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Cream-skimming entry in railway passenger services?

1. Introduction

One argument against liberalising entry into railway passenger servicesis that entry on
profitable routes may undermine the possibility to supply less profitable routes, which
eventually implies a reduced network or increased cost for subsidies. In Great Britain thisis
manifested by a very restrictive use of open access operators, based on the argument that
entry on the most profitable parts of afranchise will increase the subsidy needed to keep the
remainder running (Nash, 2002).

The purpose of this paper isto analyse changes in revenue on low profitable routes as a result
of entry on high profitable routes. This will be examined in a setting of a very simple network,
consisting of three products, where two can be regarded as components and one as a
composite good. To start with, in section 2, the analysis will be in general terms where the
products are not necessarily specific to railway passenger services. Thereafter, in section 3,
some of the specific features inherent in the railway passenger services will be discussed to

see to what extent the general results can be applied in this specific case.

2. The general case

2.1 The model

There are three products, labelled A, B and AB where A and B can be regarded as
components and AB as a composite product. Consumers however demand al three products
so that A and B are not only components but can be used on their own. Consumers of AB

have the opportunity to buy it as a composite product or to buy the two components A and B
separately.

The inverse demand functions for the three products are assumed to be linear:



p(d)=a- bg,i=A,B,AB

With regard to the cost function there are two cases depending on whether production consists
of A and B (and AB isa*“by-product”) or if production consists of AB (and A and B are the
“by-products’).

C(AB, AB) = F, + F_ +C,0) + C5l0s) + Cagl0as) A and B are the main products
C(AB,AB) = F, +C,(qu) + C4l0) + CaglOne) AB is the main product
2.2 Prices

The prices of the three products cannot be set independently of each other. There are two

restrictions generated by the demand side:

1) Pag® max( P, Py)
If the price p,, were lower than one or both of the components prices, consumers of that
component would prefer to pay the lower composite price. Therefore the price of the

composite product is bounded from below to be at least equal to the highest of the other

prices.

2) pAB £ pA + pB
Since it is possible for consumers to buy components separately, the price of the composite

product is bounded from above of the sum of the prices of the components.

The first restriction is binding when demand for the composite product AB is low relative to
one or both of the components. The second restriction is binding when demand for the

composite product is large relative to demand for the components.



2.3 Pre-entry market conditions

The main interest in this paper is to study changes in profitability on low profit markets as a
result of entry on high profit markets. For this reason, we need to establish suitable market

conditions.

In the pre-entry case, one single firm produces all three products. Demand for component A is
high relative to demand for B and AB (a, > a;,a,5 ). Production of A is profitable on a stand-

alonebasis, p (A) > 0. Tota profits from production of both A and B (and therefore a so of
AB) are however at least as high as profits from A aone, p (A B, AB) 3 p (A) . Production of

B may or may not be profitable on a stand alone basis.

With regard to the cost function, the production consists of A and B while AB isjust the sum
of A and B. This means that there are fixed costs only for A and B.

C=F,+F, + CA(qA) + CB(qB) +CAB(qAB)

It is further assumed that marginal costs are constants and very low; c,(d,) =C,:0,,
C5(0s) = C5° ggand C,5(0,g) =Cpg 0, - Without loss of generality ¢ =0will be used (prices

can be interpreted as prices over marginal cost).

If the three products were independent of each other, or if no restriction were binding, profit

maximisation simply gives the unrestricted monopoly prices p*. In this case however,

restriction 1 will be binding since p* =~ < max( p*, , p*, ) = p*,-

The expression for profit maximisation under the assumption of zero marginal costs is shown
in (1) below. Under the assumptions regarding market conditions, profit maximisation is done

subject to restriction 1 only.



Maxp (A, B, AB) = Pa ><qA( pA) T Ps ><QB( pB) + pABXqAB( pAB) - I:A' I:B (1)
St Pag?® Pa
Pas 3 Ps

In terms of the parameters, the corresponding Langrangian is as shown in (2) below.

a8, - a0 - Pel, . BBag- Pagd
L= pA(:‘A—pA++ pBE}w.B Pe -+ pABQAB—pAB+' rq(pAB_ pA)' mz(pAB' pB)' Fa- FB (2)
e b, g & b, o e by, o

Thereason for mr, to apply, although it has been stated in the pre-entry market conditions
that p*p > p*g, will become clear soon. In short, since the first restriction will be binding
(rr; > 0) the price of both A and AB may be adjusted. Therefore, it has to be checked that

price of AB isat least as high as the price of B.

Casel) m;>0, m,=0
m, > 0 impliesthat the restriction p,; 3 p, isbinding with equality. The implication of
m, = 0 isthat the unrestricted price of B is lower than the resulting profit maximising price of

AB (shown in (3) below)
The first order condition for profit maximisation gives the following optimal prices:

- _—  _abgtagh,
= = = ZATAB _“ABA 3
Pa= Pag = Pa as 2(b,+ by €)

P*g :%EEAAB since m, =0

The common price p, .z Will only be profit maximising if demand of AB is not too low. It
can be shown that if demand of AB, intermsof a,g, islower than (4) below, profits will be

higher by charging p*, for both A and AB.

a
Qg = b_A( (bA + bAB)bAB - bAB) (4)
A



The break-even level of a,; isderived by comparing the two strategies p, ,s(P*,) and

Pa, AB(ﬁA, ne) -
- an(@aDag + Du(28,5 - @)
40,05

(aAbAB + a'ABbA)2
4'bAbAB(bA + bAB)

pA, AB( p *A )

Pa, AB(EA, AB) =

When a,; isequal to (4), the two strategies gives equal profit.
It can easily be seen that if a,g >% strategy Pu as Will dwaysyield higher profit than
p*, (with the exception that when demand for A and AB is equal the two strategies will yield

equal profit). It is therefore sufficient to compare the two strategies when a,; £ % which
implies q,.8p*, 2=0.
When a, ishigher than or equal to (4) the common price p, .z Will be profit maximising.

The expression (4) depends on both b, and b,;. The limit of the break-even sizeof a,; asthe

valuesof b, and b,, approaches the extreme values 0 and ¥ (can never be negative) is

lim a,; =0,5a,
b,® 0

lim a,; =0
b,® ¥
lima,; =0

b ® 0

lim a,; = 0,5a,

b, ® ¥



Case2) m; >0, m,>0

Theimplication of mr, >0 isthat the unrestricted price of B is higher than the profit
maximising price of AB resulting from m, > 0. Together this means that profit maximising

gives acommon price for all three products.

— 3,0ghg + aBbAbAB + 8,005

Pa= Ps = Pag = P s = ©)
A B AB A, B, AB 2(bBbAB + bAbAB + bAbB)
Theminimum sizeof a,g in this caseis shown in (6) below.
1
3o ° 1 (DB, 5,3 TBubo + DB+ BB - b, (b2, +0.8,) ©)
ATB

If a,; islower than thisthe prices of A and B will be equal to the unrestricted monopoly

prices p*, , p*, and the price of AB will be equal to the highest of these.

Case3) m =0, m,>0

This corresponds to case 1 but requires a, < a; which isruled out by definition.

Since we are interested in cases where AB is important for total profitability (otherwise the
two components would be rather independent of each other implying that there would be no
spill-over effects from one market to another) the analysis will be concentrated on the cases

when a,; isequal or higher than the minimum levels (as shown in (4) and (6) above). There
is also a second reason for this choice; if a,; islower than the minimum level so that the
highest of p* , p*, will be used, the analysis will become trivial. Entry on the high demand

market will always reduce the price of AB (which is held well above the optimal level) so that
revenue from AB will always increase.

Further, in case 2 above, demand for B is restricted from below by the price p, .z implying

that demand of B israther high (at least higher than in case 1). Therefore, entry on A in case 2

will not be studied here. In appendix 1 the results of entry in case 2 will be shown.



2.4 Entry on the high profit market A

2.4.1 Market outcome on A

Entry occurs on the market for A which is now produced by two firms, f1 (the incumbent who
also produces B) ard f2.

Assumptions:
- Quality level will not change.
- Thenew firm f2 will also have marginal cost ca=0.
- There are constant returns to scale, implying that the “fixed” cost of supplying A is
divided between the firms according to their share of total production.

- Consumers always choose the lowest price — products are homogeneous

The market equilibrium that occurs in the market for component A (in this duopoly setting)
will depend on which type of competition that evolve; if firms compete with prices (Bertrand
like competition) or with quantities (competition ala Cournot). It will also depend on whether
firms are identical or if some firm dominates the market (price or quantity leadership) and on
the degree of product differentiation. The (theoretical) prediction will also be different if the
market game is a one-shot game (only period is considered) or if the game is repeated
infinitely. The choice of model depends on the context of the particular economic situation or
industry under examination.

In appendix 1 the different models indicated above are discussed. Below we summarise the

discussion

In the case of price competition (the Bertrand model), there is a unique Nash equilibrium,
where p1 = p2 = ¢. This means that two firms are enough to have the perfectly competitive
outcome. In many cases, thisis not a plausible prediction of the market outcome. In contrast,
the Cournot model displays a gradual reduction in market power as the number of firm
increases. However, in many cases firms seem to choose prices, not quantities. “For this
reason, many economists have thought that the Cournot model gives the right answer for the

wrong reason.” (Mas-Colell et. a p 394).



By giving the Cournot model an alternative interpretation, and instead think of the quantity
choices as along-run choice of capacity, with the determination of price from the inverse
demand function being a proxy for the outcome of short-run price competition given these
capacity choices. We can think of this as a two-stage game where the firms first choose their
capacity levels and then compete in prices. It can be shown (Kreps and Scheinkman (1983))
that under certain conditions the unigque subgame perfect Nash equilibrium in this game is the
Cournot outcome. Therefore, the Cournot quantity competition captures the long run
competition through quantity choice, with price competition occurring in the short run given

those levels of capacity.

The static, one-shot nature in the models above is of course rather unrealistic. In redlity, there
are repeated interactions between firms. When taking dynamics under consideration it is easy
to se that even with price competition as in the Bertrand model, if the discount factor is high
enough (meaning that firms care about the future profits), it is possible to sustain any price

pl [c, p ] (a price between marginal cost and the monopoly price level) as a subgame perfect

Nash equilibrium. Therefore, a possible market outcome is a price level above the

competitive level, even if firms act as Bertrand competitors.

The choice of competition model in the market for A is not the main subject in this paper.
However, to be able to calculate effects in the other markets, we have to make an assumption
about the outcome in terms of prices for product A. To conclude, the Cournot model seemsto
be most appropriate when quantities can only be adjusted slowly, especially when quantity is
interpreted as capacity. In the following, it is therefore assumed that the new price of A is

according to Cournot competition.

Under the assumption of Cournot competition, the new market equilibrium for component A
follows from profit maximisation under for each of the two firms. Profit maximisation for
each firm, taking the decision of the other firm as given, gives the following reaction

functions;

a-b
R(f1) = QoG =T“
A



a-b
R(12) = Gy o) =Tq
A

The resulting equilibrium quantity of A gives the following duopoly price:

a
:?A< p*A

Pa

We are interested in how this will affect prices and profits on products B and AB. There are
two main possibilities, depending on whether or not the new duopoly price on A will be lower

than the pre-entry price (which is lower than the unrestricted monopoly price).
2.4.2Case 1.1 P' 43 Py pp

The new duopoly price of A, p',, is higher than or equal to the pre-entry price, p', 3 P, »g-
The incumbent, f1, will continueto charge p, ,, Which hasto be chosen aso by the entrant,

f2. The only thing that happens is that revenue from A is shared between the two firms.

Table 1: Post-entry prices case 1.1

Product Pricefl Pricef2

A ﬁA, AB ﬁA, AB

B p *B

AB ﬁA, AB EA, wthp *B

The incumbent firm, f1, will charge the lowest price of AB is P, g, profitson B and AB are

unchanged.

243cCase1.2 P', <P, a5

The duopoly priceof A, p',, is lower than the pre-entry price. In this case both firms will
charge p',. To analyse the changes on B and AB we start by stating the profit maximisation

problem.

Maxp (B, AB) = Pg qu(pB) + Pas ><qAB( pAB) - FB (7)

pB ! pAB



s.t. pAB 3 pl A
pAB 3 pB
Pae £ P'at Ps

L= pBMQ-F pAB(;MQ' l l(pAB_ pl A)' l 2(pAB' pB)
b, 2 & by o )

- | S(pIA+ Ps - pAB)' FB

Depending on the values that the | : s can take, a number of profit maximising price

combinations of B and AB emerge.
To get an overview, we start by showing all combinations.

Casel121 1,>0,l,=0,1,=0
| ;>0 impliesthat p',> p*  and the price of AB will be equal to p',
| ,=0 impliesthat P* < P'A= Pae and the price of B will beequal to p*,

| ;=0 impliesthat p'aA<p'A+ P*B

Casel.221,=0,1,=01,=0
| ;=0 impliesthat p* 3 p', and thepriceof ABisequal to p*
| , = 0implies that p*. ® P*s and the price of B will be equal to p*,

| ;=0 impliesthat p* A< pP'A+ P*B

Case1l231,=0, ,=01,>0
| ;=0 implies that p*. % Pa and the price of AB isequal to p*.
| , =0implies that p*. ® P*s and the price of B will be equal to p*,

| ;>0 impliesthat p* AB> P'A+T P*B

Casel24 |,=0,1,>01,=0

| ;=0 impliesthat P*s 2 Pa and the price of AB isequd to P*.

10



11

| ,>0 impliesthat p* < p* and therefore the price of B and AB will have to be adjusted

I 3 :O gnce EB, AB< pIA+EB,AB

Casel251,>0, ,>01,=0

| ;>0 impliesthat p',> p*,; andthe priceof ABisequal to p',

| ,>0 impliesthat p*; > p', = p, and the price of B will aso beequal to p',
| ;=0sncep' A< p'At Pa
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Casel21 1,>0,1,=0,1,=0

Post-entry profit maximising prices in case 1.2.1 are shown in table 2 below.

Table 2: Post-entry prices in Case 1.2.1

Product | Pricefl Pricef2
A P A P A

B p*

AB P A Pt Py

Firmf1 offer the lowest price for AB. There are no possibilities for the entrant 2 to profitable
compete for consumers of AB by lower the price of A, since thiswill always be followed by
f1. f2 knows that f1 has to consider both restriction 1 and 2 in the pricing of AB implying that
it will not be possible to undercut the price of f1. The lowest possible price for A is the break-
evenlevel p°, (where revenue just covers fixed costs). But the price of AB offered by f2 will
till be higher than the price by f1. Since both firms are aware of the consequences of such a

price-war, the most probable outcome is the prices shown in table 4 above.
The change in revenue from B and AB for f1 is accordingly:

DTR; as = 9bA§ (aA' aAB)2 B (bA+ bAB)Z(ZaA- 3aAB)2

©)

ﬂz DIR - 3bAB2 B 3(bA + bAB)2 <

0 10
T[a-AB2 bAB(bA + bAB)2 ( )

DTR; g isstrictly concave in a,g . If it can be shown that DTR; ,; is positive for both the
lowest possible value of a,; (min a,;) and highest possible value (max a,g ) then it will be

positive for al values in the relevant range.



13

®q &2
2 e
max = gaA (since p', > p* ), which gives DTR; .5 = m >0

min a,, depends on the relation between b, and b, .

a,(2b,- b,g)
3b

: 5 :
if b3 ZbAB then mina,, =
A

a

it bA<%bAB then min a,, =2 (/(o, +b)br - by

7 |

In the first case, whenb, 3 %bAB, DTR; 5 =0

Differentiating the expression for DTR; 5 With respect to b, gives

ﬂDTRB, AB — _ bAB(aA' aAB)2 <0
To, 2(b, +byg)°

and therefore the change in revenue is positive for lower values of b, .

To summarise, in case 1.2.1. total revenue in merket for B and AB is unchanged or increased.
The intuition is clear; since the pre-entry price of AB isforced to be greater than the revenue-

maximising price, a price reduction will increase revenue. Under the restriction p', 3 P*q it

will never be the case that the new price will be lower than the optimal level.

Casel221,=0,1,=01,=0

Thisimplies that no restriction is binding. Prices are summarised in table 3 below.

Table 3: Prices after entry in case 1.2.2

Product Pricefl Pricef2

A P P A

B p*,

AB p*AB pA+p*B
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The price of AB fromfl islower than or equal to the price from f2. If it happens to be the case
that p* ,, = p's+ p*s and if consumers only care about price it will be profitable for f1 to
charge aprice just slightly below p*,; to get the whole quantity if AB. By the same

reasoning as in case 1.2.1 above, it can be seen that 2 will never be able to match the price of
AB from f1. The lowest possible price of A is p°,.If p* . > p°,+p*; thenflwill chargea
price of AB equal to p°,+ p*; - e just dightly below the lowest possible price by 2

(p°,+ p*g). Since both firms are aware of the consequences of such a price-war the most

probable prices are asin table 5 above.

The change in revenue from B and AB for firmf1 is therefore equal to:

= DB~ 3)"

DTRB AB 4(bA + bAB)2 (11)

Case1.231,=0,1,=0,1,>0

The implication of this case is that demand for B is very low relative to demand for both A
and AB. Firm f1 cannot influence the price of A and therefore the prices of B and AB have to

be adjusted to fulfil the requirement that p,z £ p,+ Ps -

The profit maximising prices of B and AB are in this case:

_ :aBbAB+a b, - 200",

p AB"B (12)
’ 2(Dg + byg)
ﬁAB — a‘BbAB + aABbB + Z)ABp' A (13)
2(b, +b,)

Table 4: Post-entry prices in case 1.2.3

Product Pricesf2 Pricesf2

A P A P A
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AB r)AB p' A+ ﬁB

But then the price of AB charged by the two firms will be equal, since per

definitionp,; = p',+ Pg - | f consumers only care about price it will be profitable for f1 to

charge a price of AB dlightly below the above price p,; to get al consumers of AB.

Alsointhiscaseit is clear that f2 can never successfully compete for consumers of AB. A

reduction in the price of A will immediately induce changesin both p, (increase) and p,g

(decrease) and f1 will always be able to charge a price of AB dightly below the price of f2.

Therefore the prices shown in table 6 above maximises profits for both firms. The change in
revenue from B and AB for f1is (almost) equal to:

DTRB’ o= g(aA- aAB)ZbB(bB + bAB) - (bA + bAB)Z(ZaA + 3aB B 3aAB)2

(14)
36(0, +bg)bs* by f
ToTR ==_ 3(aA - aAB)bB(bB + bAB) + (bA + bAB)Z(ZaA +33; - 3aAB) (12)
e 6(bB + bAB)(bA + bAB)2
2
12DTR _ bB(bB + bAB)- (bA + bAB) < 0if (b, +b,g)2 > by(b, +b,e) (15)

ﬂaAB2 2(bB + bAB)(bA + bAB)2

The first order partial derivative evaluated at max a,; and min a,; shows that the function is

downward sloping in the relevant range:

TR _ (- &, +33,)
1-[aAB 6(bB + bAB)

min g, = 20t B g OTR_ - (3, SaB)EB £0
3 1-[a'AB 6(bA + bAB)

£0 since a, E@ and therefore a, - 3a,3 0

max a,; = a, and
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It remains to see if the change in revenue is positive or negative. At max a, the changein
revenue is obviously negative since this implies that the pre-entry pricesare equal to p*, and

p* .- INn terms of the parameters the change in revenue is equal to

2
DIR, =~ L8t 3 g

36(b, + b,

Atmina,, the changein total revenue at minimum a,; isequal to

2
DTRB’ N (aA' 3aB) by >0

To summarise, the change in revenue is positive for small valuesof a,; and negative for
higher valuesof a,;. DTR; ,;(a,;) is downward sloping within the relevant range and

crosses the horizontal axis at value between min and maxa,, max and min. This occurs at

- (ZaA + 3aB)(bA + bAB)2 B 3aAbB(bB + bAB) R bB(bB + bAB) (bA + bAB)(aA 3 3aB)
" 3((bA + bAB)2 - bB(bB + bAB))

Case1.24 1,=0,1,>0,1,=0

| ;=0 implies that p*, % P and the price of AB isequal to p*.

| ,>0 impliesthat p* < p* and therefore the price of B and AB will have to be adjusted
in the same manner as the pre-entry price of A and AB to p, ,, see (16) below.

| ;=0 impliesthat p', < Pg g SO that no further adjustment of pricesis required.

The profit maximising price for B and AB is equal to:

_ b,.+a.b
P as = AE0xp * AngDs (16)
2(bg + byg)

Table 5: Post-entry prices in case 1.2.4

Product Pricesfl Pricesf2

A P A P A

B ﬁB, AB




AB ﬁB, AB pI A+ ﬁB' AB

17

The lowest price of AB is offered by f1. The change in revenue for f1 from B and AB is equal

to:

— (aA - aAB)ZbAB(bB + bAB) - (aB - aAB)Z(bA + bAB)2
O 40, 5,0, +D,0) (m

ﬂz DTRB AB — bAB(bB + bAB) - (bA + bAB)2
ﬂa-ABZ Z(bB + bAB)(bA + bAB)2

(18)

The sign of the second order derivate depends on the relation between (b, + b, and

be(bg +b,g) . We start however by examining the sign of DTR; s at the extreme points.

— ; — (aA' aB)ZbAB
max a,; = a, awhich DTR; ,, 4, +b_)’ >0

min a —2a
'AB ~ A “9A
3
o, + by
7]

4( bB + bAB)(bA + bAB)2

aa, 6 e 2
G AgszB(bB-'-bAB)_ Cdg- —
e3g é 3

DTR;, = (17)

Thesignof DTR,, ,; Will in this case depend of the value of a, which lies within the

following range:

Ea <a, < aAbAB + aABbA
3" by + g

a,’b
min ap gives DTR, A_AB

=———A AB >
+ AB 36(bA + bAB)Z

. a,’bb
max ag gives DT = A _B_AB >0
B g RB + AB 36(bB + bAB)(bA + bAB)Z

The change in revenue is therefore positive for both maximum and minimum values of a, .

Inthe case that DTR, ,;(a,;) is concave the change in revenue is positive for all valuesin



therelevant range. If DTR; ,;(a,5) is convex the function will reach the lowest value at

I _ 2
Qg = 3D:(Dp + Byg) - (D, * D) . This minimum point is however outside the relevant

bAB(bB + bAB) - (bA + bAB)2

range since a,; >Mmax a,; = a,

To summarisg, it can be concluded that regardless of the shape of the DTR; ,, function, the

change in revenue is positive for al valuesof apg within the relevant range. for all

Casel1l251,>0,1 ,>01,=0
| ;>0 impliesthat p',> p*,; andthe priceof ABisequal to p',
| ,>0 impliesthat p*; > p', = p, andtheprice of B will also beequal to p',

Table 6: Post-entry prices in case 1.2.5

Product | Pricesfl Pricesf2

A p' A p. A

B p' A

AB pl A 2 pI A

DTRg pe = gbBbABZ(aA _ a‘AB)2 . (bA + bAB)z(bAB(ZaA - 3a|3)2 +by((2a, - 3aAB)2) (29

36bBbAB(bA + bAB)2

Since this case involves changes in the price of both B and AB the expression for

DTRB, AB involves ..

ﬂZDTRB, AB — bA(bA + 2bAB)
ﬂaAB2 2bAB(bA + bAB)2

T°DTRy 45 1
Tia® 2b,

<0 (20)

<0 (20)

18



max min
Ang 2 5 a(2b,- b
5 aA bA 3 ZbAB : aAB > A( 3/_;)A AB)
5 a
bA < ZbAB: A 3 b_A( (bA + bAB)bAB - bAB)
A
as 2 aAbAB + aABbA
I aA A A AP A
3 ba+Db,g

We have to examine the change in revenue for all four possible combinations.

max a,; and min a,

— bABa'A2
36(b, +1,5)°

max a,, and max a,
>0if by > b,

= 0if by = byg
<0if by <b,g

R = bABaAZ(bB - D)
360;(b, + Dyg)*

The sign therefore depends on the relative size of b, and b,;.

min a,,

If b, 3 %bAB the minimum size of a,, isequal to 22~ Pa) yich gives

A

_ _ 2
36h,

At thisminimum size of a,, both maxag;and min a; isequa to %aA and thereforeDCTR =0.

By differentiating the expression (xx) for DTR with respect tob, :

DTR - _ bAB(aA' a‘AB)2 <0
Tib, 2(0,+ byg)?
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It can therefore be seen that the change in revenue will be positive for smaller values of b, .

To summarise, when demand for AB islow (a,;islow), the change in revenue on B and AB

will be 3 0. When demand for AB is high and demand for B is low the change in revenue will
be positive. But when demand for both B and AB are high the change in revenue is

indeterminate and will depend on the relation between b, and b, .

121 DTR, 3 0
122 DTR, 53 0
123 DIR; ;z<0 max a,g
DTR; >0 min a,g
124 DTR; 5% 0
125 DTR; z<0 max a,g + max ag,b; < b,

DTR; % 0 mina,g, Max a,;+minag, maxa,; + maxag,b; 3 by,

2.6 Summary general case

In aworld with a single profit maximising producer and the simple network described above,
the interdependences between the products will lead to prices different from the unrestricted
profit maximising prices. In the case analysed in this section, the interdependences will force
the price of the composite product to be set above the (unrestricted) profit maximising level.
At the same time, the price of the high demand product will be set below its (unrestricted)

profit maximising level.

When entry occurs on the high demand market the expected price reduction will therefore be
less than with independent products. If the competitive price on the high demand market is
lower than the pre-entry price, this will have implications on the low demand markets. Thisis
due to the fact that a lower price on the high demand market will weaken the restriction on the
price for the composite product and this can therefore be set closer to the optimal level. In

most cases revenue on the low demand markets will therefore increase. The only exceptiors



are when demand for the low demand products (the composite AB and the low demand
component B) are rather high. If this finding can be generalised to the market for railway
passenger services then the “creamskimming-argument” will not hold. Liberalising entry

may instead increase revenue on low demand markets!

21
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3. Railway passenger services

The results from the analysis of the general case in the preceding section do to a large extent
depend on the assumptions made in section 2.4. In order to seeif the results from the
preceding section can be applied to railway passenger services, the relevance of the

assumptions will be briefly discussed.

3.1 The products

The components A and B are two connecting train routes, A covering the distance ato b, B
the distance b to c and AB is therefore ato ¢, see figure 3 below. To fix ideas, A can be

thought of as Gothenburg Stockholm and B as Stockholm-Gavle.

©

~—

' ©

©

— v
AB

Figure 3: The products

One important difference between the railway passenger case and the general case is fact that
different units of for example A are not a homogenous. Instead, each departure, Da, is
somewhat different from the others. They will differ at |east with respect to departure/arrival
time and direction. To form the composite product AB we cannot use any A and B, they have
to be linked in time and space, maybe only one of the As and one of the Bsis functioning
together. The degree to which operators coordinates A and B to make the combined trips AB
possible depends on the size of the different markets and on the cost of coordination. If
demand for A and B are largg, it will be profitable to optimise supply (timetables) in each
market separately. If demand for AB is large and/or important to total profitability it will be
profitable to coordinate timetables.
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3.2 Prices

The price restrictions presented in section 2.2 ought to suit the railway passenger services case
very well. A quick look at some actual prices charged by SJ shows that the prices of
combined trips are never larger than the sum of separate prices (restriction 2). In some cases

the price of acombined trip is equal to the price of one of the components (restriction 1).

Table 9: Examplesof P,, Pg and P,z (www.resor.sj.se)

AB A B Pa Ps Pat P | Pas

Goteborg-Gavle Goteborg-Stockholm Stockholm-Géavle 1041 494 1535| 1012
Vasterds-Halmstad | Véasteras-Goteborg Goteborg-Halmstad 442 190 632| 523
Linkoping- Borlange | Linkdping -Stockholm | Stockholm-Borlange 532 233 765 | 556
Goteborg- Avesta Goteborg-Stockholm StockholmAvsta- 1041 176 1217| 884

3.3 The assumptions

3.3.1 Quality and operating cost

Demand does also depend on the choice of quality. In the context of railway passenger
services the concept of quality has may dimensions and most are interdependent. The most
obvious determinants of quality are frequency, travelling time and reliability but there are also
others like type of vehicle (comfort). Quality is therefore to alarge extent determined by the
design of timetables in which frequency and each departure’ s exact location in time as well as
travelling time are specified. To each possible design of timetables belongs some degree of
reliability.

The implication of the assumption of no quality change is that the overal time-table will be
unchanged after entry. This may seem implausible, but on high density routes (where “our”
trains will have to be coordinated with freight trains as well as local trains), capacity
constraints will normally imply that the scope for increases in frequency, changes in departure

times and/or travelling time will be very limited.

Operating cost will also vary with quality. It is not only the number of departures, distance

and transport time that determines operating costs. The exact location in time of different
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departures will to alarge extent determine both cost and revenues. Thisis shown by an
example in figure 4a and 4b below. Total number of departures is the same in both figures and
equal to 10 in each direction. In figure 4a this is effectuated according to minimization of
production cost. In figure 4b the design is according to demand condition — maximising
number of passengers - (very high frequency in peaks) and the cost will in this latter case be

much higher. The optimal time-table will probably lie somewhere between these two

extremes.

6 9 12 15 18 21

6 ¢ 12 15 18 21 time
4a

6 9 12 15 18 21

6 ¢ 12 15 18 21 time
4b

Figure 4: Time-tables designed according to a) minimising operating costs and
b) maximising number of passengers. In both cases there are 10 departures in each

direction.

Introducing competition into a formerly system of a single producer can therefore, besides the
expected influences on prices, have influences also on the choice quality level and therefore
on demand as well as on costs which may imply additional influences on prices. But as was
discussed above, the scope for changes in quality (time-tables) may be limited by capacity
restriction.
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Once the decision about quality is made, most of the operating costs can be regarded as fixed
since they do not - in the short run - vary with the number of consumers, g. To be specific;
the costs for supplying a specific frequency (number of departures) with a certain train size
can be regarded as fixed. Increases in the number of passengers may imply increased supply
of seats but in the short run this can only be accomplished by increasing number of seatsin

the existing trains (since time-tables are fixed in the short run).

The assumption of constant and small marginal cost is therefore approximately applicable to
the railway passenger services case. The assumptionabou constant returns to scale is though
more problematic to justify. It iseasy to think of reasons for the existence of economies of
scae in railway passenger services — efficient utilisation of vehicles, personnel and
maintenance facilities in alarge company. But there are aso signs of the reverse — smaller
companies having a cost advantage. In U.K. smaller operators have been amongst the more
innovative in the new railway structure (Nash, 2002). In Sweden it has been observed that the
incumbent SJ on repeated occasions seems to have large cost disadvantages compared to new

entrants (Alexandersson et. al. 2000).

3.2.2 Consumersonly care about price

The assumption that consumers only care about price requires that the product only differsin
this respect between the firms. If one unit of AB is made up by combining any A with any B
(@l A:sand all B:s are homogeneous) it could be expected that consumers aways choose to
buy AB from the firm with the lowest price (firm f1 in the general analysis above). But when
AB isacombined trip, made up of one unit of A and B, there are other dimensions since
different units of A respectively B are not homogeneous; they differ both with respect to time
and direction.

Below a simple example is used to show the way the combined trips are created.

A= (Al,l,---, Al,n; Az,l,----, A2,m)
There are n departures in direction 1 and m departures in directions 2



B= (Bl,l,..., Bl,i; Bg,l, ceny sz)
There arei departuresin direction 1 and j departures in directions 2

Ofteni=j and m=n but it is not necessarily so.

AB = (ABy1,..., ABi; ABz1,..., By)

Number of departuresin direction 1 = k £ min( n,i)

Number of departuresin direction2 = | £ mn( m, j)

Below thisis shown by the use of graphical time-tables.

6 9 12 15 18
AB11=A11+B12 AB21=By1+ Az
AB12=A13+Bi3 AB22=Byo + Aza
AB13=A15+ B4 AB23=By3+ Ae
AB14=A17+Bis AB24=Boa+ Azs

AB2s5=By5+ Az1o

A:n=m= 10, n+tm= 20
B:i=)=5,i+j=10
AB:k=4,=5k+l=9

26
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In the above example there is a high degree of coordination between A and B. Since
coordination is not without costs, the degree of coordination will be dependent on the gains,

which here is the revenue from AB.

In the general case discussed in section 2 above, it was shown that the incumbent was able to
offer the lowest price for the composite product AB after entry in every single case. When it
comes to the question of railway passenger services we see that the lower price of the
combined trip AB is available only fromf1 which, after entry, only supplies half of A. If the
lower price comes together with reduced coordination, implying increased travelling time, it
isno longer clear that passengers aways prefer the lowest price. In such acase, it is very well
possible that revenue from the low profitability routes will decrease which eventually leads to
areduced network (only A).
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4. Summary and conclusion

In anetwork consisting of components and composite goods, and where there is demand for
the components as well as for the composite goods, the interdependences lead to restrictions
on prices generated by the demand side. These restrictions imply that optimal prices will be
different from prices of independent products. In the special case analysed in this paper the
interdependences forces the monopoly price of the composite product to be set above the
unrestricted monopoly price. At the same time the monopoly price of the high demand

component will be lower than the unrestricted monopoly price.

Competition on the high demand market may weaken the price restriction and allow the price
of the composite product to be set closer to the unrestricted revenue maximising level. Under

certain assumptions this implies increased revenue on low profitable markets.

When we try to implement the above finding to the specific context of railway passenger
services it becomes obvious that they are not directly comparable. The most obvious
difference is the non-homogeneity of different units of the goods, where direction as well as
location in time are importart attributes. To have the positive effect in form of lower prices
(and no quality reduction) a large degree of coordination is required for the firm that supplies
both high demand and low demand products. If coordination after entry is reduced entry may

instead lead to higher prices and/or reduced quality for transfer trips.
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2.5 Entry on the profitable market, case 2

The only thing that is different in case 2 from case 1 above isthat p*, > P, ,z (M, >0and
m, > 0). The profit maximising price and the minim size of a,; incase 2 are shownin

section 2.3 (equations (5) and (6)). Below these are replicated.

_ abgbs + aBbAbAB + a,a0,b5

= = =P - °
Pa= Pg = Pag = Pa g a8 Z(bBbAB + bAbAB +bAbB) ( )

1
by

('\/bAB(bAaBZ + bBaAZ)(bBbAB +0\Dpp bAbB) ) bAB( b,a; + bBaA)) (6)

3
a'AB

b

A

Entry occurs on A which now is operated by two firms, f1 (the incumbent who also operates

B) and f2. The same assumptions as in case 1 are used.

After entry on A the duopoly priceisequal to p', = % < p*

Case21 pIA> EA,B,AB

The new duopoly price of A, p',, ishigher than or equal to the pre-entry price, P, g »5- The
incumbent, f1, will continue to charge p, ; ,; Which has to be chosen also by the entrant, f2.

The only thing that happens is that revenue from A is shared between the two firms.

Case22 p', < ﬁA’ B AB

Maxp (B, AB) = pg: 0a(Pg) + Pag’ Gae(Pas) - Fe

6 Pag
St P’ P
Pag® Pe
Pas £ P'at Pg



- Pe0, . aBus- PaO .
L= pBM++ pABQAB—pAB+' 91( Pas- P A)' gz(pAB' pB)
e bB 9 e b/.\B 9

- gS(pIA+ Ps - pAB)

However, since p*, > P, ., Weknowthat p*; > p*,;. Thismeansthat g, =0isnot

possible and therefore the number of alternatives are reduced to two

Case2219,=0,9,>0,9,=0

g1=Oimpliesthat p'A£ p* AB
go>0impliesthat p* g > p* AB
g1 = Oimplies that p' £ 5B,AB

— -5 - aeDp + 8,
Pe = Pag = Ps, a8 2(b, +byy)

(21)
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Table 7: Post-entry prices in case 2.2.1

Product Pricesfl Pricesf2

A P P

B Pe, ne

AB Ps as P'at P e

Firm f1 will offer the lowest price for AB. Total revenue for f1 (from B and AB) will be
changed by the following:

DTRB AB =

bBbAB(aBbAB + aABbB - aA(bB + bAB))2 >0

4(b, +b,g)(baby + bub,g +bybyg P

Case2229,>0,9,>0,0,=0

91> 0impliesthat p',> p* 45
g2 >0impliesthat p*, > p',

Ps = Pag = P'a

Table 8: Post entry prices in case 2.2.2

Product Pricesfl Pricesf2
A P P

B P

AB P 2P,

31

(22)

Also in this case firm f1 will always be able to offer the lowest price of AB. If f2 reduces the

price of A in order to compete for consumers of AB, thenfl will choose the set the price of

AB equal to p*; . The only possibility for f2 to have the same price asf1 is of course to set

p, = 0 which is not a probable outcome.

The change in revenue from B and AB for f1 is equal to:
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DTk

B, AB

aetAbB2 bA|32 (5aA(bB +b,g) - 6(abs + aABbB)) - 9 )
bA(bAbB + bAbAB + 2:)BbAB)(ZaA(bB + bAB) - 3(aBb/-\B + a'ABbB) )25
3&)BbAB(bAbB + bAbAB + bB AB)2

The expression (23) for DTR; ,g is rather messy. The intuition for the direction of changein
revenue is however straightforward. Since the pre-entry price p, g »z islower than p* ;and

higher than p* ,; revenue from B will decrease and revneu from AB will increase.

1-":]-I-RB AB — bA(bAbB + bAbAB + 2bBbAB)(2aA(bB + bAB) - 3(a'BbAB + aABbB)) - a‘AbBZbAB2
Tiag 6bg(b,0g +DaDe + gbe)”

TDTR; 15 _ DA(D:Ds +babug +25:0,0)(28,(D5 +bie) - 3(Bebas * Aues)) - s ig?
1-[aAB GJAB(bAbB + bAbAB + bBbAB)2

T DTRB AB — bABbA( bAbB + bAbAB + 2bBbAB) <

0
Tlag’ 205(0,05 + b,b,g + bgb,e)

T DTRB AB — bBbA(bAbB + bAbAB + 2bBbAB) <0
ﬂa-A32 20,5(DA0g +D,b,g +D50,e)

T DTRB AB — ~ bA(bAbB + bAbAB+ 2bBbAB) <0
ﬂaBﬂaABZ 2(DA0g +10,055 + Db,g)

The function is strictly concave in both .

max ag=a,
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aAbAB + aABbA

min a, =
T b, by

2
max a,, = EaA

The minimum value of a,g; will be the highest of the following. Which one is highest be

. 1
min 8, ==~ (JbAB(bAaBZ +b,3,2)(bebys + b + babg) - b (0,8, + bBaA)) (6)
ATB

aAbB(ZbA B bAB) + bAbAB(ZaA B 3aB)
3bAbB

min a,; 3

(6)

Start with max aAB+max aB
max a,g

max ag

DTR = aA2 (0 + 01p) (0(05 - Byg) - Bae(by +b5)
3605 (bbg + bb,g + bb,5)?

Thesignof DTR; ,z Will therefore depend on the relative size of the slope parameters. If

3 bA + bAB + '\/4bAbAB + (bA + bAB)2

bg >

then DTR3 O

maX a,g

min ag

TR = aAZbAB(bB - bAB)
36b,(b, + bg)

which obviously depend on therelativesizeof b, and b,g.

min a,,

min ag

The minimumsizeof a,; will be

3 aA(ZbA' bAB)

1) a 2
A



aA( bAB(bA + bAB) ” bAB
b

A

2) a'AB 3

When b, 3 %bAB the minimum sizeof a,g isaccording to 1).

Inthiscase DTR; 4,z =0

When b, < %bAB the minimum sizeof a,; is according to 2). By differentiating the

expresson for DTR; ,; With respect to b, and evauate the sign it can be determined whether

the change in revenue will be positive or negative for this value of miminim a,g .

ﬂDTRB, AB — _ bBbAB(SaA(bB + bAB) - 3(aB + aABbB))2 <0
o, 18(b,bg +b,0,g + bBbAB)Z

Lower values of b, will therefore imply increased change in revenue and

therefore DTR; ,5 > 0.
In this case with minagand mina,; DTR; ,z% 0

min a,,

max ag

At max aB the minim values of aAB becomes

a-A(zJAbB - bAB(bA + bB))
30,05

1) ay >

3 aA('\/bAB(bA + bB)(bAbB + bAbAB + bBb bAB(bA + bB)

) -
2 AB
) aAB bAbB

4babs

The break-even point iswhere b,; = ——
5(b,+ bg)
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When b, £ _Ababe min a,; isequal to 1) above. Andinthiscase DTR; 55 =0

5(b, + bg)

Which minimum value that is largest will depend on the relation between the slope

Sb,b,g

parameters. If by 3 then aAB min = the second value. In this case

A~ 5bAB

DTR=0.

When b,; isequal to the break-even size the minimum value of 1 and 2 is the same. When

b,s s higher than the break-even sizethe value of mina,g is higher. Jmin 8. >0.By

AB

differentiating the expression for DTR; .5 With respect to a,; and evaluating this at break-

even size (minaB, minaAB) it can be seen that . if thisis positive, it can be concluded that the

TDTR 45 _ a,b,

change in revenue will be positive . >0
1-[a'AB 6(bAbB + bAbAB + bBbAB)

Therefore, DTR; 55 >0

To summarise, in thislast case, when demand for AB is low the change in revenue will be
non-negative. When demand for AB is high the sign of DTR; .z will depend on the slope-
parameters.

than the break-even size the value of minimum aAB
By differentiating the expression for DTR; ¢
When minimum value is determined by the first value the sign of DTR again depend on the

relative sizes of the slope parameters.In general, low values of bB yields negative change in

revenue while high values yiled positive change in revenue.
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Thesignof DTR; ,s Will beindeterminable, conditional .

Ass a general rule the higher demand is for B and AB the gresater is the loss in revenue since
the pre-entry price will be high.
It will also depend on the relative size of bB. The

At min aB and max aAB

_ aAZAB2(bB - bAB)((bB + bAB)bA(bAB + bADAB + 2bBbAB) + bB2bAB2)

DTR -
36(bA +bAB) Z20BbAB (hADLB + bADAB + bBbAB)

if bBObAB delta TR=0
bB>bAB delta TR>0

max ag

aAbBZbABZ(bB(SaA - 6aAB) - aAbAB) -

bA(bAbB + bAbAB + 2:’BbAB)(bB(2aA - 3aAB) - aAbAB)2
36b,b,,(nNNN)2

DTR=

The sign will depend on the size of aAB (higher aAB more negative change in revneu)) as
well as on the size of bB relative bA and bB (higher bB more positive change in revenue)

Low aAB and high bB positive change in revenue

High
Max aAB

bB

Low high
aAB
low - +
high - +
min a,

AP D,g0a+ baB)((58, - 63,5)(DADB +bADAB +bBbAB) - 8\0,e?) -

DTR = Pa(abs + bb.g + 206b,6)((23, - 38,)(bAbB + bADAB +PBDAB) - &:bss")*

36(ba + bag)2bgb.s(nNn) 2
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bB

Low high
aAB
low + +
high - +

This case is not representative for our main purpose since it requires demand for B to be very

high or close to demand for A.

By inserting the value of max a; in the first order partial derivative (24) it can be shown that

IDTRs e - (aAbBbABZ) <0

the dope is negative;
ﬂa'B 6(bAbB + bAbAB + bBbAB)

With regard to min a; thiswill depend on the size of a,; in the following way:

£ aA(ZbA' bAB) ® ag 3 2aAbA(bB + bAB) 3 aAbBbAB - 3aABbAbB

AB

3bA 3bAbAB
a(2b,- b a,b,.+a,b
s > A( A AB) ® > AMAB AB™~A
3bA bA + bAB

When

a, = 22,04(Be + Brg) - 3DeDrg - 3eDp 41y, DTR, . = 0and the slope is e 5
%AbAB ' 6

Higher values of a, impliestherefore DTR; ,; >0.

In the other case, evaluation of DTR; 5z & 8,5 = (2D, Dg) and a, = 3Daa * 3y
Y 3bA bA + bAB
givesDTR; 45 = 0. Since Yag/Ta,; >0 and since the slope of the DTR; , function is

_aA:AB > 0 the change in revenue will be positive for higher values of a; and a,; .
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Appendix 1
Competiion model

Static models of oligopoly

Static models means that only one period is considered. Competition between firmsin a
market characterised as oligopoly is inherently a setting of strategic interaction For this

reason, it is appropriate to use game theoretical tools in the analysis.

Price competition

Suppose there are two profit-maximising firm (a duopoly). The firms are simultaneously
choosing their prices (the price is the strategic decision). The demand function is Q(p) — the
products are homogenous. Q(p) is strictly decreasing in p and there existsa p < ¥ such that

Q(p) = Ofor adl p > p. With regard to the cost function, this is assumed to be: ¢c(Q) = cQi,

andc>0

In this setting (Bertrand competition), there is a unique Nash equilibrium, where p1 = p2= C.
This means that two firms are enough to have the perfectly competitive outcome. In many
cases, thisis not a plausible prediction of the market outcome. Therefore, the analysis will be

atered in the following ways:

- quantity competition
- capacity constraints

- product differentiations

Quantity competition

Here it is assumed that both firms simultaneously decide on quantities. Given these quantities,
the price adjusts to clear the market. With quantities as the strategic decision, it is more useful
to use the inverse demand functiont p(Qi+ Q) = Q(p). It is assumed that p'(Q) < 0 (demand

slopes downward), and that p(0) > c.
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To find the (pure strategy) Nash equilibrium, each firms maximises profits, taking the

guantity decision of the others as given. This gives the following result:

1+Q2¢+ P(Q,+Q,) =C

2 g

p'(Q.+ Qz)(}
e

In equilibrium, under the above assumptions regarding costs and demard conditions, the

market priceis greater than ¢ and smaller than the monopoly price.

It is often useful to make assumptions about the specific form of the inverse demand function
(because it makes it easier to derive and interpret the market outcome). Thiswill be done

below for the case of quantity competition.

Inverse demand function: p(Q) =a- bQ
Cost function: C@Q)=cQ

The negative sign in front of b is the same as p'(Q) < 0. The assumption that p(0) > ¢ means

that a >c. The equilibrium prices and quantities, following from profit maximisation is

shown below.

n_2% _n@-c
Q —el% (n+Db
ph = (a+nc)

n+1

Where n is the number of competitors in the industry. If n= 1 we get the monopoly outcome,

n = 2 isthe duopoly and so on.

If competition is introduced into the rail passenger network, we have seen that there will be
vertical effects (which increase prices) as well as horizontal effects (which reduce prices due
to increased competition). The magnitude of the horizontal effect will thus depend on the
degree of competition that already exists (from other modes).
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This can be interpreted as an oligopolistic market with imperfect substitutes.

In contrast with the Bertrand model, the Cournot mode (quantity competition) displays a
gradual reduction in market power as the number of firm increases. However, in many cases
firms seem to choose prices, not quantities. “For this reason, many economists have thought

that the Cournot model gives the right answer for the wrong reason.” Mas-Colell et.a s 394.

Capacity constraints

To get an aternative interpretation of the Cournot model, we can instead think of the quantity
choices as along-run choice of capacity, with the determination of price from the inverse
demand function being a proxy for the outcome of short-run price competition given these
capacity choices. We can think of this as atwo-stage game where the firms first choose their
capacity levels and then compete in prices. It can be shown (Kreps and Scheinkman (1983))
that under certain conditions the unigue subgame perfect Nash equilibrium in this game is the
Cournot outcome. Therefore, the Cournot quantity competition captures the long run
competition through quantity choice, with price competition occurring in the short run given

those levels of capacity.

Product differentiation

In the Bertrand model above, each firm faced an infinitely elastic demand curve. Often,
however, consumers perceive differences among the product from different firms. When
product differentiation exists, each firm will possess some market power. As was discussed
above, rail passenger services will differ according to some characteristics, at least on
departure and/or arrival time. There is therefore an inevitable product differentiation inherent
in this market.

Product differentiation is often analysed by spatial models of product differentiation, because

each firm is identified with an address in product space.
Dynamic models
The static, one-shot nature in the models above is of course rather unrealistic. In redlity, there

are repeated interactions between firms. Here we consider two identical firms that compete

for sales repeatedly, with competition in each period t descried by the Bertrand model. There
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isadiscount factor d <1 and each firm attempts to maximise the discounted value of profits.

Such agame is adynamic game of a specia kind: repeated game.

The firms play a game in which both will choose a specific price level above the competitive
level aslong as the other does the same. If one deviates, they will forever charge a price equal
to marginal cost. If the discount factor is high enough (meaning that firms care about the
future profits) it is possible to sustain any price pl1 [c, p*] (a price between marginal cost and
the monopoly price level) as a subgame perfect Nash equilibrium. A price above the
competitive level is sustainable if and only if the present value of future losses of deviating is

large enough relative to the gain from deviation

Therefore, a possible market outcome is a price level above the competitive level, even if

firms act as Bertrand competitors.

Stackelberg leader ship

In the above analysis it is assumed that firms are symmetric. Thisis not a realistic assumption
with regard to the question of introducing competition into the rail industry. The new firms

that possibly will enter will almost surely be much smaller than the incumbent, SJ.

This situation can be analysed according the model of Stackelberg leadership. Firm 1is
guantity leader and will choose its quantity g first. The other firms will thereafter choose

their quantities. This game is solved by backward induction.

Assumption
Inverse demand function: P(Q) =a- bQ
Cost function: C.(Q) =cQ,
Q=agq

i=1

For the case of n firms the equilibrium quantities and price are as follows:
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Quantity of leading firm = g, = %
: : a-c .
Quantity of the follower firmsg :ﬁ’ j=2..,n
n

g - - - 2n- 1)(a- c)
Total quantity 3 g =2 S, (N-D@-¢ _(
ety a 6 =— 2nb 2nb

a+(2n-1c

Equilibrium price p = >
n

It follows that this form of competition will lead to higher total quantity and lower

equilibrium price than the standard Cournot game.

The choice of model depends on the context of the particular economic situation or industry

under examination.

The Cournot model seems to be most appropriate when quantities can only be adjusted
sowly, especialy when quantity is interpreted as capacity.



