
ISSN 1403-0586  

 

 
 

WORKING PAPER SERIES 
 

WORKING PAPER NO 9, 2005 
 
 
 

 
 
 

ESI 
 

 

The variance of some common estimators and 
its components under nonresponse 

 
 

 
By 

 
Sara Tångdahl  

 

 

 
 
 
 
 
 
 
 
 
 

 
 

 
http://www.oru.se/esi/wps 

 
SE-701 82 Örebro 

SWEDEN 



The variance of some common estimators and

its components under nonresponse

Sara Tångdahl



Abstract

In most surveys, the risk of nonresponse is a factor taken into account at
the planning stage. Commonly, resources are set aside for a follow-up pro-
cedure which aims at reducing the nonresponse rate. However, we should
pay attention to the e�ect of nonresponse, rather than the nonresponse rate
itself. When considering nonresponse error, i.e. bias and variance, it is not
obvious that the resources spent on nonresponse rate reduction e�orts are
time and money well spent. In this paper we address this issue, continuing
the work begun in Tångdahl (2004), now focusing on the e�ect of follow-ups
on estimator variance. The components of the variance for some common
estimators are derived under a setup that allows us to take into account the
data collection process, and follow-up e�orts in particular.
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1 Introduction

1.1 The problem

In survey planning, decisions must be made on how to allocate limited re-
sources between various survey operations, all with the purpose of minimizing
the total survey error. Examples of such survey operations are frame con-
struction, questionnaire testing and editing. In particular, if we have reason
to suspect that nonresponse will occur in the survey, e�orts to deal with this
must be decided upon. A common strategy for dealing with nonresponse is
to use follow-ups or callbacks with the purpose of reducing the nonresponse
rate, implicitly assuming that a lower nonresponse rate results in smaller
nonresponse error. This leads survey administrators to consider reduction of
the nonresponse rate as a major goal during data collection, despite evidence
from empirical studies that indicate that there is not necessarily an immedi-
ate relation between nonresponse rate reduction and decrease in nonresponse
error. Examples of such studies are Curtin, Presser, and Singer (2000) and
Keeter, Miller, Kohut, Groves, and Presser (2000). Hence, before trying to
minimize the nonresponse rate within the available budget, we should focus
on the e�ect of nonresponse. The main concern in the presence of nonre-
sponse is the obvious risk of bias, but the variance of estimators will also be
in�ated. In addition, not only point estimators, but also variance estimators
may be biased.

Strategies to deal with nonresponse are generally combinations of pre-
ventive, reductive or adjustive e�orts. The meaning of these terms should
be obvious; preventive actions are taken prior to data collection and aim
at preventing nonresponse from ever occurring, reductive actions take place
during, or rather, as part of the data collection with the purpose of reducing
the nonresponse that ultimately occurs. Adjustment include any attempts
to compensate for the nonresponse at the estimation stage.

In the allocation of resources between di�erent e�orts, we need to con-
sider whether the e�ect of the e�orts really outweigh the costs. To be able
to balance reduction e�orts, adjustment e�orts and costs under budget con-
straints we will need to study the e�ect of reductive measures on estimator
properties. Some of these issues are discussed in Tångdahl (2004), where
the purpose is to study and evaluate the e�ect on estimator bias of nonre-
sponse rate reduction e�orts used as part of the data collection process. A
framework based on a fairly general response distribution that incorporates
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the e�ect of reduction e�orts is introduced. Approximate expressions for
the change in nonresponse bias for six generally formulated estimators under
certain assumptions about the true response distribution are derived, and it
is shown that the bias does not necessarily decrease as the nonresponse rate
decreases.

The study of the change in bias alone, however, does not provide a com-
plete evaluation of the data collection procedure. In considering excluding
some of the nonresponse rate reduction e�orts, the e�ect on the variance of
a given point estimator and the change in the variance must also be stud-
ied. In this paper, the estimator variances are evaluated under the assumed
true, fairly general, sequence of response distributions, RDs, introduced in
Tångdahl (2004). A complete discussion of the e�ect of truncation of �eld
e�orts must also be based on costs. We will return to this and related issues
in subsequent papers. The reasonable view taken here is that the individual
response probabilities are subject to in�uence by the survey operations, and
in this case in particular by the nonresponse reduction e�orts. Thus, in the
model we adopt, the response probabilities are allowed to change during the
data collection process. We de�ne a sequence of response distributions, all
in�uenced by both general survey conditions and the speci�c survey settings,
but also by the nonresponse reductive measures taken by the survey admin-
istrator. This means that for every possible choice of time to terminate data
collection, we de�ne a corresponding response distribution, RD. Formal de-
tails are given in section 1.2. In section 2, the estimators under study are
presented brie�y. Section 3 contains a summary of the approach and results
in Tångdahl (2004). A general discussion of the estimator variance and its
components is given in section 4, while explicit variances of the studied esti-
mators are found in section 5. Section 6 is a discussion of alternative error
measures, and section 7 contains a summary and some conclusions.

1.2 Notation and de�nitions

Let U = {1, . . . , k, . . . , N} be the �nite population of interest and let N
denote the number of elements in U . The study variable is denoted y, with
the value yk for element k. The parameter of interest is the population total
ty =

∑
Uyk where

∑
U is shorthand for

∑
k∈U . A random sample s of size n

is selected from U according to the design p(·) with positive �rst and second
order inclusion probabilities πk and πkl. We will assume that direct element
sampling is used and allow the special case πk = 1 for all k ∈ U .
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For notational convenience, division by πk will be denoted byˇ, e.g. y̌k =
yk/πk.

Let a = 1, . . . , A denote an arbitrary point of time during the data col-
lection period, and let A denote the �nal data collection time point in the
current survey setup. Ideally, all elements in the sample respond to the initial
survey request, but commonly in practice some nonresponse still remains at
time A, and consequently at time a. Since we limit the discussion to only
one study variable, we will not need to make a distinction between item
and unit nonresponse. As the data collection progresses, successive response
sets r(1) ⊂ · · · ⊂ r(a) ⊂ . . . r(A) ⊂ s are generated, where r(A) is the �nal
response set in the current survey setup. The response set r(a) is assumed
to have been generated by response distribution RD(a), with individual re-
sponse probabilities θ

(a)
k|s = Pr(k ∈ r(a)|s). We will assume that elements

respond independently of each other and that θ
(a)
k|s ≥ θ

(a−1)
k|s for all k. The as-

sumption of independence implies that Pr(k&l ∈ r(a)|s) = θ
(a)
k|sθ

(a)
l|s for every

pair k 6= l ∈ s .
Throughout, quantities based on response set r(a), the response set at

time a, will be denoted with a superscript (a).
Most of the estimators studied in the following utilize auxiliary informa-

tion. In a situation with nonresponse, as in a two-phase sampling situation,
the auxiliary information can be available on two levels as follows:

1. Let x1k be a J1-vector with values known for all k ∈ s and with the
population total

∑
Ux1k known.

2. Let x2k be a J2-vector with values known for all k ∈ s. The complete
information at this level is combined in the vector xk = (x′

1k,x
′
2k)

′ of
length J .

Note that the value of the study variable yk is known only for k ∈ r(a).
In the most general case, both x1 and x are used as an attempt to improve
estimation. There are several ways to combine the available information.
Two important special cases are the case where only x1 is used, which will
be referred to as special case 1, and the case where no auxiliary information
is known at the population level, referred to as special case 2.
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2 The estimators under study

There are many di�erent methods available for handling nonresponse at the
estimation stage, one being reweighting. It is common to refer to this as
adjusting for nonresponse, although the adjustment is not necessarily suc-
cessful. In Tångdahl (2004), estimators based on two reweighting methods,
weighting by response homogeneity groups (RHGs) and calibration for non-
response were studied. These techniques were chosen because they represent
two large and widely used classes of estimators. With appropriate auxiliary
information, they are both powerful methods. The approaches di�er in how
the nonresponse is handled. In the RHG approach, the response distribution
is explicitly modeled, allowing the use of two-phase sampling methods. In
the calibration for nonresponse approach, no modeling of the response dis-
tribution is done. Since this paper is a continuation of the work in Tångdahl
(2004), the same estimators will be studied here.

The RHG model is formulated as follows: assume that a partitioning of
the realized sample can be made such that response probabilities are con-
stant within groups sh, h = 1, . . . , Hs. It is also assumed that the response
probabilities are positive for all elements and that elements respond indepen-
dently. The partitioning need not be the same for di�erent samples, but for
a given sample, the grouping is always the same. In the present particular
setting, we will assume that the same model applies for any given time a,
only the levels change. The model can be stated formally as

Pr(k ∈ r(a)|s) = θ
(a)
k|s = θ

(a)
hs > 0 for all k ∈ sh

Pr(k&l ∈ r(a)|s) = θ
(a)
k|sθ

(a)
l|s for all k 6= l ∈ s

for h = 1, . . . , Hs and for a given time a = 1, . . . , A.
Let nh be the size of sh and let r

(a)
h of size m

(a)
h be the responding subset

of sh at time a. Conditioning on the response count vector m(a), estimated
�rst and second order response probabilities are

θ̂
(a)
k|s = θ̂

(a)
hs =

m
(a)
h

nh

for all k ∈ sh

and

θ̂
(a)
kl|s =


m

(a)
h (m

(a)
h − 1)

nh(nh − 1)
for k 6= l ∈ sh

m
(a)
h

nh

m
(a)
h′

nh′
for k ∈ sh, l ∈ sh′ ; h 6= h′
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Naturally, the properties of estimators based on RHGs depend on the
formulation of the groups. To eliminate the nonresponse bias, the statistician
must be able to identify groups such that the model assumptions hold, or at
least nearly so. The choice and use of auxiliary information will also in�uence
the estimator properties since strong auxiliary information can provide a
robustness against RHG model speci�cation error as well as a reduction of
the estimator variance. That strong auxiliary information can lead to a
substantial reduction of the sampling variance is well known; evidence can be
found in most standard textbooks in survey sampling as well as in numerous
papers.

An estimator based on RHGs but with no use of auxiliary information is
the simple RHG estimator

t̂
(a)
ycπ∗ =

∑
r(a)

yk

πkθ̂
(a)
k|s

=
Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

y̌k (1)

Using auxiliary information we can form a regression type estimator. In
the general case, where both x1 and x are available, the regression based
RHG estimator is

t̂(a)
ycreg =

∑
U ŷ

(a)
1k +

∑
s

ŷ
(a)
k − ŷ

(a)
1k

πk

+
Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

yk − ŷ
(a)
k

πk

(2)

with predictions

ŷ
(a)
1k = x′

1kB̂
(a)
1r = x′

1k

(
Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

x1kx
′
1k

σ2
1kπk

)−1 Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

x1kyk

σ2
1kπk

and

ŷ
(a)
k = x′

kB̂
(a)
r = x′

k

(
Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

xkx
′
k

σ2
kπk

)−1 Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

xkyk

σ2
kπk

The weights σ2
1k and σ2

k are residual variances in assumed, hypothetical, re-
gression models of y on x1 and x, respectively. Two important special cases
of the regression estimator (2) are

Special case 1:
No additional auxiliary information is available at the sample level. We then
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have xk = (x′
1k,x

′
2k)

′ = x1k, so the estimator becomes

t̂
(a)
ycreg1 =

∑
U ŷ

(a)
1k +

Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

yk − ŷ
(a)
1k

πk

(3)

Special case 2:
The only available auxiliary information is xk, known for k ∈ s. Assum-
ing that σ2

1k = σ2
k for all k, the predictions ŷ

(a)
1k drop out and the estimator

becomes

t̂
(a)
ycreg2 =

∑
s

ŷ
(a)
k

πk

+
Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

yk − ŷ
(a)
k

πk

(4)

Estimators (1)�(4) are given in Särndal, Swensson, and Wretman (1992).
In the calibration for nonresponse approach, only special cases 1 and 2

will be studied. The general case with two auxiliary vectors is excluded since
the properties of such an estimator have not yet been fully investigated and
consequently it is not widely used, although some recent results can be found
in Lundström and Särndal (2005). The calibration estimators studied here
are:

t̂
(a)
ycal1 =

∑
r(a)v

(a)
1kr

yk

πk

(5)

with

v
(a)
1kr = 1 +

(∑
Ux1k −

∑
r(a)

x1k

πk

)′(∑
r(a)

ckx1kx
′
1k

πk

)−1

ckx1k (6)

in special case 1 and

t̂
(a)
ycal2 =

∑
r(a)v

(a)
2kr

yk

πk

(7)

with

v
(a)
2kr = 1 +

(∑
s

xk

πk

−
∑

r(a)

xk

πk

)′(∑
r(a)

ckxkx
′
k

πk

)−1

ckxk (8)

in special case 2. The factors ck are speci�ed by the statistician, usually
chosen to be a linear function of the auxiliary vector.
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3 Nonresponse bias at time a

Under an assumed true response distribution, Tångdahl (2004) derives gen-
eral expressions for the nonresponse bias for each of the six estimators given
in section 2. Let t̂

(a)
yc be an estimator for the population total ty, based on

response set r(a), and let t̂ys be the corresponding (approximately) unbiased
full response estimator. The bias for t̂

(a)
yc can then be written

B(t̂(a)
yc ) = Ep

[
ERD(a)(t̂(a)

yc )
]
− ty ≈ Ep

[
ERD(a)(t̂(a)

yc )− t̂ys

]
(9)

where Ep denotes expectation with respect to the sampling stage, and ERD(a)

is expectation with respect to the response distribution RD(a), given s. Since
the estimators are nonlinear functions of the unknown response probabilities,
the resulting conditional bias expressions are approximate. Using the de�ned
sequence of response distributions, Tångdahl also derives expressions for the
di�erence in approximate bias between estimators t̂

(a−1)
yc and t̂

(a)
yc . By using

B(t̂(a)
yc )−B(t̂(a−1)

yc ) = Ep

[
ERD(a)(t̂(a)

yc )− ERD(a−1)(t̂(a−1)
yc )

∣∣ s] ,
explicit expressions for the bias and the bias di�erence are derived for each
of the given estimators, leaving the expectation with respect to the sampling
stage indeterminate. Due to the nonlinearity of the estimators, large sample
approximations are used. The consequences for the bias di�erence is dis-
cussed under speci�c assumptions about the response distributions RD(a−1)

and RD(a).
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4 Variance at time a, the approach

In deriving the total variance of the point estimators, a common decom-
position of the total estimation error will be useful. Let t̂

(a)
yc be the point

estimator to be used at time a in the presence of nonresponse, and let t̂ys

be the corresponding full response estimator. The total estimation error can
then be written

t̂(a)
yc − ty = (t̂(a)

yc − t̂ys)− (ty − t̂ys) (10)

Using decomposition (10) and rules for conditional expectations, it is

easily seen that the total variance V
(
t̂
(a)
yc

)
= E

[
t̂
(a)
yc − E(t̂

(a)
yc )
]2
, can be

written as

V
(
t̂(a)
yc

)
=Vp

(
t̂ys

)
+ Vp

[
ERD(a)

(
t̂(a)
yc − t̂ys|s

)]
+ Ep

[
VRD(a)

(
t̂(a)
yc |s

)]
+ 2Covp

[
ERD(a)

(
t̂(a)
yc − t̂ys|s

)
, t̂ys

]
=V1 + V2 + V3 + V4

(11)

where the �rst term is the sampling variance, and the last three are due to
the nonresponse. The components are

V1 =sampling variance

V2 =variance of the conditional nonresponse bias

V3 =(expected value of) conditional nonresponse variance

V4 =covariance between conditional nonresponse bias and

the full response estimator

The sampling variance Vp

(
t̂ys

)
is not of primary interest here since focus

will be on change in total variance, which is a function only of the three
nonresponse components in the variance. It will be important however when
the cost and e�ect of the nonresponse rate reduction procedure is weighed
against other e�orts to increase the total survey quality. Such a discussion
is beyond the scope of this paper.

In Särndal et al. (1992), ch. 15, the total variance and variance estimators
for all the RHG estimators used here, are presented. However, this is done
under the assumption that the response homogeneity groups model holds.
Variance estimators, but no expression for the true total variance, have been
presented for the calibration estimator, drawing on two-phase sampling the-
ory and the similarity between the calibration estimator and the two-phase
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regression estimator. What happens when the model assumptions do not
hold? In this section we present and discuss components of the total vari-
ance in more general terms, while expressions for the variance components
for the six studied estimators are derived in section 5, under the assumed
true, general, response distribution presented in section 1.2.

4.1 Sampling variance

The sampling variance is the variance of the corresponding full response
estimator in each case, i.e. the estimator we would have used if we had no
nonresponse, given the auxiliary information (if any) used in the reweighting
estimator. The simple RHG estimator and the estimators under special case
2 reduce to the Horvitz-Thompson estimator in the full response case. In the
general case and in special case 1, the full response estimator is the regression
estimator with only x1 as auxiliary vector. Consequently, x2 has no in�uence
on the sampling variance.

Results on the sampling variance of each of the studied estimators are well
known. The sampling variance will depend on the strength of the auxiliary
vector, x1, and of course on the design and sample size. A larger correlation
between x1 and y will give smaller residuals, and thus a smaller sampling
variance. For the estimators whose corresponding full response estimators
do not utilize auxiliary information, the only way to reduce the sampling
variance is to increase the sample size or to use a more e�cient design.

In section 5, only expressions for a general design are given. Explicit
expressions must be worked out for each speci�c design.

4.2 Variance of the conditional nonresponse bias

Approximate expressions for ERD(a)(t̂
(a)
yc − t̂ys), the conditional nonresponse

bias, are derived in Tångdahl (2004) for each of the studied estimators. A
small simulation study indicates that the variance of this conditional bias is
numerically small compared to the sampling variance and to the expected
value of the conditional nonresponse variance. We do not derive explicit
expressions for this variance component. It has a complex structure, even in
the case of the simple RHG estimator, and will thus not be very informative.
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4.3 Conditional nonresponse variance

The component Ep

[
VRD(a)

(
t̂
(a)
yc |s

)]
in (11) represents the increase in esti-

mator variance caused by nonresponse, if the point estimator has zero nonre-

sponse bias and is often called the nonresponse variance. VRD(a)

(
t̂
(a)
yc |s

)
will

be referred to as the conditional (on s) nonresponse variance.
All of the estimators used here are complex (nonlinear) functions of the

response probabilities, so exact explicit expressions for their conditional non-
response variances cannot be found. We will instead use Taylor linearization
to derive approximate variance expressions, valid for large response homo-
geneity groups. The linearization techniques for two-phase regression estima-
tors in e.g. Särndal et al. (1992) can not be used since we are not guaranteed
unbiased estimation under nonresponse. Expressions for the conditional non-
response variance are derived in section 5.

4.4 Covariance between the conditional nonresponse bias

and the full response estimator

A small simulation study indicates that this component of the total variance
is generally numerically small compared to the sampling variance and the
expected value of the conditional nonresponse variance. Explicit expressions
are not derived.

5 Estimator variances

As shown in section 4, the variance of an estimator t̂
(a)
yc is the sum of four

components. In this section, the total variance is given for each estimator
presented in section 2. Explicit unconditional expressions cannot be derived
without making speci�c assumptions about the true response distribution,
and, for the RHG estimators, about the response homogeneity groups, so
the expectations with respect to the sampling phase are left indeterminate.
Furthermore, due to the complexity of the estimators, most of the expressions
are approximate.
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5.1 The simple RHG estimator

The estimator corresponding to t̂
(a)
ycπ∗ in the full response case is the ordi-

nary π-estimator t̂yπ =
∑

sy̌k. The variance of t̂
(a)
ycπ∗ is the sum of the four

components
V1 = Vp(t̂yπ) =

∑∑
U∆kly̌ky̌l (12)

V2 = Vp

(
ERD(a)(t̂

(a)
ycπ∗ − t̂yπ|s)

)
≈ Vp

(
Hs∑
h=1

(nh − 1)
1

θ̄
(a)
sh

Sθ(a)y̌sh

)
(13)

with θ̄
(a)
sh =

1

nh

∑
sh

θ
(a)
k|s and Sθ(a)y̌sh

=
1

nh − 1

(∑
sh

θ
(a)
k|s y̌k −

1

nh

(∑
sh

θ
(a)
k|s

) (∑
sh

y̌k

))
V3 = Ep

(
VRD(a)(t̂

(a)
ycπ∗|s)

)
≈ Ep

 Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
y̌k −

t̂
(a)
yθh

t̂
(a)
θh

)2
 (14)

with t̂
(a)
yθh =

∑
sh

θ
(a)
k|s y̌k and t̂

(a)
θh =

∑
sh

θ
(a)
k|s

V4 = 2Covp

(
ERD(a)(t̂

(a)
ycπ∗ − t̂yπ|s), t̂yπ

)
= 2Covp

(
Hs∑
h=1

(nh − 1)
Sθ(a)y̌sh

θ̄
(a)
sh

, t̂yπ

)
(15)

The expressions (13) and (15) follow directly from Tångdahl (2004). The
third variance component, the expected value of the conditional nonresponse
variance, is arrived at by the following reasoning. We note that t̂ycπ∗ can be
expressed as the sum of ratios of estimated totals:

t̂
(a)
ycπ∗ =

Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

y̌k =
Hs∑
h=1

nh
t̂
(a)
yrh

t̂
(a)
θrh

12



where t̂
(a)
yrh =

∑
sh

R
(a)
k|sy̌k, t̂

(a)
θrh

= m
(a)
h =

∑
sh

R
(a)
k|s and R

(a)
k|s is a response

indicator variable, de�ned as

R
(a)
k|s =

{
1 if k ∈ r|s
0 if not

with expected value θ
(a)
k|s .

Using �rst order Taylor expansion results for estimation of a ratio, a linear
large sample approximation to t̂

(a)
ycπ∗ is given by

t̂
(a)
ycπ∗ ≈

Hs∑
h=1

nht̂
(a)
yθh

t̂
(a)
θh

+
Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
ysh

−
t̂
(a)
yθh

t̂
(a)
θh

t̂
(a)
θsh

)

= t̂
(a)
ycθ +

Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
y̌k −

t̂
(a)
yθh

t̂
(a)
θh

)
(16)

where t̂
(a)
yθh =

∑
sh

θ
(a)
k|s y̌k and t̂

(a)
θh =

∑
sh

θ
(a)
k|s are the expected values under

RD(a), conditional on s, of t̂
(a)
yrh and t̂

(a)
θrh

, respectively. For notational conve-

nience, we let t̂
(a)
ycθ =

Hs∑
h=1

nht̂
(a)
yθh

/
t̂
(a)
θh .

An approximation to the conditional nonresponse variance of t̂
(a)
ycπ∗ is then

AVRD(a)

(
t̂
(a)
ycπ∗

)
= VRD(a)

(
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
y̌k −

t̂
(a)
yθh

t̂
(a)
θh

))

=
Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s

(
1− θ

(a)
k|s

)(
y̌k −

t̂
(a)
yθh

t̂
(a)
θh

)2

(17)

which follows directly if we note that VRD(a)(R
(a)
k|s) = θ

(a)
k|s

(
1− θ

(a)
k|s

)
and

CovRD(a)

(
R

(a)
k|s, R

(a)
l|s

)
= 0. This approximation will work well if the ex-

pected sizes of the response homogeneity groups are large. The conditional
nonresponse variance will be small if the �residuals� y̌k − t̂

(a)
yθh/t̂

(a)
θh are small,

which they will be if y̌k is approximately constant within groups. Another
possibility for small conditional nonresponse variance is if t̂

(a)
θh are close to nh

for all h, i.e. if the overall response propensity is high in all groups. This

13



means that e�orts that actually increase the response probabilities, will re-
duce the conditional nonresponse variance. Also, for the purpose of reducing
the bias, it was shown in Tångdahl (2004) that the RHGs should be chosen
so that the variability of y̌ is small within groups. From (17), we see that this
also helps reduce the conditional nonresponse variance. Small variability of
y̌ within RHGs can be aimed at through clever grouping of the sample into
RHGs or by using a sampling design so that πk is proportional to yk.

5.2 The regression based RHG estimators

General case

The full response estimator corresponding to t̂
(a)
ycreg is

t̂yreg =
∑

U ŷ1k +
∑

s

yk − ŷ1k

πk

with predictions

ŷ1k = x′
1kB̂1s = x′

1k

(∑
s

x1kx
′
1k

σ2
1kπk

)−1∑
s

x1kyk

σ2
1kπk

Approximate expressions for the four variance components of V (t̂
(a)
ycreg) are:

V1 ≈ AVp(t̂yreg) =
∑∑

U∆klĚ1kĚ1k (18)

where E1k = yk − x′
1kB1 with B1 =

(∑
U

x1kx
′
1k

σ2
1k

)−1∑
U

x1kyk

σ2
1k

V2 = Vp

(
ERD(a)(t̂(a)

ycreg − t̂yreg|s)
)

≈ Vp

[
Hs∑
h=1

(nh − 1)
1

θ̄
(a)
sh

(
Sθ(a)ěssh

− Sθ(a)x̌sh

(
B̂

(a)
θ − B̂s

))]
(19)

with B̂s =

(∑
s

xkx
′
k

σ2
kπk

)−1∑
s

xkyk

σ2
kπk

,

Sθ(a)ěssh
=

1

nh − 1

(∑
sh

θ
(a)
k|s ěks −

1

nh

(∑
sh

θ
(a)
k|s

) (∑
sh

ěks

))
and

Sθ(a)x̌ssh
is analogously de�ned.

14



V3 = Ep

(
VRD(a)(t̂(a)

ycreg)
)

≈ Ep

 Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
f̌

(a)
kθ;g −

∑
sh

θ
(a)
k|s f̌

(a)
kθ;g

t̂
(a)
θh

)2
 (20)

with f̌
(a)
kθ;g = (g

(a)
1kθ−1)ě

(a)
1kθ +g

(a)
2kθě

(a)
kθ and where g1kθ and g2kθ are given by (24)

and (25) respectively.

V4 = 2Covp(ERD(a)(t̂(a)
ycreg − t̂yreg|s), t̂(a)

yreg)

≈ 2Covp

(
Hs∑
h=1

(nh − 1)
1

θ̄
(a)
sh

(
Sθěssh

− Sθ(a)x̌sh

(
B̂

(a)
θ − B̂s

))
, t̂(a)

yreg

)
(21)

The components (19) and (21) follow from Tångdahl (2004). In the derivation
of (20), we apply the same method of linearization as in the simple RHG case
in section 5.1.

We note that the general regression based RHG estimator given by (2) is
a nonlinear function of estimated totals and can be written as

t̂(a)
ycreg = t̂

(a)
ycπ∗ +

(
tx1U

− t̂x1π

)′
B̂

(a)
1r +

(
t̂xπ − t̂

(a)
xcπ∗

)′
B̂(a)

r

=
Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
yrh

+
(
tx1U

− t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
x1x1rh

)−1 Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
x1yrh

+
(
t̂xπ − t̂

(a)
xcπ∗

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
xxrh

)−1 Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
xyrh

(22)

where tx1U =
∑

Ux1k, t̂x1π =
∑

sx̌1k and t̂xπ =
∑

sx̌k, and

T̂(a)
x1x1rh

=
∑

r
(a)
h

x1kx
′
1k

σ2
1kπk

t̂(a)
x1yrh

=
∑

r
(a)
h

x1kyk

σ2
1kπk

t̂
(a)
xcπ∗ =

Hs∑
h=1

nh
t̂
(a)
xrh

t̂
(a)
θrh

15



and analogously for T̂
(a)
xxrh and t̂

(a)
xyrh .

By Taylor linearization, it is shown in Appendix A.1 that a linear large
sample approximation to t̂

(a)
ycreg is given by

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
(g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ

)
−

Hs∑
h=1

nh

(t̂
(a)
θh )2

∑
sh

θ
(a)
k|s

(
(g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ

)∑
sh

R
(a)
k|s

(23)

where e
(a)
1kθ = yk − x′

1kB̂
(a)
1θ , e

(a)
kθ = yk − x′

kB̂
(a)
θ ,

g
(a)
1kθ = 1 +

(
tx1 − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh

)−1

x1k

σ2
1k

(24)

and

g
(a)
2kθ = 1 +

(
t̂xπ − t̂

(a)
xcθ

)′( Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
xxθh

)−1

xk

σ2
k

(25)

Furthermore,

ERD(a)

(
B̂

(a)
1r

)
≈ B̂

(a)
1θ =

(
Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh

)−1 Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
x1yθh

(26)

and

ERD(a)

(
B̂(a)

r

)
≈ B̂

(a)
θ =

(
Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
xxθh

)−1 Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
xyθh

(27)

If we let f̌
(a)
kθ;g = (g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ , we can write (23) as

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
f̌

(a)
kθ;g −

∑
sh

θ
(a)
k|s f̌

(a)
kθ;g

t̂
(a)
θh

)
We can then easily use the analogy with the linearized expression for the sim-
ple RHG estimator (16). From (23), and by applying the same reasoning as
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in the simple RHG case, we thus get an approximate conditional nonresponse
variance of t̂

(a)
ycreg as

AVRD(a)(t̂(a)
ycreg) =

Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
f̌

(a)
kθ;g −

∑
sh

θ
(a)
k|s f̌

(a)
kθ;g

t̂
(a)
θh

)2

(28)

The conditional nonresponse variance will thus be small if f̌ (a)
kθ;g−

∑
sh

θ
(a)
k|s f̌

(a)
kθ;g

t̂
(a)
θh

are small, i.e. if f̌
(a)
kθ;g are approximately constant within groups, or if the

overall response propensities are high in all groups.

Special case 1

The corresponding estimator with full response is t̂yreg, the same as in the
general case. Thus, the �rst variance component, the sampling variance, is
given by (18). Moreover, V2 and V4 are given by (19) and (21) respectively,
but with x instead of x1.

The third variance component is

V3 =Ep

(
VRD(a)(t̂

(a)
ycreg1|s)

)
≈Ep

 Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
g
∗(a)
1kθ ě

(a)
1kθ −

∑
sh

θ
(a)
k|sg

∗(a)
1kθ ě

(a)
1kθ

t̂
(a)
θh

)2


The conditional nonresponse variance in special case 1 follows easily from
(28) if we note that e

(a)
kθ = e

(a)
1kθ, so that (g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ = (g

(a)
1kθ +

g
(a)
2kθ − 1)ě

(a)
1kθ. If we de�ne

g
∗(a)
1kθ = (g

(a)
1kθ + g

(a)
2kθ − 1) = 1 +

(
tx1U − t̂x1cθ

)′( Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh

)−1

x1k

σ2
1k

(29)

we can write the approximate conditional nonresponse variance as

AV RD(a)(t̂
(a)
ycreg1) =

=
Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
g
∗(a)
1kθ ě

(a)
1kθ −

∑
sh

θ
(a)
k|sg

∗(a)
1kθ ě

(a)
1kθ

t̂
(a)
θh

)2

(30)
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Special case 2

In this case, the full response estimator is t̂yπ =
∑

sy̌k, so the sampling
variance is given by (12). The variance components V2 and V4 are given by
(19) and (21) respectively, while

V3 = Ep

(
VRD(a)(t̂

(a)
ycreg2|s)

)
≈Ep

 Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
g

(a)
2kθě

(a)
kθ −

∑
sh

θ
(a)
k|sg

(a)
2kθě

(a)
kθ

t̂
(a)
θh

)2
 (31)

From (28), we obtain the conditional nonresponse variance of t̂(a)
ycreg2. Since

the predictions ŷ1k drop out of (4), we have no residuals e
(a)
1kr. The linear large

sample approximation to (4) then follows directly as

t̂
(a)
ycreg2 ≈ t̂

(a)
ycθ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ +

Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|sg

(a)
2kθě

(a)
kθ

−
Hs∑
h=1

nh

(t̂
(a)
θh )2

∑
sh

θ
(a)
k|sg

(a)
2kθě

(a)
kθ

∑
sh

R
(a)
k|s

(32)

Again, we can use the same reasoning as in the case of the simple RHG
estimator. Thus, the approximate conditional nonresponse variance of t̂

(a)
ycreg2

is

AV RD(a)(t̂
(a)
ycreg2) =

=
Hs∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
g

(a)
2kθě

(a)
kθ −

∑
sh

θ
(a)
k|sg

(a)
2kθě

(a)
kθ

t̂
(a)
θh

)2

(33)

5.3 The calibration estimators

Special case 1

Since the full response estimator corresponding to t̂
(a)
ycal1 is t̂yreg, the same

as for the regression based RHG estimator in special case 1, the sampling
variance of t̂

(a)
ycal1 is given by (18). Furthermore, we have
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V2 = Vp

(
ERD(a)(t̂

(a)
ycal1 − t̂yreg|s)

)
≈ Vp

(∑
s

(
1− θ

(a)
k|s

)(x′
1k

πk

(
B̃

(a)
1θ − B̂1s

)
− e1ks

πk

))
(34)

with e1ks = yk − x′
1kB̂1s

V3 = Ep(VRD(a)(t̂
(a)
ycal1)) ≈

∑
sθ

(a)
k|s(1− θ

(a)
k|s)
(
v

(a)
1kθě

(a)
1kθ

)2

(35)

where e
(a)
1kθ = yk − x′

1kB̃
(a)
1θ and v

(a)
1kθ is given by (44)

V4 = 2Covp(ERD(a)

(
t̂
(a)
ycal1 − t̂yreg|s), t̂(a)

yreg

)
≈ 2Covp

(∑
s

(
1− θ

(a)
k|s

)(x′
1k

πk

(
B̃

(a)
1θ − B̂1s

)
− e1ks

πk

)
, t̂

(a)
yreg

)
(36)

where B̃
(a)
1θ is given by (39).

The components V2 and V4 follow directly from Tångdahl (2004). To
derive V3, we again use Taylor expansion. The calibration estimators can be
expressed as nonlinear functions of estimated totals. In special case 1, we
have

t̂
(a)
ycal1 =

∑
r(a) y̌k + (

∑
Ux1k +

∑
r(a)x̌1k)

′ B̃
(a)
1r

= t̃(a)
yr +

(
tx1U

− t̃(a)
x1r

)′ (
T̃(a)

x1x1r

)−1

t̃(a)
x1yr

= f (a)(T̃(a)
x1x1r, t̃

(a)
x1yr, t̃

(a)
yr , t̃(a)

x1r)

where t̃
(a)
yr =

∑
r(a) y̌k, t̃

(a)
x1r =

∑
r(a)x̌1k,

T̃(a)
x1x1r =

∑
r(a)

ckx1kx
′
1k

πk

and t̃(a)
x1yr =

∑
r(a)

ckx1kyk

πk

.

The expected values under RD(a), given s, are t̃
(a)
yθ =

∑
sθ

(a)
k|s y̌k,

t̃x1θ
=
∑

sθ
(a)
k|sx̌1k,

T̃
(a)
x1x1θ =

∑
s

θ
(a)
k|sckx1kx

′
1k

πk

(37)
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t̃
(a)
x1yθ =

∑
r(a)

θ
(a)
k|sckx1kyk

πk

(38)

and

ERD(a)

(
B̃

(a)
1r

)
≈ B̃

(a)
1θ =

(
T̃

(a)
x1x1θ

)−1

t̃
(a)
x1yθ (39)

A large sample linear approximation to t̂
(a)
ycal1, using Taylor expansion, is

then
t̂
(a)
ycal1 ≈ t′x1UB̃

(a)
1θ +

∑
sR

(a)
k|sv

(a)
1kθě

(a)
1kθ (40)

with e
(a)
1kθ = yk − x1kB̃

(a)
1θ and

v
(a)
1kθ = 1 +

(
tx1U

− t̃
(a)
x1θ

)′ (
T̃

(a)
x1x1θ

)−1

ckx1k (41)

The details of the derivation are given in Appendix A.2. From the linear
approximation, we get the approximate conditional nonresponse variance of
t̂
(a)
ycal1 as

AVRD(a)(t̂
(a)
ycal1) =

∑
sθ

(a)
k|s(1− θ

(a)
k|s)(v

(a)
1kθě

(a)
1kθ)

2 (42)

Special case 2

The sampling variance of t̂
(a)
ycal2 is given by (12) while V2 and V4 are given by

(34) and (36) respectively, but with x instead of x1. Furthermore,

V3 = Ep(VRD(a)(t̂
(a)
ycal2)) ≈ Ep

(∑
sθ

(a)
k|s(1− θ

(a)
k|s)(v

(a)
2kθě

(a)
kθ )2

)
(43)

with

v
(a)
2kθ = 1 +

(
t̂xπ − t̃

(a)
xθ

)′ (
T̃

(a)
xxθ

)−1

ckxk (44)

When auxiliary information is available only for k ∈ s, we note that a
linear approximation to t̂

(a)
ycal2 is given by

t̂
(a)
ycal2 ≈ t̂′xπB̃

(a)
θ +

∑
sR

(a)
k|sv

(a)
2kθě

(a)
kθ (45)

with e
(a)
kθ = yk − x′

kB̃
(a)
θ . Hence, the conditional nonresponse variance of t̂

(a)
cal2

is
AVRD(a)(t̂

(a)
cal2) =

∑
sθ

(a)
k|s(1− θ

(a)
k|s)(v

(a)
2kθě

(a)
kθ )2
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6 Measures of error

In a survey with nonresponse, where estimators may be greatly biased, the
variance is not a satisfactory measure of the error. Instead, measures taking
both variance and bias into account should be used. We believe that in
the presence of nonresponse, the risk of bias overwhelms any requirement of
precision. Focus lies on accuracy rather than precision and this should be
re�ected in the measure of error. The mean square error, which is the sum
of variance and squared bias, is a common measure of quality in estimates.
Other possibilities are the bias ratio and the mean absolute error. In practical
applications, regardless of which error measure we choose, the problem of
estimating the bias still remains. Unless special e�orts are made to estimate
the bias, one has to settle for an estimate of the (sampling) variance.

7 Concluding remarks

In a survey with nonresponse, decisions must be made on how much resources
should be spent on data collection in order to reduce the nonresponse rate.
To be able to make an informed decision, the e�ects of nonresponse rate re-
duction on estimator properties must be studied. In this paper, as part of a
project on balancing nonresponse rate reduction e�orts and costs of data col-
lection, we present expressions for the variance and its components for some
common estimators under nonresponse. This is done for an arbitrary point
of time during the data collection process under a general, assumed true,
response distribution. The estimators that are used are chosen to represent
two widely used classes of estimators that incorporate auxiliary information.
The variances are, even for the simplest of the estimators, complex functions
of the response probabilities.

The variance, and how it changes during the data collection process,
becomes important when the nonresponse rate reduction e�orts are evaluated
and a possible truncation of �eld e�orts is considered, since the variance may
be prohibitively large when the nonresponse rate is high.
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A Derivations

A.1 Taylor linearization of t̂
(a)
ycreg

The regression based RHG estimator in the general case is

t̂(a)
ycreg =

Hs∑
h=1

nh

m
(a)
h

∑
r
(a)
h

y̌k +
(
tx1U − t̂x1π

)′
B̂

(a)
1r +

(
t̂xπ − t̂

(a)
xcπ∗

)′
B̂(a)

r

with t̂
(a)
xcπ∗ =

Hs∑
h=1

nh
t̂
(a)
xrh

t̂
(a)
θrh

, where t̂
(a)
xrh =

∑
r
(a)
h

x̌k and t̂
(a)
θrh

= m
(a)
h =

∑
sh

R
(a)
k|s.

The estimator can be written as

t̂(a)
ycreg =t̂

(a)
ycπ∗ +

(
tx1U − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
x1x1rh

)−1( Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
x1yrh

)

+

(
t̂xπ −

Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
xrh

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
xxrh

)−1( Hs∑
h=1

nh

t̂
(a)
θrh

t̂(a)
xyrh

) (A.1)

=f (a)(t̂
(a)
θrh

, t̂(a)
xrh

, T̂(a)
x1x1rh

, t̂(a)
x1yrh

, T̂(a)
xxrh

, t̂(a)
xyrh

, t̂(a)
yrh

; h = 1, . . . , Hs)

where t̂
(a)
yrh =

∑
r
(a)
h

y̌k and we de�ne the totals

T̂(a)
x1x1rh

=
∑

r
(a)
h

x1kx
′
1k

σ2
1kπk

and t̂
(a)
x1yrh =

∑
r
(a)
h

x1kyk

σ2
1kπk

with typical elements

t̂
(a)

j1j′1rh
=
∑

r
(a)
h

xj1kxj′1k

σ
(a)
1k πk

and t̂
(a)
j1yrh

=
∑

r
(a)
h

xj1kyk

σ
(a)
1k πk

.

The totals T̂
(a)
xxrh and t̂

(a)
xyrh are analogously de�ned.

Thus, conditional on s, t̂
(a)
ycreg is a nonlinear function of the estimated to-

tals t̂
(a)
θrh

, t̂
(a)
xrh , T̂

(a)
x1x1rh , t̂

(a)
x1yrh , T̂

(a)
xxrh , t̂

(a)
xyrh , t̂

(a)
yrh ; h = 1, . . . , Hs. Using �rst order

Taylor expansion, this estimator can be approximated by a linear pseudoes-
timator through

t̂ ≈ t̂0 = t +

Q∑
q=1

aq

(
t̂q − tq

)
(A.2)
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where

aq =
δf

δt̂q

∣∣∣∣
(t̂1,...,t̂Q)=E(t̂1,...,t̂Q)

In this case, the expectation will be taken under RD(a), given s. We will
need the following partial derivatives:

δf (a)

δt̂
(a)
θrh

=− nh

(t̂
(a)
θrh

)2
t̂(a)
yrh

+
nh

(t̂
(a)
θrh

)2
t̂(a)
xrh

B̂(a)
r

−
(
tx1U − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
x1x1rh

)−1

nh

(t̂
(a)
θrh

)2

[
t̂(a)
x1yrh

− T̂(a)
x1x1rh

B̂
(a)
1r

]

−
(
t̂xπ − t̂

(a)
xcπ∗

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
xxrh

)−1

nh

(t̂
(a)
θrh

)2

[
t̂(a)
xyrh

− T̂(a)
xxrh

B̂(a)
r

]

δf (a)

δt̂
(a)

j1j′1rh

= −
(
tx1U − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
x1x1rh

)−1

Λ̂
(a)

j1j′1rh
B̂

(a)
1r

δf (a)

δt̂
(a)
jj′rh

= −
(
t̂xπ − t̂

(a)
xcπ∗

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
xxrh

)−1

Λ̂
(a)

jj′rh
B̂(a)

r

δf (a)

δt̂
(a)
j1yrh

=
(
tx1U − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
x1x1rh

)−1

λ̂
(a)

j1rh

δf (a)

δt̂
(a)
jyrh

=
(
t̂xπ − t̂

(a)
xcπ∗

)′( Hs∑
h=1

nh

t̂
(a)
θrh

T̂(a)
xxrh

)−1

λ̂
(a)

jrh

δf (a)

δt̂
(a)
jrh

= −λ̂
(a)′

jrh
B̂(a)

r

δf (a)

δt̂
(a)
yrh

=
nh

t̂
(a)
θrh

where Λ̂j1j′1rh
is a J1 × J1 matrix with the value nh/t̂

(a)
θrh

in positions (j1, j
′
1)

and (j′1, j1) and the value zero elsewhere, Λ̂jj′rh
is a J × J matrix with the

value nh/t̂
(a)
θrh

in positions (j, j′) and (j′, j) and the value zero elsewhere. The
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J1-vector λ̂j1rh
and the J-vector λ̂jrh

have the value nh/t̂
(a)
θrh

in positions j1

and j, respectively, and zeros elsewhere.
Let t̂

(a)
yθh =

∑
sh

θ
(a)
k|s y̌k, t̂

(a)
θh =

∑
sh

θ
(a)
k|s and

t̂
(a)
x1θh =

∑
sh

θ
(a)
k|sx̌1k, T̂

(a)
x1x1θh =

∑
sh

θ
(a)
k|sx1kx

′
1k

σ2
1kπk

,

t̂
(a)
x1yθh =

∑
sh

θ
(a)
k|sx1kyk

σ2
1kπk

, T̂
(a)
xxθh =

∑
sh

θ
(a)
k|sxkx

′
k

σ2
kπk

and

t̂
(a)
xyθh =

∑
sh

θ
(a)
k|sxkyk

σ2
kπk

be the respective expected values, under RD(a) given s, of the totals in (A.1).

Also, for notational convenience, let t̂
(a)
ycθ =

Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
yθh, t̂

(a)
xcθ =

Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
xθh,

T̂
(a)
x1x1θ =

Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh and T̂

(a)
xxθ =

Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
xxθh. Furthermore, let

ERD(a)

(
B̂

(a)
1r

)
≈ B̂

(a)
1θ =

(
Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh

)−1 Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
x1yθh

(A.3)

and

ERD(a)

(
B̂(a)

r

)
≈ B̂

(a)
θ =

(
Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
xxθh

)−1 Hs∑
h=1

nh

t̂
(a)
θh

t̂
(a)
xyθh

(A.4)

Evaluating the partial derivatives at the expected value point

(t̂
(a)
θh , t̂

(a)
xθh, T̂

(a)
x1x1θh, t̂

(a)
x1yθh, T̂

(a)
x1x1θh, t̂

(a)
x1yθh, t̂

(a)
yθh; h = 1, . . . , Hs)

under RD(a) given s, and inserting into (A.2), we obtain
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t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

−
Hs∑
h=1

nh

(t̂
(a)
θh )2

t̂
(a)
yθh(t̂

(a)
θrh

− t̂
(a)
θh )

−
(
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1
Hs∑
h=1

nh

(t̂
(a)
θh )2

[
t̂
(a)
x1yθh − T̂

(a)
x1x1θhB̂

(a)
1θ

]
(t̂

(a)
θrh

− t̂
(a)
θh )

−
(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1
Hs∑
h=1

nh

(t̂
(a)
θh )2

[
t̂
(a)
xyθh − T̂

(a)
xxθhB̂

(a)
θ

]
(t̂

(a)
θrh

− t̂
(a)
θh )

+
Hs∑
h=1

nh

(t̂
(a)
θh )2

t̂
(a)′

xθhB̂
(a)
θ (t̂

(a)
θrh

− t̂
(a)
θh )

−
(
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
T̂(a)

x1x1rh
− T̂

(a)
x1x1θh

)
B̂

(a)
1θ

−
(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
T̂(a)

xxrh
− T̂

(a)
xxθh

)
B̂

(a)
θ

+
(
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
x1yrh

− t̂
(a)
x1yθh

)
+
(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
xyrh

− t̂
(a)
xyθh

)
−

Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
xrh

− t̂
(a)
xθh

)′
B̂

(a)
θ +

Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
yrh

− t̂
(a)
yθh

)
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With some simpli�cations we then have

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

−
(
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1
Hs∑
h=1

nh

(t̂
(a)
θh )2

(
t̂
(a)
x1yθh − T̂

(a)
x1x1θhB̂

(a)
1θ

)
t̂
(a)
θrh

−
(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1
Hs∑
h=1

nh

(t̂
(a)
θh )2

(
t̂
(a)
xyθh − T̂

(a)
xxθhB̂

(a)
θ

)
t̂
(a)
θrh

+
Hs∑
h=1

nh

(t̂
(a)
θh )2

t̂
(a)′

xθhB̂
(a)
θ t̂

(a)
θrh

−
Hs∑
h=1

nh

t̂
(a)
θh

t̂(a)′

xrh
B̂

(a)
θ −

Hs∑
h=1

nh

(t̂
(a)
θh )2

t̂
(a)
yθht̂

(a)
θrh

+
(
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
x1yrh

− T̂(a)
x1x1rh

B̂
(a)
1θ

)
+
(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1
Hs∑
h=1

nh

t̂
(a)
θh

(
t̂(a)
xyrh

− T̂(a)
xxrh

B̂
(a)
θ

)
+

Hs∑
h=1

nh

t̂
(a)
θh

t̂(a)
yrh

Rewriting this expression leads to

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

((
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1

x1k

)
ě
(a)
1θk

−
Hs∑
h=1

[
nh

(t̂
(a)
θh )2

∑
sh

θ
(a)
k|s

((
tx1U − t̂x1π

)′ (
T̂

(a)
x1x1θ

)−1

x1k

)
ě
(a)
1θk

]∑
sh

R
(a)
k|s

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
1 +

(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1

xk

)
ě
(a)
θk

−
Hs∑
h=1

[
nh

(t̂
(a)
θh )2

∑
sh

θ
(a)
k|s

(
1 +

(
t̂xπ − t̂

(a)
xcθ

)′ (
T̂

(a)
xxθ

)−1

xk

)
ě
(a)
θk

]∑
sh

R
(a)
k|s
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which can be further simpli�ed into

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
(g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ

)
−

Hs∑
h=1

nh

(t̂
(a)
θh )2

∑
sh

θ
(a)
k|s

(
(g

(a)
1kθ − 1)ě

(a)
1kθ + g

(a)
2kθě

(a)
kθ

)∑
sh

R
(a)
k|s

where e
(a)
1θk = yk − x′

1kB̂
(a)
1θ , e

(a)
θk = yk − x′

kB̂
(a)
θ and

g
(a)
1kθ = 1 +

(
tx1U − t̂x1π

)′( Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
x1x1θh

)−1

x1k

σ2
1k

g
(a)
2kθ = 1 +

(
t̂xπ − t̂

(a)
xcθ

)′( Hs∑
h=1

nh

t̂
(a)
θh

T̂
(a)
xxθh

)−1

xk

σ2
k

If we let f̌
(a)
kθ;g = (g

(a)
1kθ−1)ě

(a)
1kθ +g

(a)
2kθě

(a)
kθ , we can simplify further and write

t̂
(a)
ycreg as

t̂(a)
ycreg ≈ t̂

(a)
ycθ +

(
tx1U − t̂x1π

)′
B̂

(a)
1θ +

(
t̂xπ − t̂

(a)
xcθ

)′
B̂

(a)
θ

+
Hs∑
h=1

nh

t̂
(a)
θh

∑
sh

R
(a)
k|s

(
f̌

(a)
kθ;g −

∑
sh

θ
(a)
k|s f̌

(a)
kθ;g

t̂
(a)
θh

)
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A.2 Taylor linearization of t̂
(a)
ycal1

The calibration estimator is

t̂
(a)
ycal1 =

∑
r(a) y̌k + (tx1U −

∑
r(a)x̌1k)

′ B̃
(a)
1r (A.5)

with

B̃
(a)
1r =

(∑
r(a)

ckx1kx
′
1k

πk

)−1∑
r(a)

ckx1kyk

πk

=
(
T̃(a)

x1x1r

)−1

t̃(a)
x1yr

where T̃
(a)
x1x1r and t̃

(a)
x1yr have the typical elements

t̃
(a)

j1j′1r =
∑

r(a)

ckxj1kx
′
j1k

πk

and t̃
(a)
j1yr =

∑
r(a)

ckxj1kyk

πk

.

Let t̃
(a)
yr =

∑
r(a) y̌k and t̃

(a)
x1r =

∑
r(a)x̌1k. Then t̂

(a)
ycal1 can be written as a

nonlinear function of estimated totals:

t̂
(a)
ycal1 = t̃(a)

yr +
(
tx1U − t̃(a)

x1r

)′ (
T̃(a)

x1x1r

)−1

t̃(a)
x1yr (A.6)

= f(t̃(a)
yr , t̃(a)

x1r, T̃
(a)
x1x1r, t̃

(a)
x1yr)

We will need the following partial derivatives:

δf

δt̃
(a)

j1j′1r

= −(tx1U − t̃(a)
x1r)

′(T̃(a)
x1x1r)

−1Λ̃j1j′1
B̃

(a)
1r

δf

δt̃
(a)
j1yr

= (tx1U − t̃(a)
x1r)

′(T̃(a)
x1x1r)

−1λ̃j1

δf

δt̃
(a)
j1

= −λ̃
′
j1

(T̃(a)
x1x1r)

−1t̃(a)
x1yr = −λ̃

′
j1
B̃

(a)
1r

δf

δt̃
(a)
yr

= 1

where Λ̃j1j′1
is a J1 × J1 matrix with the value 1 in positions (j1, j

′
1) and

(j′1, j1) and the value 0 elsewhere and λ̃j is a J1-vector with the value 1 in
position j1 and zeros elsewhere.

29



The expected values, under RD(a), given s, of the totals in (A.6) are

t̃
(a)
yθ =

∑
sθ

(a)
k|s y̌k, t̃

(a)
x1θ =

∑
sθ

(a)
k|sx̌1k, T̃

(a)
x1x1θ =

∑
s

θ
(a)
k|sckx1kx

′
1k

πk

and t̃
(a)
x1yθ =∑

sθ
(a)
k|sx1kyk respectively.

Also, let ERD(a)(B̃
(a)
1r ) ≈ B̃

(a)
1θ = (T̃

(a)
x1x1θ)

−1t̃
(a)
x1yθ. Evaluating the partial

derivatives at the expected value point and inserting into (A.2) leads to

t̂
(a)
ycal1 ≈ t̃

(a)
yθ + (tx1U − t̃

(a)
x1θ)

′B̃
(a)
1θ +

∑
sR

(a)
k|sy̌k −

∑
sθ

(a)
k|s y̌k + (t̃

(a)
x1θ − t̃

(a)
x1r)′B̃

(a)
1θ

− (tx1U − t̃
(a)
x1θ)

′(T̃
(a)
x1x1θ)

−1
(
T̃(a)

x1x1r − T̃
(a)
x1x1θ

)
B̃

(a)
1θ

+ (tx1U − t̃
(a)
x1θ)

′(T̃
(a)
x1x1θ)

−1(t̃(a)
x1yr − t̃

(a)
x1yθ)

= t′x1UB̃
(a)
1θ +

∑
s

R
(a)
k|se

(a)
1θk

πk

+ (tx1U − t̃
(a)
x1θ)

′(T̃
(a)
x1x1θ)

−1(t̃(a)
x1yr − T̃(a)

x1x1rB̃
(a)
1θ )

= t′x1UB̃
(a)
1θ +

∑
sR

(a)
k|sv

(a)
1kθě

(a)
1kθ

with e
(a)
1kθ = yk − x′

1kB̃
(a)
1θ and v

(a)
1kθ = 1 + (tx1U − t̃

(a)
x1θ)

′
(
T̃

(a)
x1x1θ

)−1

ckx1k.
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