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Abstract

The main theorem of this paper states that if f : R'" — R is increas-
ing and continuous and the set S = {z > 0 : f(z) < z} is bounded
and contains some z’ > 0 then there is a non-zero fixed point of f. If
in addition to this there is 2" € S, 2" < 2/ there are multiple fixed
points. The main theorem is equivalent to the Brouwer fixed point
theorem.
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In this paper we study the existence of fixed points of continuous increas-
ing functions defined on finite dimensional spaces. A function f : A —
R™,where A C R™, is increasing or monotone if for 2’ and z in 4,

¥ >x= f(2) > f(x). (1)

The main result of this paper states that if f : R’ — R is increasing and
continuous and the set S = {z > 0 : f(x) < x} is bounded and contains
some z’ > 0 then there is a non-zero fixed point z of f, z = f(x) # 0.

The theorem was proved, using degree theory, and applied to eco-
nomic models in [1]. However, in this paper the proof uses the Knaster-
Koratowski-Mazurkiewicz lemma (KKM) (see e.g. [2]), which is equiva-
lent to the Brouwer fixed point theorem. A corollary to the theorem is
added in which we obtain the Brouwer fixed point theorem. Thus, our
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theorem is equivalent to Brouwer and this shows the “non-simplicity” of
our theorem, and its possible use in other applications.

Furthermore, if there are z” and 2/, both in S such that z” < 2/, then
there are at least two fixed points of f.

Theorem 1 Assume that f : R — R is continuous and satisfies ' > = =
f(@') > f(z). Let S = {& > 0 : f(x) < x}. If S is bounded, and if there is
' > 0,2 €S, then thereis x > 0, x # 0, such that x = f(x).

Proof: For each 2’ € S, 2’ > 0, f takes {z > 0 : # < 2’} to itself. Let
M=c{z>0:2" €S2 >0, <2a'}, then f takes M to M. To see this,
assume that there is = € M such that f(z) € ~M which implies that there
is € > 0 such that |f(z) —y| > eforally € M. For each 6 > 0 there is
2" € M such that |z — 2"| < §,2" <2/,2" € M and thus f(2") < f(2) < '
and f(z") € M which thus contradicts the continuity of f.

Let OM to be the boundary of M relative to R and let A = {z € R :
>;x; = 1} is the unit (m — 1)—simplex. For z € A we have that there is
a > 0 such that ax < 2’ for some ' € S. There is also @ = maxa for
axr € M since M is compact. Furthermore, ax € OM and ax ¢ OM for
a # @. Then the function h : A — oM

h(z) = {y € oM : y(Zyi)il = x}

is well defined.

h is also continuous. Assume that h is not continuous at x € A. At z,
y = kx for some constant £ > 0. Then, there is ¢ > 0 such that for each
d > 0 thereis 2’ € A, 2’ > 0such that |z — 2/| < 0 and |y — ¢/| > €. Let
y = K2,k > 0. Then, |z — 2'| = |y/k — ¢/ /K'| < 6 and since |y — ¢/| > ¢
we must have y > ¢ or y <y with y; = y; for some ¢, only if y; = y; = 0.
Clearly, y and 3 can not both be in 9M which contradicts the definition of
h.

The sets C; C A defined by

Ci={xeA: filh(x)) > hi(x)}, i=1,...,m

is a closed covering of A. If x ¢ C; for all i, then f(h(z) < h(z) contradict-
ing the definition of M. For each C; we have that C; D A" = {z € A :
z; = 0}. By the KKM lemma there is © € N;C;, and then f(y) > y, y = h(z).
Continuity of f and the definition of A then yield y = f(y). Q.E.D.

Corollary 2 The Brouwer Fixed Point Theorem. Let f : A — A be continuous,
where A = {x € R} : ¥, x; = 1} is the unit (m — 1)—simplex. Then, there is
x € A such that x = f(x).



Proof: Define g : R} — R by

) inf{fi(2') 2’ e Az <2} ifYx; <1
gi(w)_{sup{fi(:z:’):x’EA,xe’} ifZ;xj»Zl @)

Then, g is continuous and monotone. Finally, define h : R' — R by

hx) = (Z a:j) 9()

which implies that / satisfies the conditions of Theorem 1 for o > 1 suffi-
ciently large. Then there is = # 0 such that z = h(z) or

T = (Z%) 9()

Assume next that >, Z; > 1. From the definition of g we have that g(z) >
f(2') for some 2’ € A and thus ¥, g;(Z) > 1 and

> T < (Z@) >_ 9i(%)

which contradicts 7 being a fixed point. Thus, 0 < >°; 7; < 1. Due to this
we find that 7 < ¢(z). A" = {& > & : };z; = 1} is a proper subsimplex
of A. For z € A’ and the monotonicity of g we have that g(z) > ¢(z).
Furthermore, from the definition of g we have f(z) > g(z). Combining all
inequalities we find that f(z) > z. Thus,

fA") c A

Define X to be the set of vectors of all monotone sequences {z"}, z"*! > 2"
such that z° > z and 3, 27 < 1. Specifically, the elements of the sequence
defined by 2° = z, 2"™! = g(2") is in this set, and since g is continuous, this
sequence converges to some z* = g(z*). From Zorn’s lemma (see e.g. [3])
it follows that there is y € X such that y is greater than all elements of X.
Clearly, y € A" and thus f(y) € A’ and from the definition of g it follows
that 2* < g(y) = f(y) and hence, f(y) € X, and f(y) < y which implies
thaty = f(y). Q.E.D.

The following proposition deals with functions which map the whole
of R™ into itself. The result is a consequence of Tarski’s fixed point theo-
rem (see e.g. [4]) and it is easy to prove directly as in [5].
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Proposition 3 Assume that f : R™ — R™ is continuous and satisfies ©’' > = =
f(@') > f(z). Let S = {z : f(z) < x} be non—empty and bounded from below.
Then, for each z" € S, there is & < z" such that T = f(Z).

We can now combine the results of these propositions to obtain condi-
tions for the existence of more than one fixed point.

Proposition 4 Assume that f : R™ — R™ is continuous and satisfies ' > = =
f(@') > f(z). Let S = {x > 0: f(z) < x}. Assume that S is bounded and
contains two points x’ and x" such that " < «'. Then, there are two fixed points,
zand z, of f for whichz < & (T # ).

Proof: The fixed point z is given by a direct application of Proposition 3.
Next, set = = x — z which yields 2’ = 2/ — 2 > 0. Define ¢(z) = f(z) — .
Due to monotonicity of f, g(z) maps R into itself and by assumption the
set S = {z>0:g(z) < z} contains 2’ > 0. Theorem 1 can now be applied
and we thus have a fixed point Z = ¢(2) > 0, Z #0,ie. T —z = f(T) — = >
0, T # . Q.E.D.
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