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Estimating the finite population total under
frame imperfections

Marianne Angsved®

Abstract

When sampling from a finite population the access to a good sampling
frame is of vital importance. However, the statistician often has to
confront the problem of estimation in the face of non-negligible frame
imperfections, e.g. overcoverage and undercoverage. In this paper we
discuss different approaches to deal with this problem. In particular,
we address the situation when there exists a new up-to-date current
register and the improvement this brings along. The paper is part of a
project which eventually aims at developing approaches for handling
the estimation problem when nonresponse and frame imperfection
occur simultaneously.

Keywords: Finite population sampling, target population, sampling frame,
overcoverage, undercoverage, GREG estimator, calibration, imputation.
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1 The problem

1.1 Introduction

Survey errors are generally divided into two major types, sampling errors and
nonsampling errors. Sampling errors stem from the fact that a sample, not
the entire population, is observed. A well-developed theory exists to facili-
tate for the survey statistician to deal with this kind of error. Nonsampling
errors encompass all other errors that contribute to survey error, i.e. frame
errors, measurement errors, coding and editing errors, imputation errors and
nonresponse errors.

When planning for a survey there are several decisions the statistician
has to make, one being on what sampling frame to use. The access to a
good sampling frame is of vital importance. Ideally the sampling frame is a
perfect match to the target population, i.e. to the population the statistician
wishes to study, and equipped with good auxiliary information. This is far
from always the case, and the statistician has to accept the fact that the
sampling frame is more or less imperfect with respect to matching the target
population, with more or less useful auxiliary information.

There are many reasons why frame imperfection may occur. One is that
it may be difficult to find an appropriate register for the target population,
forcing the statistician to utilize a second-rate one. Another is difficulties in
obtaining updated information for an already existing, otherwise acceptable,
frame.

A particular survey setup which gives rise to a gradually deteriorating
frame situation is the following. Suppose that a monthly or quarterly survey
due to practical considerations is based on one and the same sample during
a period of one year and that the target population changes over the year.
Even if the frame is perfect for the first monthly (or quarterly) survey, this
will not be the case for later months because over time some elements cease
to exist, while new elements are "born”. This may cause a non-ignorable
amount of frame error.

In this paper we will discuss estimation when the frame suffers from
imperfections. We assume that the frame enables direct element sampling,
i.e. population elements are directly identifiable using information in the
frame. The paper is part of a project which eventually aims at developing
approaches for handling the estimation problem when nonresponse and frame
imperfection occur simultaneously.



1.2 Target population, frame population and related
population sets

When discussing sampling from a finite population and subsequent estima-
tion of finite population parameters several different population types can be
defined, see e.g. Kish (1979) and Murthy (1983). For our purpose we now
define two different populations, viz., target population and frame popula-
tion. The target population, denoted U, is the set of elements the statistician
wishes to study, i.e. for which estimates are required. The frame population,
denoted Up, is the set of all elements that can be reached via the (sampling)
frame.

In the ideal situation the two populations coincide. However, this is far
from always the case. Typically there are several types of frame imperfec-
tions, see e.g. Lessler and Kalsbeek (1992), who define six sources of error
that spring from frame imperfections.

In the following we will suppose that only two types of frame imperfections
are present, viz. overcoverage and undercoverage. Let the set of elements in
U which can be reached via the frame be denoted Uy, i.e. Ur = Ur NU, the
intersection of Ur and U. The frame has overcoverage if the set Upc = Up
- Ur is non-empty, where it is assumed that this set can not be identified
from available frame information. The frame has undercoverage if the set
Uye = U - Uy is non-empty. The two sets will be called the overcoverage set
and the undercoverage set, respectively.

Finally, let N = #U (the number of elements in the target population),
Np = #Up, N = #U;, Noc = #Uoc and Nyc = #Uyc.

1.3 An illustration

The Business Register (BR) at Statistics Sweden is frequently used as the
standard frame for business surveys. The aim of the register is to contain all
businesses in Sweden which are running some economic activity. Variables
in the register are e.g. address, number of employees and Swedish Standard
Industrial Classification (SE-SIC 92). The information in the BR is updated
through different administrative sources and through surveys made by Statis-
tics Sweden, at different times during the year.

The following table illustrates annual change of the number of businesses
in the BR.



Table 1.1 Annual change in the BR. Number of enterprises in November 2000
versus November 2001

November 2001 | Deaths |Total

November 2000 | 757 734 56512 | 814 246
Births 71 053
Total 828 787

As can be seen from table 1.1 there is a substantial amount of births and
deaths registered in the BR during a year. Suppose a survey is to be taken
at November 2001 using the BR at November 2000 as frame. This frame
suffers from both undercoverage (births) and overcoverage (deaths). The
undercoverage rate is 8.6% (Nyc/N = 71 053/828 787) and the overcoverage
rate is 6.9% (Noc/Np = 56 512/814 246).

A variable in the BR often used in business surveys for defining cut-
off limits is size group (number of employees). If the survey has a cut-off
limit at 10 employees this means that businesses with less than 10 employees
are deliberately excluded from the survey, i.e. the target population is now
restricted to businesses with 10 employees or more. The analysis of the rates
of change in the BR becomes even more complex adding this variable.

Suppose that a monthly or a quarterly survey were to use a sample drawn
from the November 2000 version of the BR and then keep this sample for
a whole year. Suppose furthermore that this survey uses a cut-off limit at
10 employees. Then, by the end of the period November 2000 to November
2001, the undercoverage consists not only of the births of enterprises with
10 or more employees but also of the enterprises that in November 2000 had
less than 10 employees but in November 2001 have 10 employees or more,
which the following table illustrates.



Table 1.2 Annual change in the BR. Number of enterprises per number of
employees (cut-off limit at 10 employees) in November 2000 versus November
2001

November 2001

780 849

November 2000

794 314

The sets A, B and C in table 1.2 are all deliberately excluded from the
survey since businesses belonging to these sets have less then 10 employees
at the sampling stage. However, set B consists of enterprises that has in-
creased the number of employees during the year, and this set, by the end
of the period, actually ought to be included in the survey. Thus, these 4,700
businesses belong to the undercoverage by November 2001. Sets D and F
both belong to the overcoverage set, since these businesses had 10 or more
employees by November 2000 and thus was included in the frame at the time
of sampling, but have either decreased their staff to less then 10 employees
or "died” during the period. Set E is the set of enterprises that correctly
has been included in the survey. Finally, the two sets of businesses that have
been ”born” during the period are sets G and H. Both are excluded from the
survey since these businesses would not be included in the frame at the sam-
pling stage. However, by the end of the period the businesses in set H belong
to the target population and thus, this set, together with set B, constitutes
the undercoverage set. Using table 1.2 and the fact that, in this situation,
Uoc = DUF, Uye = BUH and U; = E we get the following table, which
corresponds to table 1.1.



Table 1.3 Annual change in the BR. Number of enterprises with 10 employees
or more in November 2000 versus November 2001

November 2001 | Deaths |Total

November 2000 |29 069 4328 33397
Births 5404
Total 34 473

The use of a cutoff limit at 10 employees drastically changes both the
frame population and the target population as table 1.3 shows. This also af-
fects the size of the undercoverage and the overcoverage. The undercoverage
rate is now 15.7% and the overcoverage rate is 13.0%.

The variable size group is also often used in business surveys for defining
domains or strata. Table 1.4 shows the complexity of the births, deaths and
changes of size group during the period from November 2000 to November
2001.

Table 1.4 Annual change in the BR: Number of enterprises per size group in
November 2000 versus November 2001

November 2001

() 1-4 5-9 10-19 |20-49 |50- Deaths | Total
0 532494120199 |[1059 |293 122 56 47 114 | 601 337
1-4 17004 | 114958 |7172 |458 88 6 6778 146 464

§ 5-9 900 5283 21885 13500 |166 11 1303 33048
[ 10-19 | 245 272 2246 123031708 |29 623 17 426
212049 |93 60 62 879 7811 |59 409 9910
§ 50- 25 4 4 15 272 5456 | 285 6 061
é Births | 62383 | 6979 987 315 214 175 |- 71053

Total | 613 144|147 755 |33 415 |17763 10381 | 6329 | 56512

The main diagonal contains those businesses that to Statistics Sweden
have reported numbers of employees in November 2000 and November 2001
that do not call for a change of size group. Excluding the row with births
and the column with deaths, we see that below the main diagonal are those
businesses that have moved to a smaller size group during the time period,
while we above the main diagonal find those businesses that have moved to
a larger size group.

Tables 1.1 to 1.4 illustrate the BR at two specific time points, November
2000 and November 2001. Obviously, events like births, deaths etc. in the
real world and in the BR occur more or less continuously over the year.
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Further analysis of the BR shows that most of the changes of size group
that took place during the whole year between November 2000 and November
2001 seem to have occurred between March and May. Of course, this is not
likely to give a fair picture of the way things happen in reality, but rather a
consequence of the way information enters the BR. The major source of size
is an administrative source which enters the BR in April/May every year.
This is why it seems like most such changes occur in the spring. It is very
likely that changes of size is a more continuous process in reality. By contrast,
births and deaths seem to be registered in a more continuous process in the
BR. (see table B.1.A-D in appendix)

Thus, even if the survey is taken very soon after sampling from a fresh
BR version, there is still likely to be a non-ignorable amount of frame error.
This is due to the fact that it always takes some time before events (births,
deaths etc.) in the real world are registered in the BR.

Table 1.5 below illustrates the relative frequency distribution by size
group. Suppose a survey is to be taken at November 2001 using the BR
at November 2000 as frame. Thus the BR at November 2000 is the frame
population and the BR at November 2001 is the target population. Also the
deaths during the period constitutes the overcoverage set, Upc, the births
during the period constitutes the undercoverage set, Uy, and finally the
businesses in both the frame population and the target population consti-
tutes the intersection set, Uj.

The table shows that the small businesses contribute with most of the
changes in the BR. We can also see that the relative frequency distributions
of the variable size in U; and U are essentially equal.

Table 1.5A Relative frequency distribution: Number of enterprises in Ug, and
Uoc, by size group at November 2000

Nov 2000 (%), U | Deaths during Nov 2000 —
Nov 2001 (%), U

0 601337 (73.9) 47114 (83.4)
1-4 146 464  (18.0) 6778 (12.0)
5-9 33048 (4.1 1303 (2.3)
10-19 17426  (2.1) 623 (1.1)
20-49 9910 (1.2) 409 (0.7)
50- 6 061 (0.7) 285 0.5)
Total 814246 (100) 56 512 (100)




Table 1.5B Relative frequency distribution: Number of enterprises in U, Uye,
and U by size group at November 2001

Nov 2001 (%), U | Births during Nov 2000 — | Intersection set (%), U,
Nov 2001 (%), U,
0 613144 (74.0) 62 383 (87.8) 550761 (72.7)
1-4 147755 (17.8) 6979 (9.8) 140 776 (18.6)
5-9 33415 (4.0 987 1.4) 32428 4.3)
10-19 17763  (2.1) 315 0.4) 17 448 (2.3)
20-49 10381 (1.3) 214 (0.3) 10 167 (1.3)
50- 6329 (0.8) 175 0.2) 6154 (0.8)
Total 828 787  (100) 71053 (100) 757 734 (100)

Remark 1 This section has illustrated the coverage problem when using the
BR as frame for business surveys. It should be noted that the results presented
in the following not only apply to business surveys, but also to other kinds of
surveys.

1.4 Notations and definitions

The structure of the frame, the information it contains, and the quality of
that information will determine the type of sampling designs and estimators
that can be used in a survey. If the frame contains auxiliary information
this information can be used for (1) special sampling techniques, such as
stratification and probability-proportional-to-size sample selections, and/or
for (2) special estimation techniques, such as ratio or regression estimation.
As already mentioned in section 1.1, we assume that the frame enables direct
element sampling.

If there is a one-to-one relationship between the elements in U and the
elements in Ur the frame is perfect for the target population in the sense
that it will be possible to give every element in U a positive probability of
inclusion in the sample to be drawn - a necessary condition for unbiased
estimation.

We assume that there are () auxiliary variables in the frame. Let xy
denote the value of the auxiliary variable x  associated with frame population
element k& € Up, i.e. Xp is a column vector of () components. In the situation
when Up is a perfect match to U we will use x to denote the auxiliary variable.
Associated with each element k € U is a fixed but unknown value yy, for the
study variable y.



Let sp denote a sample of size n,, drawn from Up. Furthermore, let 7p), =
P (k € sp) and mpg = P (k,l € sp) denote first- and second-order inclusion
probabilities. To simplify expressions derived in subsequent sections, let
App = Tpw — e For a single element, let the symbol ~ symbolize
division by 7 gy, i.e. Jx = yr/mrk. Also, for pairs of elements, let ~ symbolize
division by Tk, i.e. AF’CI = AFkl/ﬂ—Fkl-

Remark 2 In the special case when Up = U we drop the sub-index F i.e.
denote the sample s, its size ng, and the inclusion probabilities my, ™ and Ty
respectively.

Figure 1 illustrates the structural relationship between a target popula-
tion and an imperfect frame from which a sample is drawn.

Figure 1 Structural relationship between a target population and an imperfect
frame from which a sample is drawn

Frame population: Ur
Size: Np

Sample: sz
| —T1 Size: l’l,vF
Soc
S U VPP PP - .
s i Target population, U

Size: N

The target population is dotted to stress the fact that both the under-
coverage set and the intersection set are unknown. In this figure both under-
coverage and overcoverage are present. There are two basic subsets of the
selected sample sp:
sample elements that belong to
the target population.
sample elements that belong to
the overcoverage population.

5]=SFQU]

soc = sr NUoc
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The (random) number of elements in s; and spc are denoted ng, and ns,,
respectively.

The parameter of interest is the population total of y,

tyy = Zyk = ZUyk

keU

To simplify, we assume that all y; are positive.
Since U; and Uy are exhaustive and mutually exclusive on the set U we
may write the parameter as

byu = tyu, + tyuye

If it is possible to identify the set s;, as the case may be, we are able to
use the theory of domain estimation in order to estimate t,;;,. When there is
reason to assume that the undercoverage is negligible it should suffice to use
fyUI as estimator for ¢,;;. However, if this is not the case we must find a way
to guesstimate tyy,. -

1.5 Outline of the paper

The paper has the following structure. In section 2 we give a short introduc-
tion to estimation under ideal survey conditions. The standard estimation
setup in the presence of imperfect frames is discussed in section 3. In section
4 the concept of the register population and the up-to-date current register
is presented and we discuss the improved estimation setup this will entail.
Finally, some notes concerning future work are given in section 5.
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2 Estimation under ideal survey conditions

Nonsampling errors are normal features of any survey. However, to fix ideas
and to give some results that later will be extended to deal with more realistic
survey setups, we briefly introduce estimation under the assumption that
there are no nonsampling errors. In this ideal situation a sample s is drawn
from Up = U according to a sampling design p(s), with first- and second-
order inclusion probabilities 7 and 7. We assume that there are J auxiliary
varibles, denoted by xi = (21, ... , Tjk, - - - k) .

A widely used estimator in the ideal estimation situation is the generalized
regression estimator (GREG), which is introduced in section 2.1.

We will also introduce estimation for domains in section 2.2.

2.1 The generalized regression estimator

The generalized regression estimator (GREG) is defined as

greg = D G+ (3} =Y kak) B (1)
where

(2)
f (3)

s)}
I
H) /\
><
\/

with ’/I\‘xxs = >, ckXpX), and fxys = > . cxXxUk. The factor ¢y is a suitably
chosen weight assigned to all £ € U. In a model assisted approach it can for
example be chosen as ¢, = 1/0%, where o} expresses the statistician’s best
opinion of the residual variability of y in a linear relationship with x;. For
details, see Sarndal, Swensson, and Wretman (1992).

We can view fyUgreg as an attempt to improve over the basic 7 estimator
YUk = fwa- Explicitly, the regression estimator is equal to the 7 estimator
plus an adjustment term.

Remark 3 The GREG can be expressed in terms of g-weights,
tyugreg = ), dighsye (4)
where dy, = 1/ and grs = 1+ (O %k — Y. Xx)' Tl cuxy.

12



The GREG can be seen as a special case of calibration. Calibration is
a technique that, with starting point from the basic 7 estimator tAyU7r =
> . dryk, creates a new estimator fyUcaz = > . wiyk. This estimator has
new weights wy, that lie as close as possible to the original sampling weights
dy = 1/m, subject to the calibration constraint ) wixy = > x,. When
minimizing the Generalized Least Squares (GLS) distance function

ZS Ck (wk - dk)2 /dk,

the calibrated weights are given by wy = digrs (see Deville and Sarndal,
1992). Thus we may express the calibration estimator as

fyUcaz = ZS WYk
= ZS Ur + (ZU Xy — ZS ik)l B (5)

Hence, using the same ¢ in fyUgreg and LtyUcaz, the two estimators coincide.

Using first order Taylor linearization, it can be shown that fyUgreg is ap-
proximately unbiased for ¢, = >, yx with the approximate variance given
by

AV ('EyUgreg) = Z ZU AklEkEl (6)
where Ej, = Ey/m, = (yx — x,B) /7, and where

-1
B = T;;Utny = (ZU CkaX;C) ZU CeXEYk.

(For a detailed proof, see Sarndal et al., 1992) A variance estimator is given
by

v (tyvgreq) = Z ZS At (Grsrs) (G15615) (7)
with €5 = egs/mp = (yk - X%ﬁ)/ﬂk

2.2 Estimation for domains

Consider a partitioning of the population U into D domains, denoted
Ui,... Uy ..., Up. Let Ny be the size of Uy. As before a sample s is drawn

13



from U. Let s4 = sN U, denote the part of s that happens to fall in Uy. Also
let

0 otherwise

{yk if ke Uy
Ydrx =

The objective is to estimate the domain totals ta = D, Yar = Dy, Uk, d
1,....D.
2.2.1 Basic estimators

A simple estimator for the domain total when Ny is unknown is the domain

7 estimator
tyv,r = Z Ydk = Z Uk = st Yr/ T (8)

If the domain set Uy is small the estimator will have poor precision.
When Ny is known, an alternative estimator is

tyv, = Naiis, = Natyu,m/ N 9)

where Nd = st 1/mk. This estimator would be preferable to fyU = since the
variance of ¢y, ordinarily is smaller (see Sirndal et al., 1992, p. 391).

2.2.2 Regression estimators

When auxiliary information is available improved domain estimators may be
obtained by using the regression approach.
Four alternative regression estimators for domains are as follows:

(i)

N !
d j : - =
= X Bs ]_0
Nd Sd k> ( )

~i _ Na §
tyUd'reg - Nd st Yk + (

where N, = > s, /7K, Ny is known and

B 17
Bs = T txys

XXs

-1
~/ ~
= (g kaXka) § kaXkyk

14



Byyreg = D, i+ (ZUd X -y ik)' B, (11)
(iii)
tA?(Jz;;i)Teg = st Uk + (ZU Xk — ZS 5{]‘3)/ :B\S,Sd (12)

where
B.o, = Tty
-1
= (Z Ckxki;:) Z CLXkUk
S Sa
(iv)
v - - N
ty(;UC)lreg = st Yk + (ZUd XE — st Xk) BSd (]_3)
where
B,, = Txu, by,

-1
= E X, E 7 14
( . CkaXk) s CrXgYk ( )

The estimators (i) and (ii) are suggested in Sérndal et al. (1992). Both
estimators require known auxiliary totals ZUd xj for the domain. If

A~

Do, (yk — X;CBS) is identically equal to zero the estimators (i) and (ii) agree.
If not, then (i) is usually preferred to (ii) when N, is known. The reason is
that the size of s; is random and the term (Nd/Nd) > (yk — X;Cﬁs) /7 in

Sd

(i) tends to be less variable than the corresponding term (yk — x}C]/E’\)S) [Tk
in (ii). However, if a main objective is additivity, i.e. the estimates in differ-
ent subpopulations should add up to the estimate made for the population
as a whole, then (ii) should be used despite some loss in efficiency compared
to (i).

Estimators (iii) and (iv) are discussed in Estevao, Hidiroglou, and Sarndal
(1995). The domain estimator (iii) will produce little or no gain in precision

15



due to regression. The reason for this is that the fit of the regression of the
domain variable y4 on x through the model &

Yar =x,B+¢e,  for keU (15)

where E¢ (e) = 0, Varg (g) = ¢x0? and Covg (eg, ) = 0 for all k # [, will
sometimes be mediocre because of the special nature of y4,, which equals yy
inside the domain but is always equal to zero outside. The important proper-
ties of (iii) is that: (1) the g-factors produce additive domain estimates, and
(2) the g-factors are unchanged from one domain to another. The estima-
tor (iv) requires known auxiliary totals for the domain itself. It also requires
that each domain should contain enough observations to avoid unstable slope
estimates B, .

Remark 4 A variant of f;gireg in eq (18) would be

/
Miv,alt) Nd o Nd -~ 5
tyUdreg - Nd E sy Yk + ( U, Xk — Nd g Xk> Bsd (16)

Sd

which would be less variable than (13). However, if the domain is very large
the possible gain in efficiency will be modest.
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3 Imperfect frames - standard estimation setup

In the presence of frame error, i.e. when Up # U, a sample sp is drawn
from the frame according to a sampling design p (sr), with first- and second-
order inclusion probabilities mr, and 7y respectively. The frame contains
an auxiliary vector, i.e. we have for every k € Uy :

7
XFk = (xFlk, «oo s TRk, - - -SEFQk)

Furthermore, we have the known frame population total

!
top = (topys - - gy ,tIFQ)

where t, = ZUF TFgh-

Using this setup we will at most have information on target population
membership/non-membership for every k € sp at the estimation stage of the
survey. Furthermore, the extent of the undercoverage will be unknown. In
this section we will illustrate two different cases that might occur in the pres-
ence of frame error, (i) information on target population membership/non-
membership is unknown for every k € sp, and (ii) information on target
population membership/non-membership is known for every k € sp.

Firstly suppose that information on target population membership/non-
membership is missing for every k € sp. Thus, it is not possible to identify
the two subsets of sp, i.e. sy and soc.

Assume that there exists a y-value for every k € Uy, i.e. for every k € U;
as well as for every k € Upe. If so, a y-value will exist for every k € sg. Since
information on target population membership/non-membership is missing
for every k € sp the statistician is apt to use an estimator f,p,. for t,i,. If
E (fyUF) = t,u, the unknown bias of ¢,;;, with respect to t,; is given by

B (LtyUF) = tyup —tyu

(t'yUI + t’yUoc) - (t'yUI + t'yUUC)

tyUoe — tyUye

= Noc Yoc — Nuc Juc (17)

Obviously, if the difference between the mean values of y in Upe and Uy is
modest, the size of the bias depends on (1) the difference of the number of
elements in the overcoverage set and undercoverage set and (2) the magnitude
of the mean values oo =~ Jyc.
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Remark 5 The assumption that we have information on yy for every k € sp
may be somewhat unrealistic. The situation when the value on yi s missing
for some k € spc, due to the fact that element k has ceased to exist, is more
likely to appear.

The situation changes if information on target population membership /non-
membership is available for every k € sp. This information may be at hand if
the sample data give information on target population membership for every
sample element. In this situation we assume that information on g is at
hand at least for every k € s;. There may be y,-values available for some
k € spc, but not for all, since some elements may have ceased to exist.

The given information makes it possible to identify the subsets s; and
soc, and thus ng, and n,,, are known.

Furthermore, we have access to the sample totals

ZSI Y and ZSI XFg

In the described situation we are able to use the methods of domain esti-
mation in order to estimate ¢,;;,. However, using an (at least approximately)
unbiased estimator ¢,y, of t,r, in order to estimate t,;; will lead to negative
bias since y, > 0. The bias and relative bias are given by

B(tAyUI) = _tyUUC (18)
and
R tou 1
RB(t,y,) = -2 = — 19
( yUI) t?JU 1+ tyUI/tyUUC ( )

respectively. Hence, the bias will be substantial unless ¢, is very small
compared to t,,, and we ought to find a way to compensate for this presumed
bias. Realizing that no information on y; exist for the elements k& € Uy we
have to depend on more or less speculative approaches in order to adjust for
undercoverage.

Example 3.1 As a simple illustration of the possible size of the relative
bias, let us first rewrite the relative bias as

. 1
RB (ty,) = - Nr yu
[+ —
NUC Yuye
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If yu, = Yu,. the relative bias is given by

_ Nuc
N
Using data from table 1.1 in section 1.3 we get RB(f ) 771053
in rom .1 in section 1.3 w = — ~
8 & yUr 828787

—0.086, i.e. the use of £y, will in this case lead to a negative relative bias
of 8.6 %. Furthermore, if gy, > Yuy,., as table 1.5B indicates, the absolute
relative bias might be even larger. U

Under the assumptions that (1) information on target population member-
ship/non-membership is available for every k € sp and (2) information on y
is at hand for every k € sy, we will first present two approaches for estimating
tyu, as a basis for the more difficult problem of estimating ¢, .

3.1 Estimation of ¢y,

Using techniques for estimation of a domain total, the most simple estima-
tor (corresponding to t,u,r) for estimating the total of U; is the domain =
estimator

tyyr = Zs, Uk = Zs, Yk/ Tk (20)

An alternative estimator, when N is known, is
tyo, = Nijs, = Nty / Ni (21)

where N = ZSI 1/mpg. This estimator would be preferable to tAyUI7r since

the variance of ,;, ordinarily is smaller than that of Z,y,,. But since Nj is
unknown, %,y, is inapplicable in this case.

Remark 6 As stated in section 2.2.1 the estimator fyUI,T will have poor pre-
cision if the "domain” Uy is small. However, this will not be the case in the
present context, since it would mean that the frame would be useless for the
survey.

We now turn to regression estimators for t,;,. Recall that in section
2.2.2 four alternative regression estimators for domains proposed by different
authors were given. We will, under the assumptions made in this setup,
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examine whether any of these four estimators are possible candidates for
estimation of ¢,y,.

In order to facilitate the discussion in this and following sections we begin
by rewriting these estimators using a notation that better fits the situation
where the domain of interest is U; of size N; and where the auxiliary vector
is xp. This gives the following expressions:

(i)

i N; . . PN
tg(yglﬂeg = N Zsl Yk + (ZUI XFk — Zs; XFk> Bxpsp (22)
1

where Nj is known, N; = Zs, 1/7pE, and

N;
Ny

~

B = Ty

XFSF XFXFSFtXFySF
1

= Ko ) j 23
(ZSF CkXFkXFk) ZSF CkXFrYk ( )

is the estimated regression coeflicient in Up.
(i)

(i . - V=5

t;U)Ireg = Zsl Yk + (ZUI XFpk — Zsl XFk) BszF (24)
(iii)

PN
XFrEk — Z sch) BszF,sz (25)

fgi,?jreg = ZSZ Uk + (ZU o

F

where
~ -

~
BXFSFvSI - xeFsFtXF’ySI

-1
= E X E 7 26
( o CkXFkXFk) o CkXFrYk ( )

~iv . - I ~
t;l(;Uireg Zsl Yk + (ZUI XFk — Zsl XFk) Bszl (27)

where

~

B.,,, = T;!

XFSI XFXFSItXFySI

—1
= E X’ E 7, 28
( o CkXFkXFk) 5 CkXFEYk ( )

is the estimated regression coefficient in Uyj.
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Remark 7 We use the B index xr to underline the difference between the
regression coefficient under the standard estimation setup and under the ideal
situation.

It is immediately clear that none of the first two estimators can be used,
since they both require knowledge of the domain total of the auxiliary vector
ZU, xpr and since their common By, s, requires yg-values for every k € sp.
The first estimator also requires knowledge of N;. None of these requirements
are fulfilled.

The third estimator is a potential candidate, since it is based on available
y information only. However, for reasons given in section 3.2, it will only
produce little or no gain in precision due to regression, and hence we do not
see this estimator as a useful alternative to the simple domain 7 estimator,
tAyUﬂr.

Hence, the only estimator that might be a potential candidate is the
fourth estimator. However, like the first two estimators, it requires knowledge
that is not at hand, although not to the same extent. The only information
we now lack is the value of ZUI Xrr = tz,0u,. This suggests an estimator
that might be used in some surveys.

Suppose that we, using external information, can come up with a rea-
sonably close approximation to t;.u,, say EzFU,- Using this approximation
instead of ZU, Xpr = tz,u, in the fourth estimator gives the following alter-
native estimator for ¢,,:

~ ~ I~
tyU]Teg = ZSI gk + (ta:FU] - Zsl XFIC) BXFSI (29)

Remark 8 An alternative expression of tyy,req 15

tytrreg = Z WikYe = Zs, V1Y (30)

where Wy = Vi /T pr and

1

U, =1+ ¢y (EmFUI — Z XFk) (Z CkXFkXFk) XFk (31)

The expected value of Z,1,.¢, is given by (for a proof, using Taylor lin-
earization, see appendix A.1)

E (E’yUﬂeg) = t?/UI + (EIFUI - tIFUI)/ BXFUI (32)
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~1
— _ !
its bias is given by

B (t’yUﬂ“eg> = (EwFUI - tIFUI)/BXFUI (33)

The approximate variance of #,1,.¢, is given by (again, for a proof, see ap-
pendix A.1)

AV (Byireg) = Y ZU, Apu B Ent (34)

where App = Tpp — Tremr and
(o7 S /!
EFk = (1 + alckka) EFk

with al] = (i:'mFUI iUFUI) T_

_ /
xpxpUT and Epp = Y — XFkBXFUI'

A variance estimator would be

(tyvrreq) ZZ Apwéh e (35)

&I _ ~/ . ~l 1
where e, = (14 &jcxXpr) epr, with & = ( wplUy — Z ka.) TXFXFSI and

/
€rk = Yk — XFk:BXFSI‘

Remark 9 An alternative to €3 would be e5L. At present it is not clear
which choice is the better and some further work is needed in deciding whether
to use oy or &} in the variance estimator.

Now, even if we have managed to come up with an estimator fyUﬂeg that in
some circumstances might be good for t,1;, (if t.,v, is a close approximation
to t,,y, and if there is a strong linear relationship between y and xr) we
are not finished, since what we are looking for is a good estimator for ¢,y =
tyu, + tyuy. . Hence, using fyUﬁeg for ¢, is likely to lead to underestimation
(since y; > 0), which will be substantial unless ¢, is very small compared
to t,y,. Since we have no information on the elements £ € Uyc, neither
from the frame, nor from the sample, we have to resort to more or less
speculative approaches. For example, looking at the estimator #,p,., above
as an estimator for t,; = t,u, + tyu,., its bias is approximately given by

~ /
(t«TFUI - thUI) BXFUI - t'yUUC
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and, hence, we should not try to find an approximation t,,.y, close to t,.p,.
Instead we should try to find a vector t such that

(JE - thUI>/ Bx.v; = tyuye

If such a vector t could be found, we might as an estimator for tyu take

~ ~ I ~
o= i+ (E=D %) Buny, (36)

In the following section we will discuss two such more or less speculative
approaches.

3.2 Estimation of ¢,y
3.2.1 A simplistic approach

One simple approach in adjusting for the undercoverage is based on the fol-
lowing reasoning. Suppose hypothetically that we know the relation between
the population total ¢,;; and the domain total ¢,;;, and that it may be ex-
pressed as t,y = 0,tyu,, Where 6, is a known constant.

Remark 10 Since t,y = tyu, + tyu,. we can alternatively express this rela-
tion as tyu,e = (64 — 1) ty, .

In this hypothetical situation we could as an estimator for ¢,y use 6yfyUI,
where fyUI is an estimator for ¢,y,. Obviously, since §, is unknown, it is
not possible to use 6yfyUI. But suppose that the statistician, using prior
information, has access to a good approximation of é,, say Sy. This would
make it possible to use the estimator

~

tyUfsy = Sy{yUI (37)

If #,17, is (approximately) unbiased for the total t,;,, the (approximate) rel-
ative bias of tAyUgy is

- &y
RB tA ) - 5ytyUI — tyU . g‘sytyUz - tl/U
wey) t N t
yU yU
- -1 (38)
)



while the approximate variance is given by
~ ~2 ~
AV (tyUgy) — 5 AV (L,0,) (39)

where AV (f,,) depends on the choice of #,y,.
Any of the estimators proposed above for ¢,;, are possible to use in EyUZsy-

However, note that fyUﬂeg will be biased for ¢, if t, »U; 1s not close to t, .,
leading to a more complex expression for the relative bias in (38).
3.2.2 A more elaborate approach

Recall from the end of section 3.1 that with a suitable choice of the vector t
in (36), i.e. in

~ -~ ! AN

tyU = Zsl Yk + (t - ZSZ XFk) BszI
this estimator will be a good candidate estimator for ¢,;;. Could such a vector
be found? One way of reasoning for finding an answer is as follows.

1. The estimator #,7,,¢, is partly based on the approximate linear relation
Yk = XpBz,u, for ke U

Suppose, hypothetically, that the same type of auxiliary x p-information
as the one used for t,1,,¢, Were available for every k € Uy as well, and
let

Y = X/FkBLEFUUC for k€ Uyc

2. Furthermore suppose, still hypothetically, that B, ,.v,. = Baz,u,, i€
that

Y = XIFkBmFUI for k€ Uyc

If both these, most hypothetical, assumptions were correct, it would be rea-
sonable to use g = X, Bx,s; (K € Uyc) as predictions for the unknown
yr-values. Hence, as an estimator for t,p,, = Dy, . Yk, We might use

~ . N . / ey
tyUUC - E Uve yk—E XFkBXFSI

- tl BXFSI (40)

zrUuc
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Now, unfortunately, we do not have access to t; .., and hence ¢, cannot

be used.

3. However, suppose that we, again using some external data, can find a
close approximation to t,.u,., say tz.u,.- 1f so, a possible estimator
for t,1,,, would be

tyUUC = tinFUUCBXFSI (41)

The above reasoning, finally, suggests the following estimator for ¢,y

bytreg = 2?yUﬂ“eg + 2?ych
—~ / AN —~ A~
= Y et (thU, -3 ka) By + B, 1y Brres
~ -~ PN
= ZSI gk + ((tzFUI + t:EFUUC) - ZSZ XFk) BszI
~ PN
= ZSI gk + (tEFU - ZSI XFk) BXFSI (42)

where t,, 7 is an approximation, using external information, to the fictitious
te.u.

Remark 11 An alternative way of reasoning about the hypothetical linear
relationship between y and xp in Uyc would be the following: suppose, hy-
pothetically, that the linear population relationship between y and Xp were
the same for elements in Uyc as for elements in Uy, but for the factor Ap,
where Ap is a Q X Q diagonal matriz with values Ap1, ..., Apg on the main
diagonal. I.e. we assume, hypothetically, that

= XpArBx,u, for ke Uyc

The assumption in item 2 above is a special case of this reasoning, i.e. when
Ap = 1p, the identity matriz.

Comparing the expressions for fyUTeg and fyU, we see that the only differ-
ence is that t has been replaced by t, U, and we have thus given an example
of what might be needed to arrive at a useful t vector. Admittedly, the sug-
gested estimator f,i,¢, relies heavily on several assumptions. However, as
will be seen later in section 4, there are survey setups where we can get rid
of some of these assumptions.
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Remark 12 An alternative expression for fyUTeg 18

yUreq Z wkyk Z “kgk (43)

where Wy, = U/ T g and
_ 1
U =14ci (thU - Z XFk) (Z CkXFkXFk) XFk (44)

for k € sy

The bias of fyUTeg with respect to t, is given by

!/

B (E?JUTBQ) = (EJEFU - t»'EFUI) BXFUI - tyUUC (45)

Furthermore, the approximate variance is given by

AV ( yUreg = Z ZUI AFklEv’%kEv’?’l (46)

where
Eg, = (1+ d'cixpi) Epg

with o = (t,,0 — mFUI) T;FXFUI and Epj = yy — X5 Bx,u,. Both the bias
and the approximate variance of tyUTeg follows from Taylor linearization of
tyureg- These results follows easily from the proof of the Taylor linearization

of t,u,reg Which is given in appendix A.1.

A variance estimator would be

yUreg Z Z Apuliyé (47)

A ~ ! . Al A 1
where €%, = (14 &'cpxpy) epr, with &' = (IFU D s ka) emxps, and

/
erk = Yk — XpBxps;-

Remark 13 An alternative to e, in V (1 (tyreq) would be efy,. At present
it is not clear which choice is the better and some further work is needed in
deciding whether to use o' or &' in this variance estimator.
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In a few, probably rare, cases it may be reasonable to assume that the
known t, ., could serve as approximation to the fictitious t, .. In these
cases a variant of the more elaborate approach would be to use the known
t,,u, as an approximation to the unknown t,.;. Thus, for equation (42)
this will result in

A PN
letlreg = ZSI gk + (thUF - Zsl )V(Fk) BXFSI (48)

As an example, suppose that xpy is scalar, i.e. Xpr = Tk, and ¢, = 1. Then
jolt - — v - o) e O
tyU’r‘eg = Zs; Yk + (thUF ZSI ka) ZSI T
t:cFUF -«
ZS] :i‘Fk ZSZ Yk
which is biased with bias given by

) =t t?/UI

B (_Ealt epUp -

yUreg - tl/U

zrpUT

For the special case zp, = 1 for every k € Up, the bias is given by

(2 - N v _(gu, N
B (t’ygTeg) = Nr ]y\f; — tyv = Nryu (ﬂ_UI — N—F)

Obviously, the bias can be positive as well as negative. If, for example,
yu, < Yu, it will always be negative if N > Np, while if gy, > gy, it will
always be positive if N < Ng.

3.3 Conclusion

In the standard estimation setup there exists no information on the undercov-
erage. In cases where it seems reasonable to assume that the undercoverage
is negligible it may suffice to use #,y;, as an estimator of t,;;. However, if this
is not the case, the statistician faces a most delicate situation, where he/she
has to find a way to adjust for the negative bias the undercoverage brings
about. Since no information exists on the undercoverage this adjustment will
rely on more or less speculative reasoning which may have to be applied to
many study variables separately.
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4 Imperfect frames - improved estimation setup
using an up-to-date current register

4.1 Introduction and notation

Now we introduce the concept of the register population, denoted Ug. The
register population is the set of all elements that can be reached via an up-
to-date current register. The current register is not at hand at the sampling
stage of a survey, but it may be at hand at the estimation stage. The current
register could be an updated version of the frame. Or it could be a register
which is completely different from the original frame, i.e. a newly devel-
oped register. The register population accessible from the current register
matches the target population better than the frame population. Henceforth
we assume that the current register is perfect in the sense that the register
population equals the target population, i.e., Ugp = U.

Example 4.1 A survey conducted at Statistics Sweden is the ”Kortperi-
odisk industrienkat”. The aim of this survey is to measure variables such as
order intake and order deliveries every month of the year. The target popu-
lation consists of industrial enterprises (”industriféretag”) and the Business
Register(BR) is used as frame. There is a cut-off limit at 10 employees, i.e.
enterprises with less than 10 employees are deliberately excluded from the
sample selection. The sample is drawn in March and the questionnaire is
sent out to these enterprises once a month in March to July. A new sample
is drawn in August and the questionnaire is sent out to these new enterprises
in August to February. Although the sample is renewed during the year it
is still likely to be a certain amount of ”births” and ”deaths” in for example
the period between August and February. However, since the BR is updated
during this period there is a possibility that the updated BR is a better match
to the target population then the BR version used for sampling frame. The
updated BR is thus a potential candidate to serve as a current register in
this survey. U

We assume that the current register contains auxiliary information, i.e.
associated with every k € U is a vector xi, where

/
Xk=(1131k,... ,xpk,...xJk)

and

te = (torsev stugseensta,)
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where ¢, = > v Tk The J variables in x;, may consist of updated values of
the variables in xpg. In this case J = Q.

We now have an improved setup for making inference to the target popu-
lation. Firstly, it would be possible to draw a probability sample from Uy .
This sample would enable us to calculate an objective estimate of ¢y,
However, as is often the case, the time schedule and/or the survey budget
may not admit the extra selection of elements. But the current register also
provides information on the undercoverage. We now have an auxiliary vec-
tor xi, not only for the elements in U, but also for every k € Uye. This
information may be used with the regression estimator in order to get better
estimates. Besides, for the elements k € U; the vector x; contains more
up-to-date information than does xp,. The current register also enables the
identification of the subsets

Ur,Uoc and Uyc
and thus
Nr, Noc and Nyc

are known quantities.

Finally, the information at hand also implies that it is possible to identify
the subsets s; and spc from sp irrespective of the information from the
sample (see previous section).

In the rest of this section, we will study in what way the access to a current
register could improve inference as compared to the standard estimation
setup.

4.2 Estimation of t,y,

Recall that in the standard estimation setup two basic estimators were pre-
sented, the simple domain 7 estimator

fyUIw = ZSI U = Zs, k)T Fk (49)

and

EyUI = NIgSJ = NItAyUnr/NI (50)
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In the present setup the total N; is known and it is thus possible to use fyUI.
This is an improvement compared to the standard estimation setup, since
the variance of f,y, ordinarily is smaller than the variance of %,

In section 3.1 we presented four different regression estimators for do-

mains. For different reasons we rejected three of them, i.e. f;%ﬂeg,f;?ﬂeg

and t;”UZI)Te o~ Now, these three estimators are, for partially the same reasons,

still rejected, whereas we can, using the assumptions under the improved

estimation setup, modify the fourth estimator, ) In the standard setup

yUrreg*
we had
i) . - \'p
byl reg = ZSI Yr + (ZUI Xpk — Zs, XFk) Bx.s; (51)
with
—~ /\71 —~
Bszl = TxeFsI XFYSI

-1
_ %! Y 52
(Zs, CkXFkXFk) Zs, CrXFrYk ( )

and the unknown total
thUI = ZU XFk (53)

We suggested the use of

~ ~ I ~
tyUITeg = Zs; gk + (thUI - Zs; XF/C) BXFSI (54)

which required the statistician to come up with the approximation t, U -
Using the known total t,y, = ZU, xy, instead of the unknown t, ., and
the vector x; instead of xp, we now can use the estimator

rnew - - !~
t@/Uﬂ‘eg = § :51 Yk + (tEUI - E st Xk) BXS] (55)
where

~ o~
BXS] =T txysl

—1
— %! Y 56
( E . Ckxkxk) E , KX (56)

Obviously, this is an improvement from the standard setup, since (1) we have
the known total t,;, = ), X instead of the more ore less correct conjecture

t..u, of t,.u, and (2) we have the updated vector x instead of xp.
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Remark 14 An alternative to (55) would be to modify (16) to fit this situ-
ation, 1.e.we would have

N N "
rnew,alt VI -~ I ~
tyUITeg - NI ZSI Yk + (thI - NT Z Xk> Bst

I 81

However, in this paper we consider mainly situations when the overcoverage
is limited and the possible gain in efficiency over (55) will be modest.

tnew
yUrreg

ey = Zs, WrkYk = Zs, V1kYk (57)

where wy, = vy /T and

! -1
Vi = 1+ Ck (thI — Z }Ek) (Z ckxkfck) Xk (58)
Sr Sr

An alternative expression of is

By Taylor linearization the estimator t;}f]wreg is approximated by
Zg’qfreg = t;U]BXUI + Zs, Ey (59)
- 1
where Byy, = Tx;UItny, = (ZU, ckxkxk) ZU, cxpyr and B = yp —

X Bxu,. The proof of this linearization follows easily from the proof of the
Taylor linearization of ¢,i,re, Which is given in appendix A.1. The expected
value of £ s given by

yUrreg
E (AZE;;JTG!]) = t;U]BXU] + E (ZSI Ek)
= Ly, (60)

which indicates that this estimator is approximately unbiased. The approx-

new 3
imate variance for {777 is

AV (B2 ) = Z ApwEE, (61)
where App = Tpr — TrrTR. A variance estimator would be

rmew
yUIreg Z Z A prvikérvné (62)

where vy, is given by (58) and e = y — XkasI
Obviously, even if this is a good estimator for t,;,, we still have the
problem that we lack information on y for every k € Upc.
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4.3 Estimation of ¢,y in analogy with the standard
setup

Two approaches were suggested under the standard estimation setup. Obvi-
ously, corresponding approaches may be used also under this setup.

4.3.1 The simplistic approach

Recall that the hypothetical reasoning in the simplistic approach in section
3.2.1 was, in short:

1. The relation between the population total t,;; and the domain total
tyu, was expressed as t,y = 0,t,,, where ¢, is unknown.

2. A good approximation, Sy, of 6, was at hand.

3. As an estimator for ¢, use tyus, = dytyu,, where t,, is an (approxi-
mately) unbiased estimator for ¢y, .

Obviously, under this improved estimation setup we will, using this hy-
pothetical reasoning, get the same general results for tyus,, i-€. if t,p, is
approximately) unbiased for the total ¢,;,, the (approximate) relative bias
1Y y yUp pPp
for tAyU;sy is

1

re (i B SytyUI — tyu _ i‘sytyUz —tyu
( yU%) B t N t
yU yU
= 21 (63)
by
and the (approximate) variance
~ ~2 ~
AV (tyU(;y) = 6,AV (tyu,) (64)

where AV (EyUZsy) depends on the choice of ,r;,. However, the difference now
from the standard estimation setup is the new possibilities with improved
estimators for ¢,;,, i.e. (approximately) unbiased estimators with smaller

. . rnew
variances, viz. t,y, and Ly reg-
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4.3.2 The more elaborate approach

Recall from the standard setup, that the adjustment for undercoverage using
the more elaborate approach relied heavily on several hypothetical constructs:

1. A good approximation t,,y, to the unknown t, .y, .

2. A close approximation t to the hypothetical t

zrUuc zrUyc:

3. An assumption saying that, for k& € Uyce, the linear relationship be-
tween y and a hypothetical xp is the same as for k € Uy, ie., yp =

/
XFkBXFUI'

Now, since we can identify every k € U, and whether it belongs to U; or
Uyc, and have an updated auxiliary vector, x, available for every k € U; and
for every k € Uyc, we are in a much better situation: t,;, as well as t,u,,.
are known. This means that we are not at the mercy of item 1 and item 2
above. However, the probem with finding an estimator for ¢,y still holds.
Retaining the assumption on the linear relationship between y and the auxil-
iary variable (x in the present setup) a possible new estimator for ¢,; would
be

rnew _ Inew N
yUreg — yUIreg+tyUUc

PN ~
= > it (ten = D0, %) B+t Ba,

’
= g+ (ter = > %) B 65

Zsl Yk U Zs; k 1 ( )

Remark 15 If we assume that the linear relationship between y and X in
the undercoverage set is better described by using a subgroup of sy, say Sig,

we would use tl; By, = thy, . (2519 ckxkk;g) ZSIg ckXplk to estimate

tyUUC’

Remark 16 An alternative way of reasoning about the hypothetical linear
relationship between y and x in Uyc would be the following: suppose, hypo-
thetically, that the linear population relationship between y and x were the
same for elements in Uyc as for elements in Uy, but for the factor A, where
A is a J x J diagonal matriz with values A1, ... ,\j on the main diagonal.
Le. we assume, hypothetically, that

Y =~ X;CBXUUC
X ABxy, for ke Upc
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The assumption in item 3 above is a special case of this reasoning, i.e. when
A =1, the identity matrix.

Comparing this estimator with the variant of the elaborate approach in
the standard estimation setup, i.e. with

PN
ral - ~
tyg,,.eg ZSI yk: -+ (ta:FUF - ZSI XF/C) BXFS]

we see that the situation has improved. We have an updated auxiliary vector,
x, and we can use the known target population total t,y .

new
yUreg

Azgqﬁeg = ZSI WYk = ZSI Uk'gk (66)

where wg, = v /TR and

! —1
Vg = 1+ Ck (th - Z )V(k) (Z ckxki{%) Xk (67)
Kl ST

Remark 17 An alternative expression for is

for k € sy
By Taylor linearization the estimator tgﬁ;’eq is approximated by
Azgzﬁeg = xUBXUI + Z 1 + tZEUUC inICka) Ek
= t By, + Zs, B (68)
where El" = (1 + al,cxxy) By with &, = thUch;UI and Ejy = yr — X, Bxy,-

The proof follows easily from the proof of the Taylor linearization of #,17,req
which is given in appendix A.1.

The bias of th,"”eq is given by

B (Azgzﬁeg) = ZU} Yk + tIxUUchUI - tyU

= t;UUcBXUI — lyvye (69)
The approximate variance of t’;f}‘;eg is
AV (AZ(e;;“)eg) = Z ZUI AszEgz Ela“ (70)
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where Ay = mpr — T and a variance estimator is given by

V (Bytineg) = DD, Arucirel (71)

A~

Az Al : Al 4! m—1 _ /
where ;" = (1 + &, cpxy) e with &, =t T, and e; = yp — X By,

Remark 18 An alternative to €% in V (AZfﬁeg) would be e3i,. At present
it 1is not clear which choice is the better and some further work is needed in

deciding whether to use o, or &L, in this variance estimator.

4.4 Estimation of ¢,; borrowing techniques from non-
response treatment

Recall that the sample sp is drawn from Up with inclusion probabilities
mrE. Observed values on y for k € sy are at hand. In the present improved
setup, with access to a perfect up-to-date current register, we could define
the inference situation as follows.

Let us look upon s = spc U s; U Upye as a sample that has been drawn
from Ur = Upc UUrUUy ¢ with inclusion probabilities mry = gy for k € Up
and 7 = 1 for k € Uye. For this sample we have

0 for ke€soc
Yr = yr for k€ sy
— for ke Uyc

where — represents missing values. We want to estimate the total

by = D U= Wt Y W

= ZUOC yk + ZU} yk + ZUUC yk - tyUT
0

Using this point of view, we might try to utilize approaches developed for
the treatment of nonresponse, although the missing data now is of a different
nature. Two such main approaches can be distinguished, viz. mputation
and reweighting. We will in the following only consider imputation.
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4.4.1 Imputation

First, suppose that, besides the observed y; for k € s;, we also had access to
y-data for every k € Uy, and let s = s; U Uye. Since U C Ur we could use
domain estimation techniques for estimating ¢,;;. A few examples are:

The simple domain ”estimator”

'El = 2?yU7r=tAyUT7r:Z §k=z &

ST S 7TTI€
= tAyUIW + tyUUC = ZSZ yk/WFk + ZUUC Yk (72)
or, since N is known, the alternative ”estimator”
R - . N .
tQ = tyU = NysT = ﬁty[]ﬁ (73)

where N = N; + Nyo = ZSI 1/mpr + Nyc. A third simple alternative

” estimator” would be
. Ny
ts = tyu, + tyuye = NTtyUm + tyuye (74)
I

There are several potential domain regression ”estimators”, one of which is

tA4 = tAyUIreg + tyUUC (75)
where
/
~ Yk Xk -~
tylrreqd = e Xk — — Bxs
wig =3, 2 (Y, w0, ) B,
and
~ N
BXSI = TxsttX?/SI
X, - Yk
= Z CrXk CrXp— (76)
Sr TRk SI TFk

Obviously none of the above ”estimators” can be used, since y-data are miss-
ing for all & € Uye. One approach now, would be to pick a suitable imputa-
tion technique, leading to the following data setup:

0 for ke Upc
Ye=1 yp for kel

~

g for ke Upe
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where 7, denotes the imputed value for unit k, determined by the adopted
imputation technique. There exist many imputation techniques. Some of the
more commonly used are: respondent mean imputation, hot deck imputation,
nearest neighbour imputation, deterministic and random multiple regression
imputation, including the special case ratio imputation. Usually, the different
techniques are applied within imputation classes.

We will here only consider the following deterministic multiple regression
approach. Let ug, a column vector with P components, denote the auxiliary
vector value used in producing the imputed values ¢. The vector is denoted
uy in order to distinguish it from the auxiliary vector x; appearing in the
regression estimator, since the two vectors not necessarily are identical. Let
the imputed value for element £ be determined by

Ur = u;: ]/?\)USI (77)

where

ﬁusIZ (Z hkukﬁ;g)l ZSI hiag (78)

where hy is a suitably chosen constant, e.g. capturing an assumed het-
eroscedasticity in the linear relationship between y and u.

Remark 19 If we assume that the linear relationship between y and u in
the undercoverage set is more well described by using a subgroup of sy, say

N -1 ~
. -, .
19, we would use Bys,, = (E sty hkukuk) > 51y hirugyy instead of Bys,.

Let us consider imputation using two different levels of auxiliary infor-
mation.

(1) If the frame is ”information poor”, we may simply have to use u; =
1 = hy, which leads to

g o ./B\_ZSI yk/TrFk - tAyUIﬂ'
= =

>, Umee  N;p o

Furthermore, we probably will have to insert g into the ”prototype esti-
mators” ¢y or t3. The resulting estimators coincide, and we get the estimator

A~ A~ A~

t = §= 3=Ng31 (79)
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which is biased for ¢,;;, with the bias given by
AN _ _ o _ Z_/UI
B(#") = N, — ) = Mo (2 - 1) (50)

Thus, the sign of the bias here only depends on the relation between g, and
v, while an evaluation of the sign of the bias of % _ in the standard setup,

yUreg
i.e.
ralt e — gU N
= (32

also had to include considerations on the relation between N and Ng.
The approximate design variance of t* is given by

AV (i) = (%>QZZU, A (yk - ?JU,) (yz - ?]U,> (81)

TFk TF]

while a variance estimator is given by

V)= () T8, A (BT (M)

TFk TRl

(see Sérndal et al. (1992)).
(2) If the frame is ”information rich”, we can insert ¢ into the ” prototype
estimator” t,, which gives

E;Ureg = tAyUI'r‘eg + (ZUUC u?ﬁ) BUSI (83)
Through Taylor linearization the bias of f;Ureg is given by
% - ! _
B (tyUreg) - ZUI Yk + ZUUC‘ ukBuUI tyU
= Z u;ﬁBUUI — tyUye (84)

Uvc

where Byy, = (ZU, hkuku;g)_l ZUI hruryr. A proof is given in appendix
A.2. The approximate design variance is

AV (f;/Ureg) = Z ZUI AFlekF} (85)
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— / 3 _ / !
where Fj, = Ey + o, hpu, By, with By, = v —x.Bxy,, af,= uUUc wul;
E.x = yr — u;,Bypy,. A variance estimator is given by

yUreg Z Z AFklfkfl (86)

where fk = €y + &;hkukeuk with €xk = Yk — X;Bxsl, fll = T_ and

u uUUc uus;y
_ !
Cuk = Yk — ukBUS]'

Remark 20 An alternative to &, in V(i ( yUTeq) would be o,. At present it
1s mot clear which choice s the better and some further work is needed in
deciding whether to use o, or &, in this variance estimator.

If we find it appropriate to use uy = X, and h, = ¢, we arrive at

A~

byreg = byvreq + (ZUUC X;ﬂ) Bus,

= Zs; gk + (th - ZSI ik)l ]/?;xsl

rnew
yUreg

design variance and a variance estimator for ¢*

which is the estimator ¢ from section 4.3.2, from where we get bias,
in this special case.

would be the

yUreg
Another approach for finding a variance estimator for ¢*

following.

Consider the imputation model

yUreg

Y = w8 + ey

for k € s (recall that s = s; U Upc)

Ee(er) = 0
o?ap for k=1
Be(ee) = { 0  otherwise
Now,
A;Ureg = tAyUlreg + ZUUC‘ gk
where

Uk = w0
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for k € Uy, with
B=(UaU) " UA Yy = (B )

where U is a (ns, X P) matrix with typical row element u), and A is a ng, xns,
diagonal matrix with typical diagonal element o2ay.
The error from using » ;; gy instead of >, k. in ¢}, is

IE = ZUUC Yk — ZUUC Uk
= Do Yk~ 2o w3
= Ty (B +20) — Ty, i (B+ (UATU) T UA )
= Yot~ S 0 (UAU) ' UA e

!

M
D Une Tk = 2aUye Dsy HaEh
> e €k — Nope D, Pik
Since
E:(IE)=0
we have

VAIE) = Ty, o'ax+ Ny, X, oo
- [, 0t N T pten] o 7

To find an estimator ‘75([ E) we need to estimate o®. One such o2 estimator
is given by

P 1

_ a2
O = = p e () (88)

~

Now, tyureg = tyureqg + ZUUC Jr and thus a variance estimator for ¢
given by

*

yUreg 18

~

V (E;Ureg> - V (tyUﬂeg) + ‘A/f(IE) (89)

40



Remark 21 In the improved estimation setup of the present section 4, we
have access to the known total > ;X = tyy. Using the calibration technique
under this setup will result in

fyUcal = ZSI WEYk (90)

where wy, = vy / Trg, with

/
Vg = 1+ Cr (tzU — ZSI Ck}vck) (ZSI Cka}vc;g) Xk (91)

for k € s;. Using the same ci in tyyea as in t;Ureg, we see that this estimator

A

corresponds to t! above.

yUreg

4.5 Conclusions

If no current register is at hand we will rely heavily on more or less speculative
reasoning. However, when a perfect current register exists at the estimation
stage of the survey, the estimation setup has improved considerably compared
to the standard estimation setup. For every k£ € Ur we have exact knowledge
of whether it belongs to Upe, Ur, or Uy, and hence Noe, Ny, and Ny¢ are
known. Furthermore, we have access to a current auxiliary vector x;, for every
k € U, and hence for every k € Uyc. This means that better estimators can
be used for t,y,, and that there are better prospects for estimation of the
undercoverage total ¢, although it should be remembered that this latter
estimation is not design unbiased; it relies on an assumption that it is possible
to identify a reasonably strong linear relation between a study variable and
the auxiliary vector, which is estimated using data outside Uyc. Also, it
should be noted that this work may be laborious since it may have to be
applied to many study variables separately.
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5 On frame imperfection and nonresponse

In this paper we have discussed the problem of estimating a finite population
total in the presence of frame imperfection, viz undercoverage and overcov-
erage. Typically, a survey will also suffer from nonresponse. The following
figure illustrates the survey situation in the standard estimation setup.

Figure 2 Target population, imperfect frame population and sample when non-

response has occured. Standard estimation setup

Frame population: Ur Sample: sz
Size: Np Size: n,

Target population, U
0, / Size: N

We now have four basic subsets of the selected sample sp:

rr - responding sample elements that belong to the target
population - y values exist

roc - responding sample elements that belong to the overcoverage
population - no y value exists

or - nonresponding sample elements that belong to the target
population - y values exist but are missing.

ooc - nonresponding sample elements that belong to the overcoverage

population - no y value exists

As the figure reveals the situation has deteriorated compared to the sit-
uation described in section 1.4. For the responding sample elements we are
able to tell whether element k belong to r; or roc. However, for the non-
responding elements it will not be possible to determine whether element
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k belongs to oy or opc. Hence, if the overcoverage and the undercoverage
is nonnegligible, we are in an akward situation, leading to highly unreliable
estimates.

However, when one has access to a current register at the estimation stage
of the survey and Ur = U, the situation improves since all subsets of sr may
be identified. The following figure illustrates this improved situation.

Figure 3. Target population, imperfect frame population and sample when
nonresponse has occured. Perfect current register at hand.

Frame population: Up Sample: sr
Size: Ng Size: n,,
Ooc
Toc
1
Target population, U
o Size: N
I

In this situation we can use nonresponse techniques in order to estimate
tyu,, where we also can take advantage of the fact that there will be no
unknown overcoverage, and use techniques similar to those presented in the
present paper in order to estimate ¢, .. Approaches along these lines will
be presented in a forthcoming paper.
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Appendix A: Derivations

A.1 Taylor linearization of fyUﬁeg

We have

~ -~ PN
tyU]Teg = Zsl Yk + (thUI - Zsl XFk) BXFXFS]

where

oo}

~ A~ ~ I
N (Bls,,... B, ... ,BQS,)
S~
XpXFSr XFYSI
1

~/ - -~
= ( E CkXFkXFk) E CkXFEYk
S1 S1

We can write this as

N R

~ - It - -1

ZeyUﬂeg = g s Yk + (thUI - E B XFk) TxeFsItXFysz
1 I

= f (tyUﬂrv thUﬂrv TxeFSIa thysI)

Thus, fyu,req is a nonlinear function of the m estimators Y 4k, Y., Xx,

T and ty rysy, Where T and ty rys; has the typical elements

XFXFSI XFXFSI

~

logm = E :S CkTPgkTFg'k = lg'qn
I

qO ™ E CkxFqkyk

respectively. Using Taylor linearization technique we approximate the non-
linear tyUﬂeg by a linear pseudoestimator. In general the nonlinear estimator
0 is approximated by the linear pseudo estimator 0o through

@i@():H-I—Zah (tA}m—th) (92)
h=1
where
af
ap = =
8th7r (1?17;,4..,£H7T)=(t1,..4ty)
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Letting Bx,v, = (Bis--- , Beuss--- Bauy) = Ty lxov, bxpyus, with

— / — —
= ZUI CXppXpy and ty,,u, = ZUI ckXpryr we have 0 = t,y, +

T;lx U
= FARFPUT |
(thUz - ZU, XFk) By ,v,. Furthermore we will need the following partial
derivatives:
of .
9>, Uk
of .
- = By ¢=1,...,Q
6 251 xFqk e
af - N[ A - R
8f ' - (thUI B ZSI XFk) (_TXFXFSI(I)QQ'TXFXFSI) tXF?/SI
aq',m

! ~
_ (3 } : - -1
- (thUz - sy XFk) (_TXFXFSICI)QQ’BXFXFSI)

3f it ~ m—1
= (= X, ) Tyt
q 771—

where @, is a  x () matrix with the value 1 in positions (¢, ¢') and (¢, q)
and the value 0 everywhere else and ¢, is a Q-vector with the gth component

equal to one and zeros elsewhere.
Evaluating these partial derivatives at the expected value point
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(tyvys tapvrs Txpxpvys txpyu,) and inserting into (92) we obtain

- . ~ / .
tyUireg = tyuy + (t«TFUI - thUI) Byeu, +1 (ZSI Yk — t'yUI) -

- quUl (Z OCFqk - Z QCFqk) -

- (ExFUI - thU1>/ Z Z T;FIXFUI(I)QQIBXFUI (qu’m - tqq’) +

q*1 9'<q

+ (EwFUI - IFUI ZTXFXFUI qOﬂ' - th)

-~ i .
- (tIFUI »’EFUI) T;FxFUI (TXFXFSI - TXFXFUI) BXFUI +
- 1 ~
+ (thUI - IFUI) TxeFUI (tXF?/SI - tXFyUI)
—~ I - - I
= (tIFU[ - thUI) BXFUI + ZSI yk + (thUI - ZSI XFk) BXFUI +
+ (tEFUI IFUI) T;FXFUI (tXFySI - TXFXFSIBXFUI)
-~ i & /
= (t«TFUI - thUI) BXFUI + Z E/C + thUIBXFUI +
+ (EmFU, — thUI XFXFUI Z Xk By
-t ,B 1+ (t to,0,) To! E
- thUI xpUr + Zsl + zrUr = IFUI) XFXFUIckXFk) k
>, B
S1
where E,?I = (1 + CY]CkXFk) Ek with oy = (EZEFUI «TFUI) T !

xpxpUT
/
Yk — XFkBXFUI .

Thus,

!
iFk) Bx,v, +

and Ek =

R E nleds
t’yUﬂ“eg - tprIBXFUI + sy Ek

Expected value of fyUﬂeg

E (tyvreg) =t ,0,Bxpv, + E (Zs, E,j‘f) =1t B, + ZU, B
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where

U, EI?I = ZUI (1 + (thUI - thUI)/T;FxFUICkXFk) E,
- ZU} Ek * (ExFUI o thUI), T;;‘XFUI ZU} CkXFkEk
— ZU} Ek + (ExFUI — thUI>/ T;(;‘XFU] ZUI CRXFEYk —

g I m—1 /
— (torv; = torvr) Trrxpu, E o CkXFEX p By

and we have

E (fyUlreg) = Ef’EFUIBXFUI + ZU} Ek = ZUI Yk + (ELEFUI - thUI)I BXFUI

A
*

A.2  Taylor linearization of ¢,

We can write

I ~ ~ ~ P
Pk _ § : - 2 : S -1 / -1 _
yUreg sy Yk + (thI - sy X]‘C) Txxsltx’ysl + tuUUCTuusltU’ySI -

= f (tyUlﬂ'atxUIﬂ'aTxxsntxysIaTuusptuysI)

Thus, £

% . . . . o - s
; tytrreg 18 @ nonlinear function of the 7 estimators ) . ik, >, Xk, Taxsr

~ A~ <) ~ i .
txysr> Tuus; and tyys, where Tons, = D0, cxXpXy and tyys, = Y, ckXx ik has
the typical elements

Liym =) L CeTikT e =ty
I

tior = E . CrT Kk
I

respectively and Tuusl and jc\uysl follow analogously by replacing x; by ug
and ¢ by hy with typical elements

lpp' . = E :S hiupklpyk = typr
I
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p07r Z hkupkyk

We will need the following partial derivatives:

_9f
aZSng
of A
—:_B'Sa 17 ;
825['f.7k o ] J

a - _ _ A
2 (e X ) ()
gl o

= (thU, — Zs, ik)/ ( Txis,q) ’Bxxsr) (93)

of N~
Ot 50, - <txUI B ZSI Xk) Txislqu (94)

Y —1 5
- 1:’LL[]UC (_TUUSI \IJPP'BUUSI)

of ~
—— =t T
0tpo,7r uwUr - uusy 11[";0

where @, is a J x J matrix with the value 1 in positions (7, j') and (5, j)
and the value 0 everywhere else, ¢, is a J-vector with the jth component
equal to one and zeros elsewhere and where ¥, is a P x P matrix with the
value 1 in positions (p,p’) and (p', p) and the value 0 everywhere else and 1,
is a P-vector with the pth component equal to one and zeros elsewhere.
Letting Byy, = T;;Ultxyyl = (ZU, ckxkxﬁg)fl > v, Xy and By, =

T;uUI U, = (ZU, hkukuk) ZU, hiugyy, we have 0 = tyy, +t,.  Buu;.
Next, we evaluate the partial derivatives at the expected value point
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(tyuys tavr s Txxt;s txyv;, Tuuvrys tuye,) - The partial derivatives given by (93)
and (94) conveniently vanish at this point and we obtain

AZUreg = tyUI + t;UUCBUUI +1 (ZSI gk - t’yUI) -
J
— Z BJUz (ZSI j]k - ZUI vak) —_
uUUc Z Z TuuU Wy Buv; (Epp’,w - tpp’)

p—l p'<p

+tuUUC Z TuuUI pO T tpo)

/
= Z Uk + o, Buo, + (thI - Zs, ik) B, —
1 ~
uUUcTuuUI (TUUSI - TUUUI) BUUI
1 ~
uUUCTuuUI ( uysy thUI)

/
= Zs; Uk + t;UUCBUUI + (thI - ZSI ik) BXU] +

+t;UUCT1_1uU1 ( uysy TUUSIBUUI)

— Zs, B + thy,Bxvr + thpye Tuar, Z Bt B
+t;UUCBuUI

— t;UIBXUI + t’UUUC ulU; + Zsl Fk

where Exk = yp — XkaUp Eu = yr — u,Byy, and Fy = Ey + ol hyup By
with o = t] T !

uuly*

The expected value of ¢*

uwUyco

JUreg 18 given by

A~

L (t;UTeg) = tiEUIBXUI + t;UUCBuUI +FE (ZSI Fk)

7 7
= t,,Bxu, + thy, Buu, + ZU, F
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where
o /
ZUI Fk = ZUI (Eajk +a hkukEuk)
o /
= ZU, Eu +a Z hiug By,
_t’ILLUUc l.ll.lU] Z hkukukBUUI

= ZU} Emk

and we have

A,

B (yreg) =t By + bty Buv, + )

- ZUI Yr + +t;UUcB“UI

The approximate variance is given by

(Fyreg) = D Dy AruaFihi

and a variance estimator is given by

yUreg ZZ AFklfkfl

where fr = Cak + &l hxugey, with ey, = yp — XkBXSIa a,=t

Cuk = Yk — ukBUS]

Tl and

uUpyec —uusy
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Appendix B: Tables

B.1 Rates of change in the BR

Table B.1.A Rates of change in the BR: Number of enterprises per size group
i November 2000 versus March 2001

March 2001
0 1-4 5-9 10-19 20-49 50- Deaths | Total
0 578 297 | 47 28 17 27 28 22 893 | 601 337

- 1-4 993 143 205 | 32 13 2 - 2219 146 464
S 5-9 142 85 32334 |93 11 2 381 33048
': 10-19 |43 21 96 16952 | 131 3 180 17 426
212049 |14 1 13 82 9 542 120 138 9910
§ 50- 9 - - 2 61 5 865 124 6061
2 | Births | 20626 |2 493 395 116 72 82 - 23784
Z Total | 600124 | 145852 32898 | 17275 |9 846 6 100 25935

Table B.1.B Rates of change in the BR: Number of enterprises per size group
i March 2001 versus May 2001

May 2001
0 1-4 5-9 10-19 2049 |50- Deaths | Total
0 56718319917 |1087 291 89 27 11530 | 600124
1-4 15405 | 121106 |7176 |457 88 4 1616 145 852
5-9 629 5369 22958 | 3456 163 7 316 32 898
= [10-19 | 147 272 2 208 12886 | 1588 25 149 17 275
S [20-49 |54 66 54 817 8334 |447 74 9 846
§ 50- 10 - 1 11 210 5823 |45 6 100
S | Births | 14640 | 1787 230 75 51 29 - 16 812
= Total | 598068 | 148517 |33714 17993 [10523 | 6362 13730

Table B.1.C Rates of change in the BR: Number of enterprises per size
group in May 2001 versus August 2001

August 2001
0 1-4 5-9 10-19 | 2049 | 50- Deaths | Total
0 591419 |27 6 12 6 7 6591 598 068
1-4 466 146 923 | 20 2 3 1 1102 148 517
5-9 59 21 33408 |18 4 1 203 33714
10-19 |31 10 17 17784 |36 4 111 17 993
§ 20-49 |13 4 - 36 10354 |33 83 10523
f; 50- 3 1 - 3 21 6294 |40 6 362
g Births | 11421 | 1239 157 64 33 17 - 12931
Total | 603412 | 14822533608 | 17919 |10457 |6357 8130
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Table B.1.D Rates of change in the BR: Number of enterprises per size
group in August 2001 versus November 2001

November 2001
0 1-4 5-9 10-19 20-49 50- Deaths | Total
0 592 180 | 1 534 50 18 17 4 9 609 603 412
1-4 1893 144 259 | 293 25 12 2 1741 148 225
5-9 195 217 32675 |123 3 - 395 33 608
é 10-19 |50 16 108 17463 | 67 2 213 17919
Q 20-49 |12 6 5 64 10202 |38 130 10 457
Z | 50- 3 1 3 1 28 6227 94 6 357
2’| Births | 18811 | 1722 281 69 52 56 - 20 991
< Total | 613144 |147755|33415 |17763 | 10381 |6 329 12182
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