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Abstract

In this paper we discuss how a regression model, with a non-continuous response variable,
that allows for dependency between observations should be estimated when observations are
clustered and there are repeated measurements on the subjects. The cluster sizes are assumed
to be large. We �nd that the conventional estimation technique suggested by the literature
on Generalized Linear Mixed Models (GLMM) is slow and often fails due to non-convergence
and lack of memory on standard PCs. We suggest to estimate the random e¤ects as �xed
e¤ects by GLM and derive the covariance matrix from these estimates. A simulation study
shows that our proposal is feasible in terms of Mean-Square Error and computation time. We
recommend that our proposal be implemented in the software of GLMM techniques so that
the estimation procedure can switch between the conventional technique and our proposal
depending on the size of the clusters.
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1 Introduction

This paper introduces a way to estimate a model with a non-continuous response variable in

a setting when the responses are correlated within subjects, there are repeated measures and

the sample size is large. The non-linear mixed e¤ect models are widely used to capture the

dependencies of the non-continuous response variable in the model. There are several di¤erent

techniques to estimate the non-linear mixed models, for example, the numerical integration

technique [12], Bayesian method based on Markov chain Monte-Carlo (MCMC) [7], frequentist

version of MCMC [22], Penalized Quasi Likelihood (PQL) approach [3] [26] and the hierarchical

( or h-) likelihood approach [14]. Each of the techniques has some advantages and disadvantages.

Nevertheless, the methods mentioned above becomes computationally heavy for large data set.

We propose a discrete response mixed model to be estimated via the �xed e¤ect approach

by deriving the covariance matrix of the random e¤ect from the �xed e¤ect model parameters.

A successful estimation of the covariance matrix of the random e¤ect is of central importance

since it determines the uncertainty of any single prediction.

We have investigated the accuracy of the proposed �xed e¤ect approach by the use of simu-

lated data. The Monte-Carlo simulation shows that the proposed approach performs worse than

the PQL approach, in terms of the mean sum of squared error (MSE) and some other relative

measure, for small sample sizes, equally well for moderate sample sizes but it continues to work

for large sample sizes when the PQL slows down.

The paper is organized in the following way. The second section presents the model and

discusses the existing techniques to estimate it as well as providing a heuristic description of

our proposed approach, which can be called the �xed-e¤ect (FE) approach, for a situation with

a large cluster set. The third section compares the FE-approach to the conventional PQL-

approach by means of a simulation study. The fourth section is dedicated to a discussion on

various practical issues including inference and the �fth section concludes the paper.

2 The mixed model and its estimation

In this section we present the model and discuss how it can be estimated. We will brie�y revise

the existing approaches to estimate it and conclude that they are infeasible for large clusters.

For this reason we suggest an approach that can cope with this.

2.1 The model speci�cation

The linear regression model can be formulated as

yi = xi� + "i (1)
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where xi is a row-vector of p covariates for the i:th observation, � is a p�1 vector of parameters
associated with the covariates, and "i is the error term. Conventionally a number of assumptions

are imposed in this model. First, it is assumed that E ["i] = 0 and that Cov ["i;xi] = 0, and

these assumptions will be maintained in this paper. Moreover it is assumed that E
�
"2i
�
= �2,

and that E ["i"j ] = 0 for all i 6= j. The last assumption of independence between the error terms
means that conditional on x the response is independent between two observations. In applied

work there are sometimes reasons to expect that a set of observations (a cluster) are in fact

dependent. Such reasons are, e.g., that there are several observations on the same individual

(repeated measurements) or that the observations have been gathered by cluster sampling or

that observations are spatially related. A neat way of extending the model to include (positive)

dependence is to introduce a cluster speci�c component. Assume that there exist K clusters

and let the number of observations in each cluster be denoted by nk (k = 1; :::;K) and indexed

by i. The model extends to

yki = xki� + uk + "ki (2)

where uk is the cluster speci�c component and it is by construction assumed to be independent

of x and ". A conceptual issue discussed elsewhere (see for instance Greene [11]) is whether uk

should be considered a �xed or a random e¤ect. However, to introduce dependence it is useful

to view uk as a random variable from the N (0; dk) distribution. In this case, if " also is assumed

to follow the normal distribution, the correlation between two observations on y is dk
dk+�

2 , if they

are in the same cluster k and zero otherwise. The K � K and symmetric covariance matrix,

denoted D, for the random e¤ect vector u = (u1; :::; uk)
0 has the following form under the model

in (2)

D =

0BBB@
d1 0 � � � 0

0 d2
...

...
. . . 0

0 � � � 0 dK

1CCCA
and the distribution for u is taken to be NK (0;D). It might also be that observations are

dependent even if they are from di¤erent clusters, and the model in (2) can be extended to allow

for such between cluster dependence as

yki = xki� + uk +
X
k0 6=k

�k0uk0 + "ki (3)

The second and the third terms in the right hand hand side of the equation (3) construct a

new random e¤ect term, uk, which is, indeed, a linear combination of K independent normal

variates. Hence, model (3) takes the same functional form as model (2) with an extended
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covariance matrix given by

D =

0BBB@
d11 d12 � � � d1K

d21 d22
...

...
. . . d(K�1)K

dK1 � � � dK(K�1) dKK

1CCCA :
The covariance matrix has K (K + 1) =2 free parameters due to the symmetry, for instance

d12 = d21.

Estimation of the model in (3) along with the covariance matrix can be done by iterative

Generalized Least Squares (GLS) as long as y is a continuous variable. If, however, y is a

non-continuous response variable, estimation is more challenging.

Consider the threshold model as a convenient way of expressing a regression model for a

binary response variable which resembles the models that have been discussed above. Let y be

an indicator variable taking on either the value unity or zero. In the threshold model y is related

to an underlying continuous variable y� in the following way,

y =

�
1; if y� � 0
0; if y� < 0 (4)

where y� is modeled as above. Absent the random e¤ect components the regression model for

y can be either the logistic or the probit model. The threshold model turns the speci�cation

into a non-linear one that makes standard econometric procedures for estimating linear random

e¤ect models inadequate.

Much progress has been made, however, in the development of statistical procedures for the

estimation of these types of models. Probit models with random e¤ects have been widely used

in econometrics. See Heckman and Willis [13] for an early example and Guilkey and Murphy

[12] for details. This line of research has mainly considered panel data with a small number

of repeated measurements on the same subject, often less than 10. The parameters in such

models with small cluster sizes i.e. the number of repeated observations on the subject have

typically been estimated by maximizing the likelihood of the multivariate normal distribution

using numerical integration (see Butler and Mo¢ tt [4] and Greene [9]).

The dimension of the numerical integration, in order to evaluate the likelihood function,

equals the cluster size, i.e. nk. High-dimensional numerical integration is slow and inaccurate

[27] and therefore the approach is badly suited for problems where the size of the clusters is large.

These problems of numerical integration could however be overcome in a Bayesian approach by

use of importance sampling or Gibbs sampling techniques, and Bayesian methods thus present

an alternative (see e.g. Clayton [7]) by use of Markov Chain Monte-Carlo algorithms. The

basic principle of the MCMC approaches is to generate a sequence of Markov chain values on

the conditional distribution of the random e¤ect given the data and use them in the Monte-

Carlo EM or Newton-Rapson algorithm to bypass the high-dimentional integration through
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the Monte-Carlo expectation. McCulloch [20] provides a frequentist version of the MCMC

approach using the Gibbs sampler technique for the probit model, Mcculloch [21] presented a

more generalized version of the MCMC Newton-Rapson (NR) technique with the Metropolis-

Hasting algorithm, Booth and Hobert [2] provide an automated MCMC-EM algorithm with the

importance sampling, Quintana et.al. [23] provide an MCMC-EM algorithm with the importance

reweighting, Chen [6] proposed a computationally feasible MCMC-EM algorithm while Leviene

and Fan [16] presented an automated EM algorithm. McCulloch and Searle [22] contains a

general introduction to the MCMC approach. However, it should be noted here that all these

references mentioned above dealt with the random e¤ects with a diagonal covariance matrix.

Alam [1] studied the MCMC-NR technique with the Metropolice-Hasting algorithm along with

an unstructured covariance matrix, i.e. a D matrix with the o¤ diagonal terms, of the random

e¤ect and found it useful for small clusters, but computationally too expensive for large clusters.

The third approach to estimate the model in equation (2) has been developed in the work

on Generalized Linear Models (GLM). McCullagh and Nelder [19] contains an introduction. A

generalized linear model with a random e¤ect component is called Generalized Linear Mixed

Model (GLMM) and is described by the following �ve assumptions: i) yki is observed indepen-

dently at a given value of the covariate (xki) and a given realization of the random e¤ect uk,

ii) xki and uk in�uence the distribution of yki through a linear function �ki = xki� + uk which

is called a linear predictor, iii) conditional on uk, �ki = E(ykijuk) satis�es g(�) = � for some

function g which is called a link function, iv) conditional on u, the distribution of yki belongs

to the exponential family of distributions and v) u follows a marginal distribution, h(u)1:

The binary regression model with random e¤ect components is a special case of the Gener-

alized Linear Mixed Model (GLMM) where ykijuk v binomial(nki; �ki): For the logistic mixed
model the link function, g(:); is given as g(�ki) = log

�
�ki
1��ki

�
2:The above link function, g; is

called the canonical link for binomial y.

The general idea in GLMM is to linearize the non-linear models by the �rst (or sometimes

the second) order Taylor expansion of the link function and then regress the linearized version

of the response variable on xi with a procedure similar to (iterative) Generalized Least Squares.

Details of the procedure, which often is referred to as PQL, are given in Zhou, Perkins and

Hui [28].3 The iterative scheme of the PQL-approach makes the properties of the estimator

inherently dependent on the actual computer code in use. It is also well-known that PQL su¤ers

from small-sample bias [8] due to the �rst (or second) order Taylor approximation. An extensive

1Here h(u) � NK(0;D)
2For the probit model, g(�ki) = �

�1(�ki) [ � stands for the standard normal CDF] while for the complemen-

tary log-log model it is g(�ki) = log(� log(1� �ki))
3One implementation provided by SAS is the GLIMMIX macro (Wol�nger and O�Connell [26]). In this macro,

one can implement di¤erent link functions including the logistic, probit and complementary log-log ones. See for

example Littell et.al. [17].

5



simulation study of the estimator in various program packages, which would contribute greatly

to the understanding of the estimator�s properties, is still lacking.

The fourth approach to estimate the mixed e¤ect models has been developed with the hier-

archical (or h-) likelihood [14] but they are widely criticized in the case of the binary response

data [8]. Recently, Nelder and Lee [15] have developed the double hierarchical generalized linear

models (DHGLM) technique. They claim that it works foor the situation of correlated random

e¤ects but still we have to wait until the implementation of the algorithm becomes available in

commonly used softwares4.

While we were re-analyzing the data used in Carling, et.al. [5], we found that the PQL-

approach is the best in terms of computational speed of the �rst three approaches discussed

above. It can handle small and mid-sized clusters, but we have encountered great di¢ culties in

applications with large clusters (nk > 1000).

Since none of the methods discussed above is computationally e¢ cient for large data set, we

will investigate the working of an approach based on the estimation of the �xed cluster e¤ects,

from which the D matrix can be derived. Often the interest is on the estimation of � and

the D matrix is considered to eliminate the risk of biased estimates of �: However, a single

value prediction can be done without any reference to the covariance matrix, D; but any kind

of statement about the prediction uncertainty must rely on an understanding of the D matrix.

For this reason, it is important to get good estimates of the covariance matrix.

2.2 Estimation of D via �xed cluster e¤ects

Let us consider the model again,

yki = xki� + uk + "ki

with the covariance matrix :

D =

0BBB@
d11 d12 � � � d1K

d21 d22
...

...
. . . d(K�1)K

dK1 � � � dK(K�1) dKK

1CCCA :
Assume that u is NK (0;D) where u = (u1; :::; uK)

0. Assume further that there exist T realiza-

tions on u where t = (1; :::; T ). Let the T �K matrix U = (u01; :::;u
0
T )
0 collects all realizations

of the random-e¤ect components. A natural estimator for D is

D =
1

T
U0U (5)

since E [ukt] = 0. Such an estimator would be consistent since,

P lim
T!1

1

T
U0U = D

4A Genstat implementation of the algorithm is available from: j.nelder@imperial.ac.uk[15]
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given that T is large enough (at least (K + 1) =2) to allow identi�cation of all parameters in D.

The random e¤ect, ukt; is not observable, but it can be estimated in a model like (3) by treating

the component ukt as a �xed e¤ect that is estimated jointly with �. For expositional simplicity,

assume that nkt = nk0t0 8t; t0; k; and k0. The basic intuition here is that

P lim
nkt!1

bukt=ukt
such that a large cluster size would reveal the realization of the underlying, unobserved random-

e¤ect. Moreover, if bU denotes the estimates of the components in the matrix U, we would

expect the following to hold,

P lim
T!1

�
P lim
nkt!1

1

T
bU0 bU�= D:

Thus, it seems to be possible to estimate the covariance structure provided that the estimation

procedure yields consistent estimates of the realizations of the random-e¤ects. This might not

be the case for the implemented versions of the GLM estimation method. And even if this is

the case, it is unclear how this consistency argument should be interpret in a practical situation

where neither nkt nor T will be close to in�nity.

The proposed �xed e¤ect approach (FE) is almost surely bad compared with the PQL

approach for nkt small. The question is if it can match the PQL for cluster sizes where PQL

tends to fail. To answer this question we conduct a simulation study where we compare the two

approaches at varying values of nkt, K; and T by checking the bias, for all the model parameters.

3 Monte-Carlo experiment

To check the accuracy of the parameter estimates in FE method in comparison with PQL method

we have conducted some Monte-Carlo simulations. We have used a probit mixed model and a

Poisson mixed model with no intercept and one covariate with a coe¢ cient value � = 0:5 along

with di¤erent covariance structures, namely diagonal, compound symmetry and unstructured, of

the random e¤ect u. The speci�c construction of the di¤erent covariance matrices, D; are shown

in the left hand side of the Table 1.1-1.3. Among those matrices the diagonal and compound

symmetric D matrices were rather judgemental. The diagonal matrix was the identity matrix

and the compound symmetric matrix implied a correlation of 0.5. The unstructured D was

constructed from the Swedish inter industry input-otput matrix after merging the companies

into 7 clusters in almost the same way as done in Carling et.al.[5], adjusting the row sums equal

to one by dividing all the elements in each row by their respective row sums and then performing

a matrix product of it with its transpose. Reason behind constructing such an unstructured D

matrix is that we assume this unstructured matrix might explain the dependencies among the

companies in Sweden.
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Moreover, forK = 3 we have considered the �rst 3�3minor ofD. Starting with a reasonably
small cluster size (nkt = 10) and small number of clusters (K = 3) we have sequentially increased

the cluster size (up to nkt = 500) and number of clusters (up to K = 7) and the number of

repeated measure were T=10, 20 and 40 to study the speed of convergence of the expected

estimates (E[bD] and E[b�]) to the real parameter values which gives a sense of the consistency
of the estimators.

Following the structure of the real data set used in Carling et.al.[5], we considered a maximum

of 7 cross sectional clusters (K) and 20 time points (T ).

Table 1.1 A diagonal covariance matrix of the random effects and its mean estimate through the
fixed effect approach (cluster size is 500)

Original variance covariance matrix Mean estimate of variance covariance matrix
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 1.011 0.009 ­0.013 0.002 ­0.008 0.007 ­0.017
2 0 1 0 0 0 0 0 0.009 1.090 ­0.008 ­0.061 ­0.001 ­0.001 0.011
3 0 0 1 0 0 0 0 ­0.013 ­0.008 1.036 0.005 0.018 ­0.003 0.005
4 0 0 0 1 0 0 0 0.002 ­0.061 0.005 1.080 0.017 ­0.007 0.006
5 0 0 0 0 1 0 0 ­0.008 ­0.001 0.018 0.017 1.068 0.002 ­0.004
6 0 0 0 0 0 1 0 0.007 ­0.001 ­0.003 ­0.007 0.002 1.079 0.024
7 0 0 0 0 0 0 1 ­0.017 0.011 0.005 0.006 ­0.004 0.024 0.992

Table 1.2 A compound symmetric covariance matrix of the random effect and its mean estimate
through fixed effect approach (cluster size is 500)

Original variance covariance matrix Mean estimate of variance covariance matrix
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 1.0 0.5 0.5 0.5 0.5 0.5 0.5 1.005 0.471 0.473 0.485 0.474 0.477 0.477
2 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.471 1.050 0.481 0.488 0.485 0.483 0.483
3 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.473 0.481 0.951 0.481 0.476 0.473 0.456
4 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.485 0.488 0.481 1.027 0.486 0.494 0.477
5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.474 0.481 0.476 0.486 0.988 0.476 0.480
6 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.477 0.483 0.473 0.494 0.476 1.000 0.467
7 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.477 0.483 0.456 0.477 0.480 0.467 0.982
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Table 1.3 A unstructured covariance matrix of the random effects and its mean estimate through
fixed effect approach (cluster size is 500)

Original variance covariance matrix Mean estimate of variance covariance matrix
1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 0.192 0.143 0.151 0.171 0.123 0.213 0.144 0.198 0.146 0.158 0.177 0.129 0.214 0.148
2 0.143 0.237 0.168 0.160 0.097 0.125 0.182 0.146 0.249 0.176 0.164 0.100 0.126 0.187
3 0.151 0.168 0.281 0.208 0.059 0.131 0.151 0.158 0.176 0.294 0.217 0.063 0.136 0.158
4 0.171 0.160 0.208 0.231 0.197 0.173 0.154 0.177 0.164 0.217 0.243 0.205 0.177 0.159
5 0.123 0.097 0.059 0.197 0.522 0.159 0.090 0.129 0.100 0.063 0.205 0.537 0.164 0.097
6 0.213 0.125 0.131 0.173 0.159 0.256 0.124 0.214 0.126 0.136 0.177 0.164 0.259 0.127
7 0.144 0.182 0.151 0.154 0.090 0.124 0.188 0.148 0.187 0.158 0.159 0.097 0.127 0.197

All simulations have been performed in R 2.2.0 with a standard Pentium-IV computer (3

GHz processor and 1 GB RAM). It should be noted here that for the lack of su¢ cient computer

memory we had to limit our experiments to a maximum cluster size of 500 observations. From

the results of our Monte-Carlo experiments (see subsections 3.1 and 3.2) it seems unproblematic

to extrapolate the results to nkt > 500. Since the Monte-Carlo experiments are computatinally

expensive, especially for the PQL approach, we have conducted 200 replications for each setting

in the Monte-Carlo simulation.

The Monte-Carlo experiments are mainly conducted to address two issues. The �rst objective

is to compare the speed of convergence of the � parameter estimates in the �xed e¤ect approach

(when cluster size, nkt increases) with that in the mixed e¤ect approach obtained through PQL5

method. The second objective is to study the relative bias in the estimate of the variance

parameters, D; when increasing the cluster size (nkt). We use two di¤erent measures of the

preciseness of the parameter estimates namely, mean squared error (MSE) for � and relative

absolute error (RAE) for D respectively. The �rst measures the average squared distance of

the estimates from the true parameter value over the 200 replications. The second measures

the ratio of the total absolute bias in all variance parameter estimates to the total of the true

parameter values. If di is the true value of a parameter in D and bdi the corresponding estimate,
then the relative absolute error is given by

RAE =

K(K+1)
2X
i=1

jbdi � dij
K(K+1)

2X
i=1

jdij

: (6)

5For the practical implementation we have used the glmmPQL() function of the R-library, MASS. Readers are

referred to Venables and Ripley [25] for details about this function.
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Table 2: MSE of the β parameter estimates in the fixed effect (FE) and PQL approaches for the
probit model for different combination of cluster sizes

Covariance structure of the random effect
Diagonal Compound symmetry Unstructured

KTn Cluster
size

FE PQL FE PQL FE PQL
10 K=3, T=10

K=7, T=10
K=3, T=20
K=7, T=20

20e­3
10.7e­3
9.9e­3
6.3e­3

10e­3
4.2e­3
5.1e­3
2.0e­3

21.3e­3
10.7e­3
11.0e­3
7.4e­3

10.4e­3
4.2e­3
4.1e­3
2.2e­3

15.8e­3
8.2e­3
9.3e­3
5.8e­3

7.5e­3
3.3e­3
4.0e­3
1.7e­3

50 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20
K=3, T=40
K=7, T=40

18.8e­4
8.4e­4

11.5e­4
5.4e­4
7.2e­4
3.2e­4

16.1e­4
6.8e­4
9.4e­3
4.7e­4

­
­

19.3e­4
11.0e­4
9.3e­4
5.4e­4
7.7e­4
3.0e­4

15.9e­4
9.2e­4
8.0e­4
3.9e­4

­
­

17.5e­4
7.9e­4
8.9e­4
4.1e­4
4.0e­4
4.0e­4

15.9e­4
5.9e­4
6.6e­4
3.2e­4

­
­

200 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20

45.4e­5
21.6e­5
24.6e­5
8.8e­5

44.4e­5
20.0e­5
24.1e­5
9.0e­5

49.5e­5
22.3e­5
20.9e­5
9.5e­5

48.4e­5
21.0e­5
20.6e­5
8.6e­5

36.3e­5
17.9e­5
17.4e­5
8.2e­5

35.3e­5
16.3e­5
16.5e­5
7.7e­5

500 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20

18.6e­5
7.47e­5
9.69e­5
3.8e­5

16.3e­5
8.5e­5
8.1e­5
3.9e­5

15.2e­5
6.5e­5
9.1e­5
3.3e­5

3.1 The probit mixed model

For the probit mixed model our data generating process was as follows: � = x� + u and

y = 1[(� + ") >0] where, � and u are as discussed above, x v N(0; 1) and " v N(0; 1):
The results from the Monte-Carlo experiments in Table 2 reveal that both the �xed and

PQL approaches estimate the � parameter with a reasonable precision. Although the �xed

e¤ect approach is less e¢ cient with a small cluster size, this di¤erence becomes negligible as

the sample size increases. Table 2 also shows that irrespective of the covariance structure,

both methods can estimate the � parameter consistently. Maddala [18] mentions (without any

empirical evidence) that the pooled probit model gives a consistent (but ine¢ cient) estimator

of � even if there is serial correlation in the errors due to random e¤ects. So, these results need

not be surprising. Since the computation of the mixed e¤ect model is time consuming when the

cluster size increases, we did not compare the two approaches at cluster size, nkt = 500. However,

the decreasing trend of the MSE in the �xed e¤ect approach indicates better performance of

the �xed e¤ect approach as the cluster size (nkt) increases. It seems the estimates of the �

parameters in the two approaches become qualitatively equal somewhere between the cluster

size (nkt) 50 and 200 observations.

Table 3 shows a comparison of the relative absolute errors in the covariance parameter, D,

estimates between the two methods. For the FE approach the bias in the estimates of the

covariance parameters is remarkably large until the cluster size equals 200, whereas the PQL
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Table 3: RAE of the covariance parameter estimates (D) in the fixed effect (FE) and PQL
approaches for the probit model for different combination of cluster sizes

Covariance structure of the random effect
Diagonal Compound symmetry Unstructured

KTn Cluster
size

FE PQL FE PQL FE PQL
10 K=3, T=10

K=7, T=10
K=3, T=20
K=7, T=20

6.68
9.10
6.30
8.26

0.57
0.93
0.43
0.69

4.85
9.10
4.78
4.01

0.47
0.93
0.35
0.40

3.90
3.02
3.66
2.75

0.59
0.63
0.54
0.57

50 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20
K=3, T=40
K=7, T=40

1.34
1.91
1.19
1.65
1.03
1.39

0.55
0.98
0.40
0.71

­
­

1.06
0.96
0.86
0.89
0.73
0.70

0.40
0.45
0.29
0.33

­
­

0.55
0.57
0.39
0.42
0.42
0.42

0.48
0.45
0.33
0.37

­
­

200 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20

0.75
1.27
0.55
0.96

0.58
1.05
0.41
0.76

0.54
0.55
0.41
0.42

0.42
0.45
0.32
0.32

0.43
0.49
0.31
0.33

0.42
0.47
0.31
0.31

500 K=3, T=10
K=7, T=10
K=3, T=20
K=7, T=20

0.63
1.16
0.52
0.85

0.46
0.49
0.32
0.36

0.41
0.45
0.29
0.34

approach provides comparatively good estimate, in terms of RAE, for small cluster sizes. From

equation (6) we see that RAE will approach zero as the bias goes to zero. The bias might not

be a matter of great worry as long as it is reasonably small (and tends to zero with the increase

of T; which means the estimates are consistent). Table 2 shows that none of the methods give

us an RAE close to zero. However, the speed with RAE decreases in the �xed e¤ect approach is

impressive. Although we could not conduct any simulation for nkt greater than 500, the results

suggest that the variance parameter estimates will approximate the true value when the number

of clusters and cluster size are both quite large (i.e. nkt �! 1;K � T �! 1). Note also that
RAE falls when T is increased.

The true covariance matrices namely, the diagonal, the compound symmetric and the un-

structured, that we used in the Monte-Carlo experiments are shown in the left hand sides of

the Tables 1.1-1.3 while their corresponding Monte-Carlo mean estimates are given in the right

hand sides. From those tables it is evident that, on an average, the estimate of the covariance

parameters in the �xed e¤ect approach are close to their true values.

3.2 The Poisson mixed model

The results for the probit model are promising but we would like to know if the �xed e¤ect

approach also works in other generalized linear models. In particular, it would be useful to see

the performance of the �xed e¤ect approach in at least one another setting. Therefore we will
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Table 4: MSE of the β parameter estimates in the fixed effect (FE) and PQL approaches for the
Poisson mixed model

Covariance structure of the random effect
Diagonal Compound symmetry Unstructured

KTn Cluster
size

FE PQL FE PQL FE PQL
2.13e­3 2.07e­3 2.21e­3 2.31e­3 3.21­3 2.86e­3K=,3 T=10

(200) (193) (200) (196) (200) (200)
0.44e­3 0.44e­3 0.44e­3 0.42e­3 0.67e­3 0.67e­3

10

K=7, T=20
(200) (178) (200) (172) (200) (200)

3.90e­4 3.94e­4 5.56e­4 5.68e­4 5.90e­4 5.94e­4K=3, T=10
(200) (197) (200) (198) (200) (200)

7.69e­5 7.96e­5 8.26e­5 8.52e­5 11.13e­5 11.46e­5

50

K=7, T=20
(200) (167) (200) (177) (200) (200)

9.16e­5 9.17e­5 10.33e­5 10.58e­5 12.66e­5 12.52e­5K=3, T=10
(200) (196) (200) (195) (200) (200)

2.01e­5 1.99e­5 1.77e­5 1.70e­5 2.69e­5 2.73e­5

200

K=7, T=20
(200) (173) (200) (178) (200) (200)

3.42e­5 3.82e­5 6.46e­5K=3, T=10
(200) (200) (200)

7.19e­6 8.66e­6 10.88e­6

500

K=7, T=20
(200) (200) (200)

Note: Values within parenthesis show the number of iteration used for the calculation of the MSE. Any deviation of
these values from 200 indicates the number of times the respective iteration failed to converge during the Monte­Carlo
simulation.

conduct similar experiments for a Poisson model.

For the Poisson model we have generated random data according to the following protocol

� = x� + u and y v Poisson(e�) i.e. y�s are drawn randomly from a Poisson distribution with

E(y) = e� when x, � and u are the same variables and parameters as the the probit model. This

implies the link function, g(�) = log(�) , which is the canonical link for Poisson distribution.

Since the PQL approach was not always converging for the Poisson model, we pay some

attention to its convergence properties. Tables 4 and 5 show, along with other results, the number

of time that the PQL estimation of the Poisson mixed model succeeded within 200 replications.

In the probit model case, the default setting for the maximum number of iterations (niter= 10)

in glmmPQL() function was su¢ cient for the procedure to converge. However, for the Poisson

mixed model estimation, the procedure was not always converging within the default setting for

"niter". Therefore, we increased the maximum number of iteration, niter, for PQL estimation

from 10 to 20 for the Poisson mixed models. Any speci�c estimation that reached the maximum

number of iteration was considered as not converged. And these replicates were not included in

the calculation of the MSE and the RAE. Moreover, only the lowest (K = 3; T = 10) and the

highest (K = 7; T = 20) settings have been studied. From the results for the probit models in

Tables 2 and 3 we see that the MSE and the RAE of the other settings come somewhere in

between of these two situations, therefore we considered it reasonable to study only these two

situations in order to get an idea about the relative accuracy of the model parameter estimates

of the �xed and mixed e¤ect approaches.
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Table 5: RAE of the covariance parameter estimates (D) in the fixed effect (FE) and the PQL
approaches for the Poisson mixed model

Covariance structure of the random effect
Diagonal Compound symmetry Unstructured

KTn Cluster size

FE PQL FE PQL FE PQL
10 K=3, T=10

K=7, T=20

6.59
(200)
7.38

(200)

0.56
(193)
0.71

(178)

4.19
(200)
3.26

(200)

0.41
(196)
0.36

(172)

2.34
(200)
1.62

(200)

0.50
(200)
0.42

(200)
50 K=3, T=10

K=7, T=20

0.64
(200)
0.94

(200)

0.56
(197)
0.73

(167)

0.48
(200)
0.41

(200)

0.41
(198)
0.33

(177)

0.42
(200)
0.35

(200)

0.38
(200)
0.33

(200)
200 K=3, T=10

K=7, T=20

0.63
(200)
0.80

(200)

0.61
(196)
0.76

(173)

0.41
(200)
0.33

(200)

0.41
(195)
0.32

(178)

0.42
(200)
0.31

(200)

0.41
(200)
0.31

(200)
500 K=3, T=10

K=7, T=20

0.59
(200)
0.80

(200)

0.43
(200)
0.34

(200)

0.41
(200)
0.32

(200)
Note: Values within parenthesis show the number of iteration used for the calculation of the RAE. Any deviation of
these values from 200 indicates the number of times the respective iteration failed to converge during the Monte­Carlo
simulation.

The results from the Monte-Carlo studies are shown in Table 4 and 5. One can see that both

the �xed and the PQL estimates, ignoring the problem of non-convergence, are more e¢ cient in

terms of MSE and RAE in the Poisson mixed models than in the probit mixed model. This

result is not surprising since the Poisson response variable contains more information than a

binary response variable. Comparing the results in Table 2 and 4 it is interesting to notice that

the degree of improvement in performance, in terms of lower MSE, in �xed e¤ect approach for

the Poisson models is much higher than in the PQL approach. Table 4 also shows that both the

�xed and the PQL approaches have almost the same level of accuracy, in terms of MSE�s, for

the Poisson model.

Table 5 shows that the mixed e¤ect approach can estimate the variance components more

precisely than the �xed e¤ect approach when the cluster size is small (nkt = 10). However,

the di¤erences between the RAE�s of the two approaches tends to disappear as the cluster size

(nkt), number of clusters (K) and the number repeated measures (T ) increase. This tells us that

the estimates of the two approaches coincide qualitatively somewhere between the cluster sizes

50 and 200. Furthermore, the di¤erences in RAE0s between the two approaches come closer in

the Poisson mixed model cases than for the probit models. In other words, as the cluster size

(nkt) increases, the �xed e¤ect approach approximates the PQL approach more quickly for the

Poisson model than the probit model.

To get an idea about the relative e¢ ciency of the covariance parameter estimates between the

two approaches, we have calculated the standard deviation of the RAE within 200 Monte-Carlo
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Table 6: Variation in RAE (within 200 simulations) for probit model with K=3 and T=20
Covariance structure of the random effect

Diagonal Compound Symmetric Unstructured
nkt Approach

Mean RAE SD Mean RAE SD Mean RAE SD
FE 1.26 0.85 0.87 0.67 0.50 0.2450
PQL 0.41 0.12 0.29 0.12 0.44 0.19
FE 0.54 0.29 0.35 0.22 0.29 0.15200
PQL 0.42 0.13 0.27 0.11 0.30 0.14

iterations for a Poisson mixed model with nkt = 50 and 200, K = 3 and T = 20. Since we got

the impression form the results in Tables 2-5 that the �xed e¤ect and the PQL approach produce

almost the same results somewhere between the cluster size 50 and 200, we have concentrated

our investigation on the e¢ cient issue within this limit. Moreover, it is evident from our results

in Tables 2-5 that a large number of clusters (K) and a more time points (T ) also in�uence the

better performance of the estimator, we investigated the e¢ ciency at reasonably small number

of cluster (K = 3) to be able to claim that the e¢ ciency of the estimators will not be worse than

what we have showed when both K and T increases. The results presented in the Table 6 show

that the �xed e¤ect approach is relatively ine¢ cient for small cluster size (nkt = 50). Column 4,

6 and 8 in Table 6 also show that the di¤erence in the standard deviation of the RAE between

the two approaches decreases as the cluster size increases. However, for cluster size, nkt = 200;

the standard deviations of the RAE in the �xed e¤ect approach, in some cases, twice those of

the mixed e¤ect approach. For example, at nkt = 200 with the diagonal covariance matrix of the

random e¤ect, the standard deviation of the RAE for the mixed e¤ect approach is 0.13 which

is only 44.83% of that of the �xed e¤ect approach (0.29) at the same setting.

These results lead us to make two conclusions about the accuracy of the estimates in the �xed

and the PQL approaches. First, for large cluster sizes, large number of clusters and lengthy

time increases both the �xed and mixed e¤ect approaches have a similar degree of accuracy in

estimation of the parameter. Both of them are more e¢ cient in estimating the � parameter than

the covariance matrix. In the case of the �xed e¤ect approach, reduced e¢ ciency of the model

parameter estimate may be a concern as shown in Table 6. However, for su¢ ciently large data

i.e. nkt > 200; K � 7 and T � 20 we can ignore this problem.
Second, the performance of the models varies with the speci�c response variable. In particu-

lar, both approaches perform better in the Poisson model than in the probit model. Greene [11]

studied the performance of mixed e¤ect model in di¤erent settings6 and found that the discrete

response mixed models�behavior di¤ers signi�cantly from that of the continuous response mod-

els. Now our simulation results show that within the sub-group of the discrete response mixed

models di¤erence in e¢ ciency occurs for example, probit model does not behave better than the

6Though those experiments did not include the poisson model

14



Poisson model.

Thirdly, with large data sets, either with a large number of cluster or large sample size, the

PQL approach is slow and it frequently fails to converge. For example, for a probit model with

K = 7, T = 20, nkt = 500 and an unstructured D matrix, the �xed e¤ect approach requires, on

an average, 29 seconds to estimate the model whereas the PQL approach takes 51 seconds in the

same situation. Moreover, in some particular setting the rate of failure to converge for the PQL

approach can be as high as 17% cases. This favors the �xed e¤ect approach to be preferred in

the large sample cases.

We have also investigated the reasons of the non-convergence and we have found that on an

average, in nine out of ten cases, the non-convergence is due to the fact that the PQL algorithm

did not converge within a pre�xed number of iteration (with is 20 in this case). However, we

did not dig much into the reason why the PQL estimate did not converge in the remaining one

out of ten cases.

4 Inference on D and related topics

In Section 2.2 we discussed a procedure to estimate the covariance matrix of the random e¤ect.

In section 3 we showed the performance for a range of speci�cations. For simplicity, we assumed

a zero intercept. In practice, models with no intercept are of less interest. Therefore, we would

like to show how the �xed e¤ect approach can be extended to deal with the situation when

there is an intercept term in the model. A second issue we discuss below is statistical hypothesis

testing of the structure of the covariance matrix, D.

4.1 Estimation of D with a �xed e¤ect model having an intercept term

When the model in (2) does not contain any intercept term, using the �xed e¤ect approach, the

estimates of cluster and time interaction terms provides the realization of the random e¤ects

directly. These terms serve as the elements in matrix, bU; which we use to estimate the covariance
matrix, D:The estimation of the covariance matrix D is less straightforward for a model with

an intercept term. This is because the time and cluster interactions e¤ect, which we consider

as the realizations of the random e¤ect, altogether with the intercept term make the model

unidenti�able. One remedy of this problem is to estimate one parameter less than the actual

number of parameters in the interaction terms. However, the estimates of the intercept and

the interaction parameters we get through this techniques are not directly the estimate of the

true parameters but an estimable function of those parameters. To distinguish the estimates of

the interaction terms in the models with intercept from the realizations of uk = (u1k;u2k; ::uTk)0

we use the superscript (�*�) e.g. bu�kt to indicates an estimate of ktth interaction term for a

model with an intercept. If we omit u11 from the model, the estimate bu�kt can be expressed as
15



bu�kt = \(ukt � u11). By a similar reasoning the estimate of the intercept term (b��, say) represents
the original intercept plus the term we left out from the model i.e. \�+ u11. Now adding the
intercept terms with all interaction parameter estimates we have

b�� + bu�kt = \�+ u11 + \(ukt � u11)

=) b�� + bu�kt = \�+ ukt

Since the interactions (ukt) have a zero mean, the average of all interaction estimates (bu�kt)
after adding intercept term eventually gives us the estimate of the original intercept term. Then

it is not di¢ cult to get the estimate of the other parameter (ukt). The calculations are as followsX
k

X
t

(b�� + (b�� + bu�kt))
KT

= b� (7)

b�� � b� = bu11 (8)

bu�kt � b� = bukt (9)

These estimates of the ukt�s can be used as the elements of bU to estimate the covariance

matrix, D.

4.2 Inference on the structure of D

Sometimes it is of interest to test whether theD matrix has a speci�c structure e.g. whether it is

diagonal which is equivalent to say whether the random e¤ects are independent or, in a genetic

application, one might be interested to test whether a genetic relation matrix can precisely

express the correlation structure of the random e¤ects, or in credit risk modeling, whether the

inter-industry input-output matrix can explain the correlation structure of the random e¤ect.

Here we o¤er a detailed discussion on the test of statistical signi�cance of the D matrix for a

certain structure.

From equation (5) we have

bD =
1

T
bU0 bU

) bD =
1

T
(bu01; bu02; :::; bu0T )(bu01; bu02; :::; bu0T )0
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0BBBBBBBBBBBB@

TX
t=1

u21t

TX
t=1
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TX
t=1

bu1tbuKt
TX
t=1

bu2tbu1t TX
t=2

u22t

TX
t=1

bu2tbuKt
...

. . .
...

TX
t=1

buKtbu1t � � �
TX
t=1

buKtbu(K�1)t TX
t=1

bu2Kt

1CCCCCCCCCCCCA
Assume we want to test the following hypothesis H0 : D = �2I vs. H1 : D 6= �2I

where, I is a k � k identity matrix and �2 is a known scalar. Then the above test can be
performed by using the Wald-test7 for testing non-linear constraints on the parameters. In

our case, we have K�(K+1)
2 non-linear restrictions on the parameters as presented in the lower

(or upper) triangular elements of the symmetric matrix 1
T
bU�bU. This test does not require any

additional estimate than obtained through a general estimation procedure of the model. The

detailed calculations for the Wald-test are as follows.

The Wald-test statistic for testing non-linear restriction can be written as

W = [c(�)� q]�(Asy:V ar[c(�)� q])�1[c(�)� q]

where c(�) is the vector of non-linear restrictions (in our case the lower triangular elements in
1
T
bU�bU) of length K�(K+1)

2 , q is a vector of constants (in our case the lower triangular elements

of �2I) having the same length as c(�): And, c(�) � q = 0 represents the formal equation of

restrictions. In this particular case the system of equations for the non-linear restrictions on the

parameters can be presented as

0BBBBBBBBBBBB@

TX
t=1

u21t

TX
t=1

bu2tbu1t
...

TX
t=1

bu2Kt

1CCCCCCCCCCCCA
�

0BB@
�2

0
...
�2

1CCA =

0BB@
0
0
...
0

1CCA (10)

Under the null hypothesis, in large sample, W has a Chi-square distribution with degrees of

freedom equal to the number of equations in c(�) � q = 0 (i.e. K�(K+1)
2 ). On the other hand,

the variance of [c(�)� q] can be given as
7Greene [10] provides a general discussion on the computational procedure for the Wald-test for non-linear

restrictions on the parameters.
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Est: Asy: V ar[c(b�)� q] = bC Est: Asy: V ar[b�] bC�
where, bC = h �c(b�)

�b��
i
is a matrix of order K�(K+1)2 � (K � T ) whose mth row is the derivatives of

the mth constraint with respect to nth element in �.

Again we do not obtain the estimate of V (bU) directly when there is an intercept term in the

model. However, we do obtain an estimate of V (bu�kt): Then the calculation for the estimation of
V (bU) is straight forward using equations (7), (8) and (9) and V (bu�kt). We have from (7)

b� =
X
k

X
t

(b�� + (b�� + bu�kt))
KT

) V (b�) = V
0BBB@2b�� +

X
i

X
j

bu�kt
KT

1CCCA

) V (b�) = 4V (b��) + V
0BB@
X
k

X
t

bu�kt
KT

1CCA+ 2Cov
0BB@2b��;

X
k

X
t

bu�kt
KT

1CCA
) V (b�) = 4V (b��)+ 1

K2T 2

24X
k

X
t

V (bu�kt) +X
k

X
t

X
(k0 6=kor

X
t0 6=t)

Cov(bu�kt:bu�k0t0)
35+ 4

KT

X
k

X
t

Cov(b��; bu�kt)
(11)

From (8) we have

V (bu11) = V (b�� � b�)
) V (bu11) = V (b��) + V (b�)� 2Cov

0BB@b��; 2b�� +
X
k

X
t

bu�kt
KT

1CCA
) V (bu11) = V (b�)� V (b��)� 2

KT

X
k

X
t

Cov(b��; bu�kt) (12)

On the other hand, from (9) we have

V (ukt) = V (bu�kt � b�)
) V (bukt) = V (bu�kt) + V (b�)� 2Cov

0BB@bu�kt; 2b�� +
X
k

X
t

bu�kt
KT

1CCA
) V (bukt) = KT � 2

KT
V (bu�kt) + V (b�)� 4V (bu�kt; 2b��)� 2

KT

X
l 6=k

X
m6=t

Cov(bu�kt; bu�lm) (13)
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Therefore, all the variance terms can be calculated through the equations (11)-(13) where

everything we need for those calculations are obtained form the estimate of the variance-

covariance matrix of the model parameters. Again, the calculations for the covariance terms are

as follows

Cov(bu11; bukt) = Cov [(b�� � b�); (bu�kt � b�)]
) Cov(bu11; bukt) = V (b�) + Cov(b��; bu�kt)� Cov(bu�kt; b�)� Cov(b��; b�) (14)

Furthermore,

Cov(bukt; buk0t0) = V (b�) + Cov(bu�kt; bu�k0t0)� Cov(bu�kt; b�)� Cov(bu�k0t0 ; b�) (15)

All the terms in the equations (14) and (15) can either be obtained directly from the formal

model estimation procedure or from the calculation of the above equations, (11)-(13). Therefore

any further simpli�cation of these two equations is not shown here.

So, using the same technique we can test for any other covariance structures provided that

the null hypothesis is simple i.e. all the elements in D matrix must be completely speci�ed

under the null hypothesis. For example, if we want to test the hypothesis H0 : D = D0 vs.

H1 : D 6= D0 where D0 is any known symmetric and positive de�nite matrix, we just have

to replace the second term in the left hand side of the equation (10) with the upper (or lower)

triangular elements of D0. Note, however, that the empirical evidence on the performance of

the Wald-test in this particular situation is yet to be explored.

5 Conclusion

The �xed e¤ect approach provides us with a consistence estimate of both the � and the co-

variance parameters even when there is a complex structure of correlation in the dependent

variable due to the random e¤ect. The e¢ ciency of the proposed estimator may be a concern

for the small sample cases but it matters little in the case of large sample size (greater than 200

observation per cluster). The PQL method becomes more and more infeasible comparing the

estimation time with the �xed e¤ect approach as sample size increases. In addition to the longer

estimation time, in some cases, the PQL algorithm does not converge within a pre�xed number

of iterations when the �xed e¤ect approach does. Moreover, we can perform hypothesis test on

the structure of the covariance matrix through the �xed e¤ect approach. Therefore, considering

all these issues we favour the �xed e¤ect model to be preferred in the large sample cases with

the repeated measures on the individuals when the observations are correlated both within and

between individuals.

Throughout this paper we have considered the U matrix consisting of T independent real-

izations from a K variate normal distribution. A situation might arise where the components
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ukt are exposed to autocorrelation over time, T . An appropriate technique to deal with such a

situation when using the �xed e¤ect approach is not yet available.
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