Dissimilarity by Firm Size 

 

Development Technologies 

 
 

Analytics Technologies 

 
Notes: These graphs plot the prediction of the heterogeneous treatment effects of adopting cloud platform services 
due to size. The specification includes year-level fixed effects and weighing. Standard errors are clustered at the firm 
level. 
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Figure C.6. – Heterogeneity in Technology Dissimilarity by High Concentration VC Locations 

 

Development Technologies 

 
 

Analytics Technologies 

 
Notes: These graphs plot the prediction of the heterogeneous treatment effects of adopting cloud platform services 
due to VC location (San Francisco, New York City, Boston, London, Hong Kong.) The specification includes year-
level fixed effects and weighing. Standard errors are clustered at the firm level. 
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Appendix D – Technology Descriptions 

 
Development Technologies  

Development Technology Description 
adobecoldfusion coldfusion is an application server and software development framework used for the 

development of computer software in general, and dynamic web sites in particular. 
adobedreamweaver based on the use of certain javascript functions, this page contains code generated, at least 

initially, by dreamweaver. 
ajaxlibrariesapi the ajax libraries api is a content distribution network and loading architecture for the most 

popular, open source javascript libraries. 
akamai akamai provides a distributed computing platform for global internet content and application 

delivery. 
akamaiedge akamai's edge platform is one of the world's largest distributed computing platforms. it is a 

network of more than 95,000 secure servers equipped with proprietary software and deployed in 
71 countries. 

alphassl certificate provided by alphassl, a globalsign company. 
alternateprotocol the server advertises alternate protocol options, most probably providing spdy support. 
amazonapigateway create, publish, maintain, monitor, and secure apis at any scale. 
amazoncloudfront amazon cloudfront is a web service for content delivery. it integrates with other amazon web 

services to give developers and businesses an easy way to distribute content to end users with low 
latency, high data transfer speeds, and no commitments. 

amazons3cdn amazon simple storage provides unlimited storage to developers and online businesses - saving 
costs and increase storage reliability. 

amazonssl amazon supplied ssl certificate 
angular angular version 4.2.* 
antdesign react ui kit / design framework. 
apache apache tomcat is an open source software implementation of the java servlet and javaserver pages 

technologies. 
apollographql app development framework. 
asp asp.net is a web application framework marketed by microsoft that programmers can use to build 

dynamic web sites, web applications and xml web services. it is part of microsoft's .net platform 
and is the successor to microsoft's active server pages (asp) technology. 

authpassthrough frontpage security module for apache. 
azureedge content delivered via azure edge network 
bootstrapcdn bootstrap cdn system - encompasses maxcdn, netdna and stackpath - donated to jsdelivr. 
bugbounty the website has some form of responsible disclosure mechanism for the reporting of security 

vulnerabilities. 
bulma bulma is an open source css framework based on flexbox and built with sass. 
bunnycdngeneral using content hosted at bunny cdn. 
cdnjs cloudflare's cdn with popular javascript frameworks available. 
centos centos is an enterprise-class linux distribution derived from sources freely provided to the public 

by a prominent north american enterprise linux vendor.  centos conforms fully with the upstream 
vendors redistribution policy and aims to be 100% binary compatible. 

classicasp active server pages (asp) is a server-side scripting environment that you can use to create and run 
dynamic, interactive web server applications. 

cloudflare automatically optimizes the delivery of your web pages so your visitors get the fastest page load 
times and best performance. 

cloudflarecdn content owned by this site hosted on the cloudflare cdn. 
cloudflaressl ssl solutions from cloudflare 
cloudinary image management & delivery solution. 
codeigniter codeigniter is a powerful php framework with a very small footprint. 
coldfusionmarkuplanguage(cfml) cfml is the scripting language used by adobe coldfusion, bluedragon, railo, smithproject, coral 

web builder, ignitefusion. 
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comodo comodo positive ssl certificate. 
cpanelssl cpanel certificate. 
dav a set of extensions to the http protocol which allows users to collaboratively edit and manage files 

on remote web servers. 
ddosguard ddos protection for your business. 
debian debian is a free operating system (os) for your computer. 
digicert certificate provided by digicert. 
digitaloceanspaces s3-compatible object storage with a built-in cdn. 
djangocsrf django is a high-level python web framework that encourages rapid development and clean, 

pragmatic design. this metric displays sites that are using django + csrf. 
djangolanguage this website is running the django framework and is setting a language cookie. 
encryptioneverywhere high value, low friction end-to-end security for web hosting partners from symantec. 
entrustssl certificate provided by entrust. 
envoy open source edge and service proxy. 
essentialssl certificate provided by essentialssl, a comodo company. 
express a web application framework for node node.js - expressjs. 
facebookcdn this page has content that links to the facebook content delivery network. 
facebookdomainverification domain verification provides a way for you to claim ownership of your domain in facebook 

business manager. 
fastlycdn links to fastly cdn based content. 
firebase a scalable real time backend system for websites. 
flatsome woocommerce responsive theme. 
gandistandardssl gandi hosting standard ssl certificate. 
gatsbyjs modern website and web apps generator for react. 
geotrust certificate provided by geotrust. 
githubhosting this site is hosted on github infrastructure. 
globalsign certificate provided by globalsign. 
godaddycdn this site has content that links to godaddy cdn. 
godaddyssl certificate provided by godaddy. 
googlecloudfunctions event-driven serverless compute platform. 
googlecloudstorage store objects of any size and manage access to their data on an individual or group basis within 

the google network. 
googlepagespeedmodule the pagespeed modules are open source server modules that optimize your site automatically. 

googlessl uses ssl from google 
gstaticgooglestaticcontent google has off-loaded static content (javascript/images/css) to a different domain name in an 

effort to reduce bandwidth usage and increase network performance for the end user. 
gumby gumby 2 is a responsive css framework. 
herokussl ssl certificate provided by heroku. the site is normally hosted on heroku for this to happen. 

herokuvegurproxy content from this page is being sent via the heroku vegur proxy. 
highwindscdn cdn built to meet the delivery needs of even the largest media and entertainment companies. 

incapsulacdn global cdn and optimizer. 
ionic ionic framework is a open source mobile sdk for developing native and progressive web apps. 

javaee java platform, enterprise edition (java ee) is the industry standard for developing portable, robust, 
scalable and secure server-side java applications. 

jquerycdn the jquery amazon s3 content delivery network 
jsdelivr a free cdn where javascript developers can host their files. encompasses maxcdn, and 

bootstrapcdn. 
laravel a php mvc framework. 
letsencrypt let’s encrypt is a free open certificate authority. 
limitermodules log byte and bandwidth limiter modules. 
lottiefiles open source animation file format providing lightweight, scalable animations . 
materializecss material design css framework 
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materialui react components that implement google's material design. 
maxcdn maxcdn's dynamic site acceleration optimizes content delivery and web applications by using 

edge locations. previously known as netdna. 
mediatemplessl the site is using ssl certificate from media temple hosting. 
meteor meteor is an environment for building modern websites. 
microsoftazureblobstorage windows azure blob storage is a service for storing large amounts of unstructured data that can be 

accessed from anywhere in the world via http or https. 
microsoftcdn content delivery network services from microsoft azure. 
microsoftssl the ssl certificate is connected with microsoft. 
modpagespeed mod_pagespeed is an open source apache module that automatically optimizes web pages and 

resources on them. 
modssl this module provides strong cryptography for the apache 1.3 webserver via the secure sockets 

layer (ssl v2/v3) and transport layer security (tls v1) protocols 
next react.js framework for static site generator apps. owned by vercel. 
nuxt vue.js application framework. 
oneclickssl fully automated ssl secure site activation from gmo internet group. 
openresty application server and framework system. 
openssl the openssl project is a collaborative effort to develop a robust, commercial-grade, full-featured, 

and open source toolkit implementing the secure sockets layer (ssl v2/v3) and transport layer 
security (tls v1) protocols as well as a full-strength general purpose cryptography library. 

optimole real-time image processing and image cdn for wordpress. 
osscdn open source software cdn from maxcdn. 
ovhanycast content hosted on an anycast load balanced ip address from ovh. 
ovhssl ssl certificates from french based network provider ovh 
parallelspleskpanel host and manage websites and servers at any scale, includes virtualization software. 
parallelsssl ssl reseller program from parallels 
perl perl is a general-purpose programming language originally developed for text manipulation and 

now used for a wide range of tasks including system administration, web development, network 
programming, gui development, and more. 

php php is a widely used general-purpose scripting language that is especially suited for web 
development and can be embedded into html. 

placeholdit a quick and simple placeholder service. 
pubnub api that allows you to build realtime apps in minutes. 
pure a set of small, responsive css modules. 
pusher pusher is a realtime service that complements your existing server architecture. 
python python version 2.4.* 
quic quick udp internet connections, pronounced quick is a transport layer network protocol developed 

by google. 
rackspacecdn rackspace cdn system. 
rapidssl rapidssl certificate provider. 
rawgit serves raw files from github with the right content type headers. 
reactonrails react on rails integrates rails with (server rendering of) facebook's react front-end framework. 
redhatenterpriselinux red hat enterprise linux (often abbreviated to rhel) is a linux distribution produced by red hat and 

targeted toward the commercial market, including mainframes. 
rubyonrails ruby on rails is an open source web framework that is optimized for programmer happiness and 

sustainable productivity. note that ruby on rails has two detection techniques and this is one of 
them. 

sectigo ssl from sectigo formerly comodo. 
semanticui semantic empowers designers and developers by creating a language for sharing ui. 
sonatype devops automation nexus system. 
ssl certificate provided by ssl.com 
stackoverflowcdn stackoverflow and family cdn. 
stackpath accelerates websites, apps, apis, streams and downloads. 
stackpathbootstrapcdn stackpath's bootstrap cdn system - encompasses maxcdn and netdna. 
starfieldtechnologies certificate provided by starfield technologies 
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startssl certificate provided by startssl. 
startupframework design framework for web developers. 
stimulus javascript framework for augmenting html from basecamp. 
sucuricloudproxy sucuri firewall (cloudproxy) is a cloud-based waf and intrusion prevention system for web sites 

svelte ui interface builder system. 
symantec verisign/symantec ssl certificates. 
thawtessl certificated provided by thawte. 
total a server side framework for node.js providing the ability to build web sites using js, html and css. 
twittercdn this page contains content sourced from the twitter cdn, either by the use of widgets or linking to 

image content on twimg.com currently hosted by akamai and amazon. 
ubuntu ubuntu is a free, debian derived linux-based operating system, available with both community and 

professional support. 
unix a *nix based operating system (undisclosed). 
unpkg unpkg is a fast, global content delivery network for everything on npm. 
vimeocdn this page uses content from the vimeo cdn. 
yahooimagecdn the website contains links to yahoo image cdn. 
zencodercdn this page has content hosted on the zencoder cdn, owned by brightcove. 

 

Analytics Technologies 

Analytics Technology  Description 
33across a technology that connects users content and products into the social graph. 
6sense lead generation funnel analytics tool. 
accessibe website accessibility monitoring and auditing platform. 
activecampaign marketing automation, email marketing and behavioral analysis. 
acton marketing automation software. 
acxiom technology and marketing services that enable marketers to manage audiences. 
adjust mobile app tracking system. 
adobeanalytics marketing analytics platform from adobe. 
adobedynamictagmanagement satellite puts an end to tag and technology management, letting marketers and analysts manage 

their tools. previously known as search discovery satellite now adobe dtm. 
adobeexperienceplatformidentitys
ervice 

connects devices to people. 

adobelaunch adobe experience platform tag management system. 
adobemarketingcloud a complete set of marketing solutions from adobe. 
affiliatly affiliate tracking software for ecommerce stores. 
agilecrm agile is a fully-integrated sales & marketing suite for small businesses. 
ahoy first party analytics for rails. 
airbrake airbrake collects errors generated by other applications, and aggregates the results for review. 
airpr prtech company provides analytics and insights for what's driving engagement. 
akamaimpulse multi-channel real time analytics package - rum system by akamai previously soasta. 
albacross b2b digital marketing tool that allows you to try to identify the companies that are visiting your 

website. 
alexacertifiedsitemetrics alexa's certified program and pro metrics. 
alexametrics the page has embedded alexa metrics. 
amazonadvertisingsizmekadsuite campaign management analytics from amazon formerly mediamind. 
ambassador referral marketing software. 
amplitude mobile analytics platform. 
appsflyer mobile attribution & marketing analytics platform 
atlasactiontags work alongside the tracking of campaigns and track the conversion performance of your online 

media activity. 
attentive personalized mobile messaging platform. 
augur device and consumer recognition javascript service. 
baiduanalytics analytics tracking pixel from chinese language search engine baidu. 
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bingconversiontracking help optimize search ads campaigns. 
binguniversaleventtracking universal event tracking (uet) is a simple and powerful campaign measurement solution that 

allows you to track key conversion goals important to your business. 
bizible multi-channel roi marketing analytics tool. 
bizoinsights bizo insight tags are installed on a partner website to enable bizo to generate and/or record 

anonymous analytics about the partner’s site visitors. acquired by linkedin. 
boldcommerce shopify app development and partner to help increase sales. previously shappify. 
bombora advertising analytics and tracking service. 
branch mobile deep linking system to increase engagement and retention. 
braze braze is a lifecycle marketing platform formerly known as appboy. 
calltrackingmetrics call tracking & analytics for advertising. 
capterra software tracking system and badge. 
castle deep visibility into what users are doing on your website. 
chartbeat live traffic monitoring of your website. 
claritas custom audience segments & consumer insights for over 120 million households 
clearbit sales and marketing workflow analytics. 
clearbitreveal identifies anonymous visitors to websites. 
clevertap behavioural analytics and engagement platform. 
clicktale records visitors to the website and every action as they browse the site. creates movies to allow 

the website to understand how it gets used. 
clicky clicky web analytics system, previously known as getclicky 
cloudflareinsights visitor analytics and threat monitoring. 
cloudflarerocketloader automatically optimizes your pages to minimize the number of network connections and ensure 

even third party resources won't slow down page rendering. 
cloudflarewebanalytics privacy-first web analytics from cloudflare. 
comscore market research company that studies internet trends and behavior. 
convert increase conversion and engagement of website visitors by personalizing content based on 

behavior. previously known as reedge. 
convertflow lead generation and on-site retargeting 
crazyegg crazy egg provides visualization of visits to your website. 
crimsonhexagon ai-powered consumer insights tracking platform. 
crosspixelmedia cross pixel is the leading provider of high performance audience data. 
customer email people automatically based on what they do (or don't do) in your app. 
datadog cloud monitoring as a service system. 
datalogix leverages the power of purchase-based audience targeting to drive measurable online and 

offline sales 
demandbase abm software for mid-market and enterprise b2b companies. 
digitalwindow digital window provides performance marketing solutions. providing customers with the tools 

and account management to get the most from their affiliate programmes 
dotomi dotomi applies personalized media practices to anonymous, user-level marketing programs. 
doubleclickfloodlight floodlight is feature of doubleclick ads that allows advertisers to capture and report on the 

actions of users who visit their website after viewing or clicking on one of the advertiser's ads. 

dynatrace dynatrace provides software intelligence for enterprise cloud ecosystems. dynatrace is an ai-
powered, full stack and automated monitoring and analytics solution that provides insights into 
users, transactions, applications, and hybrid multi-cloud environments. 

efficientfrontier unified performance marketing platform that optimizes across both search and display. now 
owned by adobe and includes everest tech. 

eloqua marketing automation provider. 
engagio account based marketing service. 
everesttechnologies performance testing and channel strategy provider for ecommerce. 
facebookconversiontracking conversion tracking functionality from facebook, allows a user to track advertisement clicks. 
facebookdomaininsights this website contains tracking information that allows admins to see facebook insights out of 

facebook to this domain. 
facebookpixel facebook pixel is facebooks conversion tracking system for ads on facebook to websites. 
facebookpixelforshopify facebook pixel specifically for shopify. 
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facebookpixelviewcontent calls to facebook pixel 'viewcontent' 
facebooksignal journalists use signal to surface relevant trends, photos, videos and posts from facebook and 

instagram for use in their storytelling and reporting. 
facebooktagapi the javascript tag api can be used to track custom audience and conversion events. 
fastlycdn real-time analytics and cdn platform. analyze your web and server traffic patterns in real-time. 
firstpromoter affiliate and referral tracking system. 
freshmarketer conversion optimization suite from freshworks. 
freshworkscrm ai-based lead scoring, phone, email, activity capture, and more. 
fullstory fullstory lets product and support teams understand everything about the customer experience. 
g2crowdconversion conversion tracking for g2 crowd pages. 
gemiuspl online research company based in poland 
globalsitetag google's primary tag for google measurement/conversion tracking, adwords and doubleclick. 
googleadwordsconversion adwords conversion tracking code. 
googleanalytics google analytics offers a host of compelling features and benefits for everyone from senior 

executives and advertising and marketing professionals to site owners and content developers. 

googlecallconversiontracking use phone call conversion tracking to help you see how effectively your ads lead to phone calls 
from your website. 

googlecontentexperiments content experiments helps you optimize for goals you have already defined in your google 
analytics account, and can help you decide which page designs, layouts and content are most 
effective. 

googleconversion this free tool in adwords can show you what happens after customers click your ad (for 
example, whether they purchased your product, called from a mobile phone or downloaded 
your app). 

googledoubleclickconversion doubleclick conversion tracking from google global site tag. 
googleoptimize360 test different variations of a website and then tailor it to deliver a personalized experience that 

works best for each customer and for your business. 
googleuniversalanalytics the analytics.js javascript snippet is a new way to measure how users interact with your website. 

it is similar to the previous google tracking code, ga.js, but offers more flexibility for 
developers to customize their implementations. 

gosquared see who's reading, commenting, joining, or buying on your website right now. 
growsumo reward customers and people for sending referrals. 
heap heap automatically captures every user action in your web app and lets you measure it all. 
heatmapit heatmap based tools from heatmap.it. 
hittaillongtailkeywordmarketing hittail claims they are the only product that reveals in real time which keywords people use to 

find the website. 
hotjar a heatmap, survey, feedback and funnel application. 
hubspot hubspot provides marketing information and leads via inbounding marketing software. 
hubspotads turn hubspot lists into ads targeting audiences and track the roi of your facebook and google ads 

automatically. 
hubspotanalytics measure the performance of all your marketing campaigns 
hubspotcalltoactions create personalized calls-to-action that are designed to convert and measure them. 
hubspotforms marketing automation form feedback into hubspot tool. 
hubspotleadflows lead flows allow you to easily create and customize engaging lead capture forms. 
igodigital analyzes individual shopper behavior and provides  personalized product recommendations. 

now owned by exacttarget. 
improvely conversion tracking, click fraud monitoring and a/b testing for online marketers and agencies. 
innocraftcloud all in one analytics package from matomo. 
insightera provides b2b customer acquisition with real-time inbound marketing. now marketo real-time 

personalization. 
inspectlet record and watch everything your visitors do. 
invitemedia automatically buy from multiple ad exchanges in real-time, all through the same interface. 
ipstack ip to geolocation apis and global ip database services. 
jabmo automated lead generation software based on website visitors. now known as jabmo. 
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keenio analytics backend-as-a-service lets developers build analytics features directly into apps. 
kenshoo automates the whole process of creating and managing search-engine marketing campaigns. 
kickfire ip address-to-company api and real time visitor intent discovery. 
kissmetrics helps measure results and improve them with analytics from kissmetrics. 
klaviyo customer lifecycle management platform for web apps and ecommerce. 
knowbe4 security awareness system. 
kochava unified audience attribution and analytics platform. 
leadfeeder leadfeeder shows you which companies are visiting your site. 
leadforensics visibility of which companies have visited your site, when they visited, what they searched on 

and the pages they viewed. 
leadin get insights into everyone who fills out a form on your site. from hubspot. 
leadinfo identify b2b website visitors. 
leadlander real time customer intelligence, a website marketing solution. 
leadworx lead discovery tool. 
linkedininsights the linkedin insight tag is a piece of lightweight javascript code that you can add to your 

website to enable in-depth campaign reporting and unlock valuable insights about your website 
visitors and for conversion optimization of ads. 

loader load testing tool for websites. 
loggly cloud-based solution that tries to makes sense of log data coming from applications, platforms, 

and systems. owned by solarwinds. 
lotamecrowdcontrol data driven marketing advertising program provides social media sites with advance targeting 
luckyorange lucky orange lets you see what people are doing on your website, in real time, and interact with 

them. 
madkudu lead scoring and signup forms. 
mailitelite email newsletters made easy signup form. 
mailmunch email marketing service and customer acquisition app. 
marinsoftware helps advertisers and agencies manage and grow their search campaigns . 
marketo marketo provides sophisticated yet easy marketing automation software that helps marketing 

and sales work together to drive revenue and improve marketing accountability. 

marketorealtimepersonalization allows for event tracking and dynamic customization of a webpage back to marketo. 
matomo matomo is an open source web analytics software. it gives interesting reports on your website 

visitors, your popular pages, the search engines keywords they used, the language they speak 
and so much more. previously known as piwik web analytics. 

matomocloud cloud hosted version of matomo analytics. 
mautic open source marketing automation software. 
mediamath tools that enable and empower marketing professionals. 
microsoftadcenter clicks. leads. sales. pay only when someone clicks your ad. 
microsoftapplicationinsights gain insights through application performance management and instant analytics. 
microsoftclarity free-to-use analytics product for webmasters that shows how people are using your website. 
mixpanel this is an analytic platform that is particularly optimized funnel/work-flow optimization. 
moat moat advertising metrics system. owned by oracle. 
mouseflow mouseflow records videos of your site visitors and generates heatmaps highlighting areas users 

are clicking, scrolling and ignoring. 
mutiny personalization platform, engage your site visitors with a tailored experience. 
naveranalytics korean based analytics service. 
netfactorvisitortracker lead generation software for your website. 
newrelic new relic is a dashboard used to keep an eye on application health and availability while 

monitoring real user experience. 
oktopost social media management for b2b marketing. 
omnituresitecatalyst omniture sitecatalyst provides your website with actionable, real-time intelligence regarding 

online strategies and marketing initiatives. 
optimizely optimizely empowers companies to deliver more relevant and effective digital experiences on 

websites and mobile through a/b testing and personalization. 
optimonk retargeting platform, that tries to help increase the conversion rate. 
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oribianalytics web analytics and event tracking system. 
outfunnel sales marketing automation platform for pipedrive. 
owneriq enables advertisers, manufacturers and retailers to more precisely target their online message 

based on what consumers own. 
parse parse.ly provides web analytics tools and apis built specifically for the needs of online content 

sites. its flagship product, parse.ly dash, provides historical, real-time, and predictive insights 
for the web's best publishers. 

paypalmarketingsolutions get powerful marketing tools designed to help increase your sale. includes paypal credit, fast 
checkout and venmo accept options. 

pendo pendo captures user behavior, gathers feedback, and provides contextual help. 
pingdomrum real user monitoring gives insight into performance for actual users visiting the website. 
pinterestconversiontracking tag that allows you to track actions people take on your website after viewing your promoted 

pin. 
pipedrive sales management tool small sales teams, 
plausibleanalytics lightweight and open source web analytics tool. 
poptin create engaging web and mobile overlays to try to improve conversion rate. 
posthog self hosted analytics tool. 
preact preact is web software that takes the job of supporting customers to the next level. formally 

known as less neglect. 
profitwell subscription and financial metrics in one place. 
proof social proof on sales funnel to help increase conversions. 
ptengine ptengine is a heatmap and web analytics platform. 
qualia real-time insights platform to help improve conversion rates. 
qualified conversational marketing software system. 
quantcastmeasurement provides quantcast with tracking information about your site which anyone can access and view 

demographic information. 
rapleaf marketing automation tools with the necessary data to help brands keep their customers 

engaged. now towerdata. 
rdstation digital marketing lead generation tool for websites, from brazil. 
redditconversiontracking conversion tracking system from reddit. 
reporturi enable your users browsers to automatically report security threats. 
sailthruhorizon empowers marketers to turn data into insights and act on those findings quickly and 

automatically. 
salesforce salesforce is a leading platform for cloud based web apps. 
salesforceaudiencestudio captures, connects and monetize consumer data - previous salesforce dmp and krux digital 
salesforcewebtolead with web-to-lead, you can gather information from your company’s website and automatically 

generate up to 500 new leads a day. 
salesloft sales engagement platform. 
salesmanago polish based marketing automation software. 
segment segment gives you the ability to instrument your web app for analytics once, and then send your 

data to any number of analytics services. previously known as segment.io 
sendpulse integrated marketing messaging platform. 
sessioncam session replay, website heatmaps and web analytics. 
shareaholic browser and website analytics tools. 
sharpspring marketing automation for agencies and smbs. 
siftscience sift science monitors a site's traffic in real time and alerts you instantly to fraudulent activity. 
signal distributed data management platform helps share data the website creates with other platforms 

such as advertisers and audience analytics. 
smartlook records screens of real users on your website. 
snowplow open source analytics that you store yourself. 
statcounter the website uses statcounter a free yet reliable invisible web tracker, highly configurable hit 

counter and real-time detailed web stats. 
steelhouse behavioral commerce platform,  real time onsite offers, dynamic retargeting and other 

technology features. 
sumo sales and marketing strategies to reduce cart abandonment and increase average order value for 

ecommerce. 
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survicate visitors insights for lead generation & nurturing. 
tapfiliate affiliate tracking software for ecommerce and saas 
tatari tatari measures tv advertising and helps companies optimize their campaigns. 
tellapart the best customers & prospects from the rest. 
terminus account-based marketing software for b2b marketers. 
thriveleads mailing list and conversion optimization wordpress plugin. 
tiktokconversiontrackingpixel tiktok advertising conversion tracking pixel. 
toutapp toutapp live feed tells you exactly what your leads are doing with your sales emails. 
trackalyzer leadlander solution. 
trendemon conversion optimization for content. 
triblio a content marketing platform. 
trustpilot trustpilot is an open, community-based platform for sharing real reviews of shopping 

experiences online. 
tvsquared real-time tv attribution platform in the industry. 
twitteranalytics a tool that helps website owners understand how much traffic they receive from twitter and the 

effectiveness of twitter integrations on their sites. includes twitter conversion tracking. 
twitterconversiontracking twitter ads conversion tracking code. 
twitterwebsiteuniversaltag a tool from twitter that makes it possible for advertisers to track website conversions and 

manage tailored audience campaigns. 
tynttracer tynt tracer, monitors and watches what is being copied from your website, such as your 

copyrighted content. 
veinteractive ve interactive is a data-driven solutions provider for shopping cart merchants. 
vero send more targeted emails to your customers based on their personal behaviour. 
visistat visistat is a suite of tools that measures the effectiveness of website performance and activity. 
visitorqueue website visitor tracking software 
visualiq marketing attribution and optimization service. 
visualstudiotracking microsoft visual studio based tracking services. 
visualvisitor find out who is on your site and what they are looking at with this lead tool. 
visualwebsiteoptimizer vwo provides a/b, split and multivariate testing software. 
whoisvisiting lead generation from website visitors. 
wizrocket wizrocket is a user behavior analysis & targeting tool. 
woopra woopra is a real-time customer analytics service that provides solutions for sales, service, 

marketing and product teams. 
wootric in-app nps scoring software. 
yahoodot fives advertisers a simple way to measure and improve customer engagement across campaigns. 
yahoowebanalytics yahoo! web analytics is an enterprise site analytics tool that provides real-time insight into 

visitor behavior on your website. 
yandexmetrika a free russian tool for increasing the conversion of the site. watch for key performance site, 

analyze visitor behavior, evaluate the impact of advertising campaigns. 
zarget conversion rate optimization and ab testing software. 
zohopagesense conversion optimization and personalization platform. 
zoominfo b2b database provider and user analytics tracking. 

 

 

 

 


