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Abstract

The increasing availability of data and potential predictor variables poses
new challenges to forecasters. The task of formulating a single forecasting model
that can extract all the relevant information is becoming increasingly difficult in
the face of this abundance of data. The two leading approaches to addressing
this "embarrassment of riches” are philosophically distinct. One approach builds
forecast models based on summaries of the predictor variables, such as principal
components, and the second approach is analogous to forecast combination,
where the forecasts from a multitude of possible models are averaged. Using
several data sets we compare the performance of the two approaches in the guise
of the diffusion index or factor models popularized by Stock and Watson and
forecast combination as an application of Bayesian model averaging. We find
that none of the methods is uniformly superior and that no method performs
better than, or is outperformed by, a simple AR(p) process.
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1 Introduction

The number of potential predictors for macroeconomic variables can easily count in
the hundreds, e.g. Stock and Watson (2002b) collect some 200 predictor variables for
the US economy. Paradoxically, having more information in the form of more predictor
variables makes forecasting more difficult. Simply put, the task of formulating a
forecasting model and extracting the relevant information from the predictors becomes
more complex as the number of possible predictors increases. The increasing availability
of data is thus creating new challenges for the forecaster. There are, essentially, two
different approaches to address this problem. The first approach builds forecast models
based on summaries of the predictor variables, such as principal components, and
the second approach is analogous to forecast combination, where the forecasts from a
multitude of possible models are averaged.

Each attempts to overcome the shortcomings of the traditional approach of selecting
a single forecasting model based on a few predictors. Clearly, using a single model,
which by necessity can only incorporate a small subset of the variables, will fail to
take account of all information in the data. In addition, by being based on a single
model the forecast does not take account of model uncertainty. Basing the forecast
model on data summaries in the form of principal components, as in Stock and Watson
(2002b), allows information from all the predictors to enter into the forecasts, but not
necessarily in an optimal fashion since the summaries of the predictors are created
without a reference to the predicted variable. Model averaging, on the other hand,
summarizes the different possible relationships between the predicted variable and
the predictor variables. With appropriately chosen weights, this should lead to more
efficient extraction of information. Model averaging also has the advantage of providing
robustness against misspecification, and model uncertainty can easily be accounted for
if the model averaging is conducted in a Bayesian setting, i.e. the weights are the
posterior probabilities of the models. In addition the models and their averages are
more easily interpreted than principal components and inference on the importance of
individual predictors is available.

The potential benefits of model averaging as a tool for extracting the relevant
information from a large set of predictor variables come at the cost of considerable
computational complexity. With 100 predictor variables one obtains more than 103°
different models just by considering the different possible combinations of the variables,
and it is clearly impossible to include all of them in a model averaging exercise.
Recent advances in Bayesian computing, utilized by e.g. Jacobson and Karlsson (2004),
provide one way forward by identifying the subset of important models as measured by
their posterior probability, i.e. the set of models which would receive a non-negligible
weight in the forecast combination.

Koop and Potter (2004) apply Bayesian model averaging (BMA) to dynamic



factor models by orthogonalizing the predictors, using a transformation to principal
components. Koop and Potter conclude that models containing factors do outperform
autoregressive models in forecasting, but only narrowly and at short horizons. Also
the gains provided by using BMA over forecasting methods based on a single model
are more appreciable relative to the small forecasting gains from factor-based models.

The purpose of this paper is to evaluate the forecasting performance of the factor
model approach of Stock and Watson (2002b), the Bayesian model averaging approach
of Jacobson and Karlsson (2004), and the combined approach of Koop and Potter
(2004). Any forecast evaluation is dependent on the choice of variable to forecast and
the dataset used. To protect against this, we use three different datasets with two
different frequencies, and forecast both inflation and GDP.

In all three cases the forecasts are based on a simple linear model,

Yirh = XeBn + €t (1)

where x;, in the case of Stock and Watson, consists of the first few principal
components, possibly augmented with lags of these and lagged values of y;. In the
Bayesian model averaging approach of Jacobson and Karlsson, x; is a subset of the
regressor variables, possibly including lags of the predictors and y;, and the forecasts
are obtained by averaging over the forecasts from the different models. In the combined
approach of Koop and Potter, x; contains a selected subset of orthogonalized regressors.
There are two features worth noting about this setup, the forecast model depends on
the forecast horizon, h, and the forecasts are static, i.e. there is no need to forecast x;.

The remainder of the chapter is organized as follows. Section [2| presents the
forecasting approaches in large panels, Section [3| compares the different forecast
methods, and Section {4] concludes.

2 Forecasting methods

2.1 Factor models

The factor based approach to forecasting with large data sets is based on the assumption
that the relevant information is captured by a small number of factors common to the
predictor variables. The forecasts are constructed using a two-step procedure. First,
the method of principal components is used to extract factors from the predictors x;.
In the second step the factors are used to forecast the time series y; .

In particular, let y;., be a scalar series that is being forecast h-periods ahead, and
let x; be a N-dimensional multiple time series of variables serving as predictors. Now

consider the forecasting equation
yt—‘rh:ﬁ(L)ft—i_Pyyt—i_gt—O—ha t:17"'7T7 (2)
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where f; is a vector of ¢ unobservable common factors and y; is a set of p + 1
variables, such as lags of y;. Furthermore B (L) is a vector lag polynomial and
~ = (0,7, --,7) - Suppose that the observed series x; and ), in allow for

a dynamic factor model with ¢ common dynamic factors f;
l’zt:Al(L)ft‘l—eZt, Zzl,,N,tzl,,T, (3)

where A; (L) is a lag polynomial vector, and e; is an idiosyncratic disturbance. In

addition, it is assumed that

E(6t+h|ft7ytaxt7ft—17yt—17xt—17"-) = 0. (4)

Assume that the lag polynomial vectors are of order s. The dynamic factor model

— can then be restated as

Yern = B'Fy + vy + i, (5)
x; = AF; + ey, (6)

where B = (8),....08.) F, = (£/,f_,,... ,ft’_s)/ isa ((s+1)g x 1) vector, and the
i-th row of A is (Mg, .-, Ais) -

The (s + 1) ¢q factors F, in @ are estimated using principal components, denoted
by f‘t. In the second step, after regressing ;. on a constant, f‘t, r possible lags of f‘t,

p lags of y;, the general forecasting function becomes

r p
Yrnr = Qn + Z B, Fr_; + Z VniYr—j> (7)
j=0 J=0
where §7. 57 is the h-step ahead forecast.

Stock and Watson (2002b) use factor models to forecast macroeconomic variables,
measuring both real economic activity and prices. The factor model forecast is
compared with other forecasting models, such as autoregressive forecast (AR), vector
autoregressive forecast and multivariate leading indicator forecast. Stock and Watson
(2002b) consider U.S. monthly series with the total number of possible predictors being
215. They find that for real variables factor models with two factors, or autoregressive
factor models with two factors improve forecasting performance the most. For price
indices the autoregressive factor models forecasts with one factor are preferred. In
a recent paper, Boivin and Ng (2005) point out that two researchers can arrive at
different forecasts using factor models, because the factors are estimated differently
and/or the forecasting equations are specified differently. Boivin and Ng concentrate
on the two leading methods in the literature, the dynamic method of Forni, Hallin,
Lippi, and Reichlin (2005) and the static method of Stock and Watson (2002a). Boivin
and Ng investigate the sensitivity of the estimates of the factors and the forecasts

based on factor models to the dynamics of the factors and the specification of the
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forecasting equation. Their main findings are that unconstrained modelling of the
series of interest tends to give more robust forecasts when the data generating process
is unknown, and that the methodology of Stock and Watson (2002a) apparently does

have these properties.

2.2 Bayesian model averaging

Bayesian model averaging can be used to combine forecasts from the set of models that
can be constructed using various combinations of the predictors. The averaging over
many different competing models incorporates model as well as parameter uncertainty
into conclusions about parameters and predictions. See Hoeting, Madigan, Raftery,
and Volinsky (1999) for references and an overview of Bayesian model averaging.
Given a set M = {My,..., My} of possible models, prior probabilities of the
models, p(M;), prior distribution of the parameter in each model, p(6;| M;) and
likelihoods, L (y|6;, M;) all quantities of interest for model averaging and selection
can be obtained by using Bayes rule. The posterior probabilities of the models are

given by

Mily) = =
M) = i M) (M)

where m (y| M) is the marginal likelihood

m(yM)pM) li”: m(ylM)p(M)]

J=1

m (y| M) = / L (y]6, M) p (6] M) d6, (9)

for model ¢ = 1,..., M. The posterior distribution of some quantity of interest, ¢, when

taking account of model uncertainty, is

p(dly) :ZP(¢|}’7MJ')P(MJ'|Y)7 (10)

which is an average of the posterior distribution under each of the models, weighted
by their posterior model probabilities. In particular, the minimum mean squared error
forecast is given by

M

Jrenr = E(yranly) = Y E(yranl y. M) p(M;y), (11)

j=1
where E (yrin|y,M,) is the forecast conditional on model M ;. This forecast is a special
case of forecast combination with weights w;

M

Urrn|T = Z Yr-h,jiTW;, (12)
j=1

where BMA provides optimal weights under the assumptions of the forecasting exercise.
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2.3 The parameter prior and the posterior distributions

Consider a linear model with k regressors

Yt+h = ZtVn + Etvn, (13)

where v, = (an,3;), is a k + 1 parameter vector and z, = (1,x}) is a vector of
explanatory variables.

A challenging task in BMA and model selection is the specification of the prior
distribution for the parameters < in the different models. The posterior model
probabilities depend on the prior for the model parameters. Due to the large
number of models it is desirable to use priors in an automated fashion. The priors
should be relatively uninformative and also robust in the sense that conclusions are
qualitatively insensitive to reasonable changes in the priors. A common choice in BMA
for the class of the normal linear model is the g-prior of Zellner (1986) for the regression

parameters,
-1
p(v]o®, M) ~ Niyy (07002 (2'z) ) (14)
that is, the prior mean is set to zero indicating shrinkage of the posterior towards zero
and the prior variance is proportional to the data information. Improper priors can be

used on the parameters that have identical interpretation across all models. In the case

of a linear regression model we can use the usual uninformative prior for the variance,
p(0?) < 1/0”. (15)

These priors lead to a proper posterior on the regression parameters, which are t-
distributed with 7" degrees of freedom,

p(7|Y) Ntk-f-l (71aSaMaT>7 (16)
where
c

= Y 17
4! e+ 177 ( )

is a scaled down version of the least squares estimate, and
S = Ly -2 (v T+ oy (18)

= i y 7)Yy Y T vy
1
) (19)
c

The marginal likelihood is a multivariate ¢-distribution
m(y| M) o (¢ + 1) FHD/2 G172 (20)

The prior requires only specification of the hyperparameter ¢. Our prior
is similar to the one advocated by Ferndndez, Ley, and Steel (2001), the essential
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difference being that they use an improper prior for both the constant term and the
variance. In a rather extensive study Ferndndez, Ley, and Steel (2001) investigate

various choices of ¢. Their recommendation is to set the hyperparameter to

N2 if T < N2,
= (21)

T T > N2

2.3.1 The model prior and the model space

A second challenge arises with the size of the model space. All possible combinations
of N potential predictors result in 2 models. Traversing the complete model space,
calculating the posterior probabilities, BMA forecasts and the posterior inclusion
probabilities of the variables is thus impractical. A convenient method to identify
a set of models with non-negligible posterior model probabilities without examining
the full model space, is the reversible jump Markov chain Monte Carlo algorithm, see
Green (1995). The details of the algorithm are given as Algorithm

This Markov chain converges to the posterior model probabilities under quite
general conditions and provides one way of estimating p(M]|y). The estimated
posterior model probabilities are (for obvious reasons) conditional on the set of
models visited by the chain. To verify that the Markov chain captures most of the total
posterior probability mass the method suggested by George and McCulloch (1997) can
be used. This method utilizes two separate Markov chains, each starting at a random
model. The secondary chain is run for a predetermined number of steps and is then
used to provide a capture-recapture type estimate of the total visited probability for
the primary chain.

The number of models that enter the model averaging can be further reduced by
imposing restrictions on the high-dimensional model space. Being uninformative about
the model space results in all models having equal probability and then unrealistically
large models are included in the average. Instead, a model prior that downweights

models containing a large number of predictors can be used
p (M) ac 8™ (1= 8)" ", (24)

where k; is number of predictors in a model M;. Setting § = 0.5 is equivalent to a

constant model prior

2.4 Bayesian model averaging with factor models

Koop and Potter (2004) use Bayesian techniques to select factors in dynamic factor

models as well as BMA to average forecasts over model specifications. They consider



Algorithm 1 Reversible jump Markov chain Monte Carlo
Suppose that the Markov chain is at model M, having parameters 6, where 0, has

dimension dim () .
1. Propose a jump from model M to a new model M’ with probability j(M'|M).

2. Generate vector u (which can have different dimension than 6,4) from a specified

proposal density ¢ (u| @, M, M').

3. Set (Oar,u') = g (Oag, 1), where g ap is a specified invertible function.
Hence dim (6) + dim (u) = dim (@) + dim (u’). Note that gy e = 9/_\/11',/\/1'

4. Accept the proposed move with probability

L (y|6sm, M) p (Orr| M) p (M) j (MIM)
L (y|0r, M) p (04| M) p (M) j (M'|M)
q (u/|0M’7 MI? M) ‘agM,M’ (0/\47 u)
q (ul@p, M, M) 0 (0, 1)

a = min{l,

} . (22)

If all parameters of the proposed model are generated directly from a proposal
distribution, then (@prp,u’) = (u,0,) with dim (0y) = dim (u') and dim (Or¢) =
dim (u), and the Jacobian is unity. If, in addition, the proposal g (u|@r;, M, M') is
the posterior p (@r¢ |y, M’) then simplifies to

5. Set M = M’ if the move is accepted.

&~ — min {17 m (y|M') p (M) j (M|M) } .

m (y|M)p (M) j (M'|M) (23)

This implies that we do not need to perform steps 2 and 3 of the algorithm. Two types

of model changing moves are considered:

1. Draw a variable at random and exclude it from the model if it is already in the

model, otherwise add it. This step is attempted with probability pa.

2. Swap a randomly selected variable in the model for a randomly selected variable

outside the model. This step is attempted with probability 1 — p4.




a number of different model priors and evaluate their forecasting performance, and
the in-sample and out-of-sample performance of model selection, model averaging and
factor models. A common set of variables, the constant term and lags of the dependent
variable, are included in each model. These are assigned flat priors and marginalized
out in the same way as the constant is treated by Ferndndez, Ley, and Steel (2001). The
basic model still applies with suitably transformed dependent and explanatory
variables. The priors and are used for the reduced model. To apply the
BMA approach on the factor models, the regressors z; are transformed to principal
components using the orthogonal transformation W = ZE, where E is the matrix of

eigenvectors of Z'Z. The model with orthogonal regressors is then

Yt+h = WiCh + Etth, (26)

with ¢, = E~!43. The prior for the regression coefficients becomes
p(¢[o® M) ~ Ny (0,c0* (BZ'ZE) ) (27)

yielding the posterior
p(C|Y)Ntk+1 (CthMvT)? (28)
with Z and ~ replaced accordingly by W and ¢, respectively in the equation . The

use of orthogonalized regressor has the practical advantage that the computational
effort is reduced compared to BMA or Bayesian variable selection with non-orthogonal
regressors. Since W'W is diagonal the marginal likelihood ratio in simplifies and
depends only on the model variables that are unique to either model. The ratios can
thus be easily precomputed for the case when the models only differ by one or two
variables.

Koop and Potter (2004) focus on forecasting the growth rates of US GDP and
inflation using a set of 162 predictors. They conclude that BMA forecasts improve on
an AR(2) benchmark forecasts at short, but not at longer horizons and only by a small
margin. These findings are attributed to the presence of structural instability and
the fact that lags of the dependent variable seem to contain most of the information
relevant for forecasting. Koop and Potter also investigate the forecasting performance
of several model priors. They found that priors, which focus on principal components
explaining 99.9% of the variance of the predictors, provide the best results, and that
the non-informative prior performs very poorly.

2.5 Median probability model

In addition we take the opportunity to apply a method proposed by Barbieri and
Berger (2004). This method does not directly deal with the situation of having many
predictors, but it is of some interest and is easily implemented since the posterior model

probabilities are available from the BMA exercise.



Barbieri and Berger show that for selection among linear models the optimal
predictive model is often the median probability model, which is defined as the model
consisting of variables that have overall posterior inclusion probability of at least 1/2.

The posterior inclusion probability for a variable ¢ is given by
M
p(xly) =) 1 (zi € Mj)p(Myly), (29)
j=1

where 1 (z; € M;) equals one if z; is included in model M; and zero otherwise. It
is possible that no variable has a posterior inclusion probability exceeding 1/2. The
median probability model is, however, assured to exist in two important cases, one is
the problem of variable selection, when any variable can be included or excluded from
the model, and the other case is when the models under consideration follow a graphical
model structure, for example a sequence of nested models. Barbieri and Berger show
that the median probability model will frequently coincide with the highest posterior
probability model. One obvious situation is when there is a model with posterior
probability higher than 1/2. Other situations include the problem of variable selection
under an orthogonal design matrix, certain prior structures and known variance o2.
In Barbieri and Berger’s (2004) experience the median probability model outperforms
the maximum probability model in terms of predictive performance. They suggest
that the median probability model should routinely be determined and reported as a

complement to the maximum probability model.

3 Forecast comparison

We explore the performance of the methods mentioned in the previous section on
three different datasets, and compare their performance through the root mean square
forecast error (RMSFE). The first dataset is the balanced U.S. monthly dataset of
Stock and Watson (2002b) consisting of 146 series from 1960:01 to 1998:12. The second
dataset consists of 161 quarterly U.S. time series from 1959Q1 until 2000Q1 and was
used in Stock and Watson (2003) and in Koop and Potter (2004). The last dataset is a
Swedish dataset comprising of 77 variables including a wide range of indicators of real
and monetary aspects of the Swedish economy ranging from 1983Q1 to 2003Q4[] We
forecast the CPI or the inflation rate for all three datasets, and for the U.S. quarterly

data we forecast the GDP growth rate as well. The forecasting model is

Yirh = 0 + X Bp + €i4hs (30)

which generalizes , and to arbitrary forecasting horizons. The choice of

dependent variable as 1, instead of y;, has the great advantage that it does away

1See the cited works for the list of the predictors for the US data and Appendix |Al for the list of
the Swedish series and their transformation.
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with the need of forecasting the predictors in x; when forecasting y;.,. The obvious
disadvantage of this choice of dependent variable is that it leads to a different model
for each forecast horizon.

Following Stock and Watson the dependent variable and the predictors in the U.S.
datasets are transformed into stationary series. In particular, GDP is modelled as
being I (1) in logarithms and CPI as I (2) in logarithms. This implies that y;, for
GDP and CPI are transformed as

Yern = a/h -0 (GDPyyp/GDP,), (31)
Yt+h = Cl/h, -In (ijt+h/cpjt) —aln (CPIt/CP[t,1> > (32)

where a = 400 for quarterly data and a = 1200 for monthly data.

The Swedish inflation rate is measured as the four-quarter percentage change in
the consumer price index and the remaining variables in the dataset are with few
exceptions 4 quarter growth rates or 4 quarter log differences. The current level of
inflation is included in the set of predictor variables for inflation h-periods ahead. A
dummy variable d;, for the Swedish low inflation regime dated to start in 1992Q1, is
always included in the model (30)).

The forecasts are constructed for horizons h = 6 and h = 12 for the monthly data,
and for horizons h = 4 and h = 8 for the quarterly data, respectively. For the U.S.
monthly data we evaluate the forecast performance for the period 1989:01 until 1998:12.
To investigate the possibility that some forecasts work well in some periods but poor
during others, we also calculate the forecast for four 30 months sub-periods.

For the factor model forecasts we consider the following variants proposed by Stock
and Watson: the forecasts denoted by FM-AR,Lag, based on equation ([7)), include
v estimated factors, r lags of factors and p lags of y;, where all the lag lengths are
determined by the Bayesian information criterion (BIC). The FM-AR forecasts contain
no lags of F,, with v and p determined by BIC. Finally, FM forecasts contain only
contemporaneous F, with v selected by BIC. Further, forecasts based on the estimated
factors holding the number of factors v fixed are also considered, first determining the
lag length of the dependent variable, p, by BIC, and then setting p = 0. These are
denoted as FM-AR,v, and FM,v, respectively.

Our implementation of BMA in dynamic factor models differs slightly from the
implementation in Koop and Potter (2004). We use only contemporaneous values
when forming the principal components, in particular we do not include lags of y. We
consider forecasts based on two different sets of predictors. The BMA-FM forecasts use
only the 20 first principal components as the potential predictors and the BMA-FM-
AR augments the set of predictors with p lags of y;. The use of the 20 first principal
components roughly corresponds to the 99.9% prior that Koop and Potter find to work

well.
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Table 1 Summary of datasets used and settings for forecasting

U.S. monthly U.S. quarterly  Swedish quarterly

dataset dataset dataset
Total no. of variables, N 146 161 7
Forecast variable, y; CPI CPI, GDP Inflation
Data span 1960:01-1998:12  1961Q1-2000Q4  1983Q1-2003Q4
Forecast period 1989:01-1998:12  1981Q1-2000Q4  1999Q1-2003Q4
Forecast horizons, h 6,12 4.8 4.8
No. of sub-periods 4 4 2
No. of lags of y, p [0, 5] [0, 3] [0, 3]
No. of factors, FM, v [1,4] [1,4] [1,4]
No. of factors, FM-AR, v [1,12] [1,4] [1,4]
No. of factor lags, r [0, 2] [0, 2] [0, 5]
¢ in prior in BMA 0.075 0.05 0.1
No. of factors, BMA-FM 20 20 20
d in prior in BMA-FM 0.5 0.5 0.5
MCMC replicates 5000 000 5000 000 5000000
Burn-in 50 000 50 000 50 000

The forecasts calculated using the Bayesian approach include forecasts based on
the forecast combination from all visited models, forecasts from the 3 models with
the highest posterior probabilities, denoted Top1l to Top3, and forecasts based on the
median model. For the U.S. monthly data we set the model hyperparameter 6 to 0.075
in the usual BMA approach. This corresponds to a prior expected model size of 11
variables. For the BMA-FM approach, 6 = 0.5, giving expected size of 10 variables.
The value of ¢ is chosen as in , i.e. ¢ = N?. The Markov chain is run for 5 000 000
steps with 50 000 steps as burn-in. The parameters defining the forecast experiments
are summarized in Table [Il

The results from the different approaches are compared to a benchmark, an AR
process with the lag length determined by BIC. In addition we calculate forecasts
based on the random walk, i.e. when the forecast of y;,; equals the current value of

the dependent variable.

3.1 Results

The results for the transformed U.S. CPI series are reported in Tables[2and [3, Tables
- [7|show the results for the U.S. quarterly data, and the results for the Swedish inflation
rate can be found in Tables[§-[9] The first data column in the tables represents results

based on the whole forecasting period and the remaining columns contain results for
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the sub-periods. The values reported in the tables are the relative RMSFESs

RMSFE (jr-nir)
RMSFE (§7, 1)

(33)

In general, there is no method that consistently outperforms other methods across
all periods, datasets or forecasting horizons. There are, however, some patterns in the
results that merit further investigation.

It is important to include lags of the dependent variable when forecasting inflation.
Only then is it possible to outperform an AR(p) process. This conclusion is supported
in as much as 2/3 of the different periods. Koop and Potter (2004) find that an AR(2)
process outperforms factor-based models for longer forecasting horizons. The better
predictive performance of an AR(2) can, according to Koop and Potter, probably be
explained by the fact that the relevant predictive information is included in the lags of
the dependent variable.

One possible exception to this is the US GDP forecasts, where the predictive
performance of the FM forecasts is unaffected by allowing for lags of the dependent
variable. The GDP forecasts from the sub-periods and the whole period also indicate
that it is not clear what the number of included factors should be. The best performing
model contains different number of factors across the subperiods. Also, chosing the
number of factors included in a model in advance often performs better than using
BIC for their determination.

Forecast combination using BMA regularly outperforms the forecasts from models
selected by the posterior model probabilities.

The results differ substantially between the Swedish dataset, where the BMA-based
methods perform poorly, and the two US datasets. Overall BMA-FM does better than
the FM forecasts for the US datasets. Allowing for lags of the dependent variable
in BMA-FM-AR improves the forecasts somewhat, but the FM-AR forecasts show a
larger improvement.

On the issue of selecting predictors from the original variables, or data summaries
such as principal components, the evidence is mixed. The BMA forecasts do better for
the monthly data and the BMA-FM forecasts better for the quarterly data.

Comparing the median model with the highest posterior probability model fails to
prove its superiority for forecasting. The median model produces smaller RMSFE than

Topl model only in 47% of all cases.

4 Conclusions

This paper compares methods for extracting information relevant for forecasting from

a large number of predictors. Factor based models, the Bayesian model averaging
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approach and the combination of the two are evaluated on US and Swedish data at
both monthly and quarterly frequencies. We find that none of the methods is uniformly
superior and that no method performs better than, or is outperformed by, a simple
AR(p) process.

A possible disadvantage of all the methods considered here is that they are based on
linear models that forecast h-steps ahead directly. It is quite possible that these simple
models fail to capture all the information contained in the data. In future research,
more complicated, and thus more realistic functions, will be considered. This could
improve forecast accuracy, but comes at the cost of increased computational complexity

as the result.
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Table 2 RMSFE relative to an AR(p) for monthly U.S. CPI, 6 months ahead forecast.

89:1-98:12  89:1-91:6  91:7-93:12  94:1-96:6  96:7-98:12

BMA 1.0911 0.8151  0.8986 1.9560  1.8041
Top 1 1.1247 0.7735  0.8989 2.1858  1.9074
Top 2 1.1300 0.7978  0.9103 21334 19181
Top 3 1.1148 0.8174  0.8443 2.1195  1.8477

Median model  1.1469 0.7967  0.8989 2.2709  1.8950

BMA-FM-AR 1.2189 1.0005  1.3682 1.7506  1.5350

Top 1 1.2435 1.0155  1.3923 1.8061  1.5742
Top 2 1.2418 1.0065  1.3722 1.8172  1.6308
Top 3 1.2313 0.9941  1.4138 1.7883  1.5304
Median model  1.2348 1.0186  1.3715 1.7645  1.5742
BMA-FM 1.4915 1.3485  1.4502 2.1612  1.7257
Top 1 1.5288 1.3430  1.5996 2.2069  1.7404
Top 2 1.5163 1.3575  1.5199 2.2273  1.6904
Top 3 1.5021 1.3344  1.5422 21313 1.7432

Median model 1.5283 1.3430  1.5990 2.2044  1.7404

FM-AR, Lag  0.8859 0.7765  0.8140 1.1341  1.3683
FM-AR 0.8998 0.7764  0.9312 1.1005  1.3103
FM 1.4747 1.3808  1.3082 20714  1.7743

FM-AR,v=1 0.9068 0.8074  0.8177 1.1450  1.3864
FM-AR, v=2 0.8998 0.7764  0.9312 1.1005  1.3103
FM-AR, v=3 0.8990 0.7756  0.9278 1.0950  1.3174
FM-AR, v =4 0.9020 0.7766  0.9472 1.0902  1.3065

FM,v=1 1.7330 1.7039  1.4604 2.2050  2.0197
FM, v = 1.7249 1.6917  1.4193 2.2327  2.0553
FM,v=3 1.6954 1.6390  1.4651 2.2308  1.9917
FM, v =4 1.5412 1.4061  1.2932 2.2986  2.0215

Random walk  2.6683 2.4604  2.8274 3.1155  3.1363
AR, RMSFE  0.0053 0.0083  0.0050 0.0031  0.0031
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Table 3 RMSFE relative to an AR(p) for monthly U.S. CPI, 12 months ahead forecast.

89:1-98:12  89:1-91:6  91:7-93:12  94:1-96:6  96:7-98:12

BMA 1.2098 0.9203  0.9186 1.9561  2.0671
Top 1 1.2541 0.9288  1.0022 1.7705  2.1715
Top 2 1.2765 0.9460  1.0617 2.2253 19353
Top 3 1.2147 1.0089  0.8740 1.9053  2.1088

Median model 1.2300 0.9074  0.9534 1.8035  2.1640

BMA-FM-AR  1.2489 1.4686  0.8855 2.2020 1.4674

Top 1 1.2830 1.4890  0.8585 24392  1.5491
Top 2 1.2734 1.4655  0.8890 2.2842  1.5670
Top 3 1.3079 1.4671  0.9498 2.2635  1.6436
Median model 1.2769 1.4890  0.8917 2.2423  1.5654
BMA-FM 1.4063 1.6903  1.0391 24939  1.4448
Top 1 1.3969 1.6589  1.0378 2.5728  1.3888
Top 2 1.4601 1.6750  1.1153 2.7405  1.4501
Top 3 1.3887 1.7042  0.9846 2.4904  1.4453

Median model 1.3940 1.6551  1.0339 2.5703  1.3893

FM-AR, Lag  0.9472 1.1032  0.5940 1.3414  1.4666
FM-AR 0.9500 1.0960  0.6902 1.3328  1.3079
FM 1.4225 1.7191  1.0590 2.4182  1.4948

FM-AR, v =1 0.9383 1.0845  0.6327 1.3495  1.3760
FM-AR, v =2 0.9230 1.0558  0.6621 1.2532  1.3227
FM-AR, v = 0.9250 1.0439  0.6244 1.3119  1.4021
FM-AR, v =4 0.9229 1.0570  0.6390 1.2492  1.3690

FM,v=1 1.6768 2.0189  1.3410 2.5525  1.6960
FM, v = 1.6748 1.9993  1.3237 2.6328  1.7292
FM,v=3 1.6424 1.9722  1.2235 2.8380  1.7192
FM, v =4 1.4618 1.7028  1.0418 2.6525  1.6846

Random walk  2.6668 2.5597  2.5628 4.1441  2.4498
AR, RMSFE  0.0106 0.0108  0.0157 0.0051  0.0076
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Table 4 RMSFE relative to an AR(p) for quarterly U.S. CPI, 4 quarters ahead forecast.

81:1-00:4  81:1-85:4  86:1-90:4 91:1-95:4  96:1-00:4

BMA 0.8118 0.7582  0.8570  0.7386  1.2992
Top 1 0.8814 0.8313 09189  0.8344  1.3409
Top 2 0.9429 0.9030 0.9680 0.8794  1.3878
Top 3 0.8782 0.8369 0.9565 0.6481  1.3371

Median model 0.9376  0.9326 0.8691 0.8896  1.3728

BMA-FM-AR 0.8113 0.7122 0.9516 0.8462 1.1386

Top 1 0.8610 0.7881  0.9754 0.8619  1.1308
Top 2 0.8635 0.7488  1.0365 0.8986  1.1863
Top 3 0.8256  0.7370  0.9370  0.8918  1.1373
Median model 0.8899  0.8135 1.0179 0.8619  1.1833
BMA-FM 0.8037 0.7012  0.9480  0.8463  1.1278
Top 1 0.8301  0.7344 0.9708  0.8593  1.1377
Top 2 0.8420 0.7041  1.0480  0.9001  1.1603
Top 3 0.8195 0.7235 0.9346  0.8819  1.1859

Median model 0.8088  0.6732  1.0084  0.8614  1.1378

FM-AR, Lag  0.7029  0.5199  0.9625 0.7350  1.0822
FM-AR 0.7605  0.6579  0.9277  0.7350  1.0822
FM 0.8852 0.8395 1.0013 0.7454 1.1028

FM-AR,v=1 0.8039 0.7461 0.9546 0.5489 1.1170
FM-AR,v=2 0.8116 0.7544 0.9729 0.5163 1.1152
FM-AR, v = 0.8080  0.7445 0.9843  0.5076  1.1033
FM-AR, v =4 0.7416 0.6219 0.9277 0.7350  1.0822

FM,v=1 0.9676  0.9040 1.0914 09737  1.0905
FM, v =2 0.9042 0.8457 1.0223  0.8615  1.0878
FM,v=3 0.8552  0.8290 0.9620  0.5962  1.0741
FM, v =4 0.8383 0.7562  1.0013  0.7454 1.1136

Random walk  1.4910 1.3339  1.6208  2.0157  1.4262
AR, RMSFE  0.0184 0.0289 0.0180 0.0117  0.0077
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Table 5 RMSFE relative to an AR(p) for quarterly U.S. CPI, 8 quarters ahead forecast.

81:1-00:4  81:1-85:4  86:1-90:4 91:1-95:4  96:1-00:4

BMA 0.8469 0.8139 1.0077 0.8152  0.8860
Top 1 1.0033  0.9257 1.2254 1.1174 1.1244
Top 2 0.9542 0.8172 1.3516  1.0963  1.0937
Top 3 09726 09515 1.1286  0.7770  1.2175

Median model 1.0934  1.0175 1.4188 0.9938  1.3249

BMA-FM-AR 0.7840 0.7343 09761  0.7497  0.9600

Top 1 0.8633 0.8264 1.0579  0.7300  1.0673
Top 2 0.8878  0.8926  0.9667  0.6914  0.9918
Top 3 0.8273  0.8023  0.9065 0.8022  1.0280
Median model 0.8194  0.7624  1.0602  0.7175  1.0634
BMA-FM 0.7775  0.7265  0.9689  0.7520  0.9554
Top 1 0.8379 0.7911 1.0564 0.7168  1.0671
Top 2 0.8886 0.8943 0.9611 0.7066  0.9716
Top 3 0.8647  0.8529  0.9557  0.7542  1.0153

Median model 0.8279  0.7899  1.0102  0.7059  1.0671

FM-AR, Lag  0.7368  0.6286  1.1048  0.6695  1.0312
FM-AR 0.7821 0.7276  1.0350  0.6310  1.0310
FM 0.8287 0.7746  1.0765  0.6968  1.0676

FM-AR,v=1 0.809 0.7539 1.1073  0.5372  1.1077
FM-AR, v =2 0.7942 0.7550 1.0264 0.5092  1.1300
FM-AR, v = 0.8117  0.7904 1.0201  0.5209 1.0014
FM-AR, v=4 0.7448 0.6703 1.0350 0.6310  1.0310

FM,v=1 09387 08777  1.1680  0.9187  1.1259
FM, v =2 0.8546  0.8101 1.0164 0.7928  1.1372
FM,v=3 0.7982  0.7801  0.9787  0.5331  1.0014
FM,v =14 0.7814 0.7021  1.0765 0.6968  1.0676

Random walk  1.5620 1.5332  1.6817  1.5093  1.7726
AR, RMSFE  0.0449  0.0757  0.0338 0.0298  0.0173
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Table 6 RMSFE relative to an AR(p) for quarterly U.S. GDP, 4 quarters ahead
forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4  96:1-00:4

BMA 1.2063  1.1241  2.0225  1.1881  0.9988
Top 1 1.1099 1.0836  1.7165 0.9905  0.9725
Top 2 1.3137  1.2435 2.2510 1.2081  1.0758
Top 3 1.2749  1.1216  2.4049 1.2816  1.1548

Median model 1.3179  1.1917  2.2045 1.4320 0.9725

BMA-FM-AR 1.0100 0.9199 1.6678 1.0699  0.8370

Top 1 1.0570  0.9495 1.8045 1.1128  0.9399
Top 2 1.0084  0.9092 1.6169 1.0855 0.9616
Top 3 1.0483  0.9517 1.7625 1.0890  0.9312
Median model 1.0215  0.9207 1.7204 1.0653  0.9581
BMA-FM 1.0111  0.9480 1.5730 1.0406  0.8266
Top 1 1.0107  0.9573 14718 1.0436  0.8778
Top 2 1.0338  0.9575 1.6618  1.0703  0.8599
Top 3 1.0771  0.9822  1.7482 1.1734  0.7916

Median model 1.0098  0.9572  1.4806 1.0386  0.8662

FM-AR, Lag  1.0031  0.9422 1.6103 1.0319  0.6892
FM-AR 09486 0.8780 1.4170 1.0319  0.7901
FM 0.9486 0.8780 1.4170 1.0319  0.7901

FM-AR, v =1 0.9828 0.9901 0.9047 0.9879  0.9620
FM-AR,v=2 09323 08571 1.3808 1.0319 0.7901
FM-AR,v=3 09485 0.8473 1.6461 0.9949 0.8564
FM-AR,v=4 09527 0.8575 1.6932 0.9422 0.9254

FM,v=1 0.9828  0.9901 09047 09879  0.9620
FM, v=2 09323 0.8571 1.3808 1.0319  0.7901
FM,v=3 0.9485 0.8473  1.6461  0.9949  0.8564
FM,v =14 0.9527  0.8575 1.6932  0.9422  0.9254

Random walk  1.36564  1.4445 1.1553  1.2466  0.9992
AR, RMSFE  0.0198  0.0325 0.0099  0.0179  0.0097
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Table 7 RMSFE relative to an AR(p) for quarterly U.S. GDP, 8 quarters ahead
forecast.

81:1-00:4 81:1-85:4 86:1-90:4 91:1-95:4  96:1-00:4

BMA 1.0405  0.8242  2.4397  1.1525  1.5025
Top 1 1.0523  0.7986  2.3529  1.2145 1.6886
Top 2 1.1186  1.0393  2.5036  1.0022  1.2828
Top 3 1.2311  0.9005  3.0433  1.5464 1.3403

Median model 1.0401  0.8134  2.4967 1.2126  1.2583

BMA-FM-AR 0.9615 0.7761 2.0866  1.1358  1.1387

Top 1 1.0726  0.8735  2.4169 1.2232  1.3094
Top 2 1.0054 0.8168 2.1116  1.1595 1.3516
Top 3 1.0520 0.8435 2.4308 1.2215 1.2274
Median model 1.0428  0.8499 22900 1.2102  1.2358
BMA-FM 0.9603 0.7701  2.0662 1.1547 1.1015
Top 1 1.0562  0.8820  2.2669 1.2049 1.2131
Top 2 0.9937  0.7788 23552  1.1686  1.1752
Top 3 1.0467  0.8391  2.2653  1.2503  1.2316

Median model 1.0399  0.8352  2.2969 1.2299 1.2157

FM-AR, Lag ~ 1.0480 0.9597 2.2734 1.0671  0.8531
FM-AR 0.9986 0.9264 1.8114 1.0671 0.8531
FM 0.9986 0.9264 1.8114 1.0671 0.8531

FM-AR, v =1 1.0218 1.0313 0.9943 1.0025 1.0042
FM-AR,v=2 0.9608 0.8950 1.4641 1.0671 0.8531
FM-AR,v=3 09704 08799 1.8158 1.0645 0.8734
FM-AR,v=4 09909 09141 1.8340 1.0593 0.8706

FM,v=1 1.0218  1.0313 0.9943 1.0025 1.0042
FM, v=2 0.9608  0.8950 1.4641 1.0671  0.8531
FM,v=3 09704 0.8799 1.8158 1.0645 0.8734
FM,v =14 0.9909 09141 1.8340 1.0593  0.8706

Random walk  1.3643 1.3344 2.6074  1.2800  0.9730
AR, RMSFE  0.0340  0.0557  0.0120  0.0339  0.0151
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Table 8 RMSFE relative to an AR(p) for quarterly Swedish inflation rate, 4 quarters
ahead forecast.

99:1-03:4 99:1-01:2 01:3-03:4

BMA 1.8653  1.8252  1.9077
Top 1 2.0525 1.8655  2.2372
Top 2 1.7154  1.5059  1.9164
Top 3 2.2446 23128  2.1684

Median model 2.1348 1.9876  2.2833

BMA-FM-AR 3.7170  4.8758  1.7449

Top 1 3.7621 49464 1.7314
Top 2 3.9111  5.2129  1.5651
Top 3 3.8674  5.1130  1.6903
Median model 3.8101  5.0274  1.6970
BMA-FM 3.7880  5.0065  1.6604
Top 1 3.9833  5.2662  1.7414
Top 2 4.0304  5.2869  1.8921
Top 3 4.2011  5.5781  1.7559

Median model 4.0192  5.3173  1.7449

FM-AR, Lag  1.2061 1.3896  0.9692
FM-AR 1.2678  1.5859  0.7909
FM 0.7346  0.6250  0.8371

FM-AR,v=1 0.6796 0.5573  0.7909
FM-AR, v =2 0.6678 0.5206  0.7969
FM-AR, v =3 0.6864 0.5148 0.8331
FM-AR, v =4 1.4255 1.7763  0.9038

FM,v=1 0.7346  0.6250  0.8371
FM, v=2 0.6127  0.4593  0.7439
FM, v =3 0.6144  0.4630  0.7442
FM,v =14 0.9607  1.0707  0.8254

Random walk 1.1763 1.2390 1.1046
AR, RMSFE 0.8714 0.8883  0.8541
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Table 9 RMSFE relative to an AR(p) for quarterly Swedish inflation rate, 8 quarters
ahead forecast.

99:1-03:4 99:1-01:2 01:3-03:4

BMA 24462  1.0398 4.6134
Top 1 29144 14916  5.2969
Top 2 24841  1.3079  4.4822
Top 3 2.6555 14714  4.7224

Median model 2.5931 0.9828  4.9694

BMA-FM-AR 2.3955  2.0820  3.1810

Top 1 2.9568  2.2670  4.4709
Top 2 3.1632 21864  5.1297
Top 3 3.2356  2.3933  5.0265
Median model 2.5212  2.3200  3.0653
BMA-FM 2.8479 18076  4.8192
Top 1 3.1357  1.9874  5.3096
Top 2 29875 17706  5.1955
Top 3 3.1580  1.9899  5.3608

Median model 2.9583  1.9486  4.9207

FM-AR, Lag  1.0504  0.5611  1.8879
FM-AR 1.0504  0.5611  1.8879
FM 1.1689  0.4917  2.2081

FM-AR, v =1 0.5919 0.4178  0.9481
FM-AR, v =2 0.8329 0.6488  1.2429
FM-AR, v =3 0.7756  0.6011  1.1624
FM-AR, v =4 12303 0.6737  2.1957

FM,v=1 0.7033  0.4917  1.1330
FM, v=2 0.6381  0.4496  1.0233
FM, v =3 0.6209  0.4560  0.9694
FM,v =14 1.3026  0.7200  2.3181

Random walk 1.0256  0.8284 1.4808
AR, RMSFE 1.3238  1.6292  0.9223
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Appendix A Data

The transformation codes for the time series are

Code Transformation
1 level
2 4 quarters log difference (Iny, —Iny;_4)
3 4 quarters growth rate (y; — ys_4)
4 4 quarters percentage change ((y; — yi—4) /Yr—4a)

Table A.1 Financial variables

Variable Description Transf.
1. GovDebt Government debt 2
2. AFGX Affarsvérlden stock index 2
3.  REPO Repo rate 1
4.  DISK Discount rate 1
5. R3M 3 month money market rate 1
6. Rb5Y 5 year government bond rate 1
7. RI10Y 10 year government bond rate 1
8. GBor Central government borrowing requirement 1
9. RsTCW Short rate (TCW) 1
10. RITCW Long rate (TCW) 1
Table A.2 Exchange rates
Variable Description Transf.
11. NFX Effective exchange rate (TCW) 2
12. RFX Effective real exchange rate (TCW) 2
13. USD SEK/USD exchange rate 2
14. DEM SEK/DEM exchange rate 2
Table A.3 Money supply
Variable  Description Transf.
15. MO Narrow money 2
16. M3 Broad money 2
Table A.4 Labor costs
Variable Description Transf.
17. WCSS Wages incl. social security 2
18. WgCst Wages excl. social security 2
19. WageMM Hourly wages, mining and manufacturing 2
20. HLCInd Hourly labor cost: total industry 2
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Table A.5 Population

Variable Description Transf.
21. PpTot Total population 2
22. Ppl664 Share in ages 16-64 2
23. Pp014 Share in ages 0-14 2
24. Ppl529 Share in ages 15-29 2
25. Pp2534 Share in ages 25-34 2
26. Pp3049 Share in ages 30-49 2
27. Ppb064 Share in ages 50-64 2
28. Pp6574 Share in ages 65-74 2
29. Pp75+ Share 75 and older 2

Table A.6 Labor market variables

Variable Description Transf.
30. AvJob # of available jobs 2
31. LabFrc # in labor force 2
32. NLFrc # not in labor force 2
33. RelLF LabFrc/Ppl1664 1
34. Empld # employed 2
35.  PrvEmp # privatly employed 2
36. PubEmp # publicly employed 2
37.  Av4Wrk # available for work 2
38. NA4Wrk # not available for work 2
39. NUnemp # unemployed 2
40. Unemp Unemployment 1
41. U02W # unemployed < 2 weeks 3
42. U314W # unemployed 3 - 14 weeks 3
43. U1552W # unemployed 15 - 52 weeks 3
44. UHB2W+ # unemployed more than 52 weeks 3
45. NewJob New jobs 3

Table A.7 Real activity and Expectations

Variable Description Transf.
46. IndProd Industrial production 4
47. NewCar New cars 1
48. NewHouse  New single family houses 1
49. HourWork  Hours worked 2
50. GDP GDP 2
51. RGDP Real GDP 2
52. NAIRU NAIRU 1
53. OutGap Output gap 1
54. ProdGap Production gap 1
55. BCI Business confidence indicator 1
56. HExpSWE  Household exp. Swedish economy 1
57. HExpOwn  Household exp. own economy 1
58. GDPTCW  TCW-weighted GDP 2
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Table A.8 Prices

Variable Description Transf.
59. InfFor Foreign CPI (TCW) 4
60. InfRel Relative CPI 4
61. PPP Real exchange rate 4
62. Infla Swedish CPI 4
63. InfNet Swedish NPI 4
64. InfHse House price index 4
65. MrtWgh Weight of mortgage interest in CPI 1
66. InfUnd Underlying inflation 4
67. InfFd Food component of CPI 4
68. InfF1 Housing fuel and electricity comp. of CPI 4
69. InfHWg Factor price index, housing incl. wages 4
70. InfCns Construction cost index 4
71. InfPrd Producer price index 4
72.  InflmpP Import price index 4
73. InfExp Export price index 4
74. InfTCW TCW-weighted Swedish CPI 4
75.  Explnf Households exp. of inflation 1 year from now 1
76. POIlUSD Oil price, USD 4
77. POIISEK Oil price, SEK 4
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