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1 Introduction

1.1 Background

In surveys, nonresponse has become an almost unavoidable, though unde-
sired, feature. Surveys with nonresponse su�er from many di�culties and
possible de�ciencies, practical in data collection and planning as well as in
estimation and inference. The main concern in the presence of nonresponse
is the obvious risk of bias, but the variance of point estimators will also be
in�ated. In addition, not only point estimators, but also variance estimators
may be biased.

Although nonresponse is usually di�cult to avoid entirely, survey admin-
istrators and researchers often try to minimize the nonresponse rate within
the available budget, at the expense of other activities to reduce the total
error. Many e�orts are both expensive and time consuming, and may have
little e�ect on the nonresponse error. One important category of methods to
deal with nonresponse is reduction e�orts, i.e. e�orts that take place after the
initiation of the data collection period and that aim at reducing the nonre-
sponse rate. The e�ciency of the reduction e�orts must be measured by the
nonresponse error reduction they result in (if any), but this reduction must
also be weighed against the amount of resources that is required to achieve
it. If the e�ect is small compared to the cost, the budget could be reallo-
cated to other survey activities that improve quality or the survey could be
conducted at a lower cost. In Tångdahl (2006), an approach to evaluate the
cost e�ciency of the nonresponse rate reduction e�orts is proposed, based on
a framework introduced in Tångdahl (2004) and in Tångdahl (2005). This
approach, developed under an ideal situation where all required quantities
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are assumed known, serves as a point of reference in this paper. Here the
�ideal� procedure is adapted to some practical situations where the quantities
required for the evaluation are unknown. Section 1 gives an introduction to
the problem and lays out some notation and de�nitions. Section 2 contains
a short summary of the approach suggested in Tångdahl (2006), and in sec-
tions 3 and 4 an adaptation of the approach to some speci�c situations that
are more or less likely to occur in practice is proposed.

1.2 Notation and de�nitions

Consider a �nite study population U of size N . The variable of interest is y
with the value yk for the kth element and we want to estimate the population
total tyU =

∑
k∈U yk =

∑
Uyk.

To do this, select a probability sample s of �xed size n from U according
to the design p(·) with positive �rst and second order inclusion probabilities
πk and πkl. For simplicity, assume that direct element sampling without
replacement is used. Data collection is initiated by an attempted contact
with all elements in the sample. This results in a number of responding
elements and nonresponding elements (e.g. non-contacts, refusals). During
the data collection period, additional contact attempts are made with sample
elements who have not yet responded or have not yet been categorized as
de�nitive nonresponse. After a su�ciently long time period, usually at a
predetermined time point in postal surveys or after a speci�ed number of
callbacks in interview surveys, say A, the data collection is terminated in the
current survey setup. During the data collection period, successive response
sets r(1) ⊆ · · · ⊆ r(a) ⊆ · · · ⊆ r(A) ⊆ s, are generated, where a = 1, . . . , A
denotes some point of time during the data collection period. The number
of elements in r(a) is m(a). In interview surveys, it is more natural to de�ne
the response sets in terms of the number of callbacks. In the following we
assume, for simplicity, that the survey is carried out by mail.

The response set r(a) is assumed to have been generated by the response
distribution RD(a), in�uenced by the survey operations up to the time point
a. Hence, for a = 1, . . . , A, there is a corresponding sequence of response
distributions. The response distribution RD(a) is such that elements respond
independently of each other. The assumption of independence implies that
Pr(k&l ∈ r(a)|s) = θ

(a)
k|sθ

(a)
l|s for every pair k 6= l ∈ s. We also require that the

condition
θ

(a)
k|s ≥ θ

(a−1)
k|s (1)
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is ful�lled for all k and all a.
An arbitrary point estimator for tyU based on the response set r(a), gen-

erated by RD(a), is denoted t̂
(a)
yc , while t̂ys is the corresponding full response

estimator, i.e. an estimator on the same form as t̂
(a)
yc , but based on the total

sample s.

Remark 1 The superscript (a) will be used throughout to denote estimators
and quantities based on response set r(a).

There are many di�erent methods available for handling nonresponse at
the estimation stage, one being reweighting. In the following, we need not
specify what estimator is currently being used in the survey. In situations
where a speci�c estimator is needed to illustrate some technical points, the
simple RHG estimator, studied in Tångdahl (2004), will be used. There, a
slightly modi�ed version of the RHG model described in Särndal, Swensson,
and Wretman (1992), chapter 15, is de�ned. It is formulated as follows:
assume that a partitioning of the realized sample can be made such that
response probabilities are constant within groups sh, h = 1, . . . , H. It is also
assumed that the response probabilities are positive for all elements and that
elements respond independently. The partitioning need not be the same for
di�erent samples, but for a given sample, the grouping is always the same. In
the present particular setting, we will assume that the same model, i.e. the
same grouping, applies for any given time a, only the response probabilities
within groups may change over time. The model can be stated formally as

Pr(k ∈ r(a)|s) = θ
(a)
k|s = θ

(a)
h > 0 for all k ∈ sh

Pr(k&l ∈ r(a)|s) = θ
(a)
k|sθ

(a)
l|s for all k 6= l ∈ s

for h = 1, . . . , H and for given time points a = 1, . . . , A.
Let nh be the size of sh and let r

(a)
h of size m

(a)
h be the responding subset

of sh at time a. Conditioning on the response count vector m(a), estimated
�rst and second order response probabilities are

θ̂
(a)
k|s = θ̂

(a)
hs =

m
(a)
h

nh

for all k ∈ sh
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and

θ̂
(a)
kl|s =


m

(a)
h (m

(a)
h − 1)

nh(nh − 1)
for k 6= l ∈ sh

m
(a)
h

nh

m
(a)
h′

nh′
for k ∈ sh, l ∈ sh′ ; h 6= h′

Remark 2 In the original presentation, the conditional response probabili-
ties θ

(a)
k|s and θ

(a)
kl|s are de�ned under the assumption that the assumed model

coincides with the true response distribution. In this presentation, these re-
sponse probabilities are denoted θ̂

(a)
k|s and θ̂

(a)
kl|s to emphasize that this is an

assumption made by the statistician and is not necessarily true.

Details on the simple RHG estimator can be found in Särndal et al. (1992)
and in Tångdahl (2004).

2 The evaluation approach in an ideal situation

To evaluate the cost e�ciency of the nonresponse rate reduction e�orts, the
e�ect of the reduction e�orts must be related to their costs. In Tångdahl
(2006), this is done by using a cost e�ciency measure, de�ned as a function
of an error measure given at two arbitrary points of time during the data
collection period, and the expected cost of the survey procedures at the
same time points. Four alternative cost e�ciency measures are proposed,
each representing di�erent error measures and di�erent ways to relate this
error to the expected costs.

The e�ect of the reduction e�orts is de�ned as the change in the chosen
error measure, which is suggested to be a combination of estimator bias
and variance into one measure. The estimator bias and variance are de�ned
in terms of the true, but unknown, response distribution, where sampled
elements may have di�erent individual response probabilities, between 0 and
1. By expressing the error, and also the cost of a survey procedure in terms of
the true response distribution RD(a) at a single point of time, and using the
de�ned sequence of response distributions, we can compare the nonresponse
error at di�erent points of time, and also de�ne the cost e�ciency of e�orts
between time a and time a− 1.

Tångdahl (2006) presents an evaluation procedure that builds on this
setup, and that can be used to evaluate the e�ciency of the reduction ef-
forts relative to their costs. An evaluation is initiated by calculating the
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bias and variance of the point estimator at time A, i.e. under the current
survey strategy. (In practice it may be necessary to estimate these quanti-
ties.) We may �nd that the bias is su�ciently small and that the precision
requirements are met, in which case the evaluation is relevant to see if the
nonresponse reduction e�orts are cost e�cient. Or we may �nd that the bias
is unacceptably large and/or that the variance is too large. In this case an
evaluation is motivated to �nd out which e�orts, if any, do not have the de-
sired e�ect on survey error, and to get input for alternative strategies to be
considered. In any case, the procedure is developed under an ideal situation,
i.e. it is assumed that all required population quantities and parameters are
known. If that is the case, the following procedure for a full evaluation of
the follow-up strategy is suggested. First choose which time points during
the data collection that should be evaluated, and which pairs of time points
are to be compared. It is suggested that the pairs are chosen as consecu-
tive time points. For a complete evaluation of the data collection procedure,
or rather, the strategy for nonresponse rate reduction, it is recommended
that the evaluation is performed stepwise, starting with the last e�ort. Note
that the evaluation is done pairwise, for each chosen pair of consecutive time
points a− 1 and a. The choice of time points to be evaluated is discussed in
Tångdahl (2006).

The cost e�ciency measures to consider in the suggested approach are

CE
(a|a−1)
1,MSE =

MSE(t̂
(a−1)
yc )E(C

(a−1)
T )

MSE(t̂
(a)
yc )E(C

(a)
T )

(2)

CE
(a|a−1)
1,BR =

BR2(t̂
(a−1)
yc )E(C

(a−1)
T )

BR2(t̂
(a)
yc )E(C

(a)
T )

(3)

CE
(a|a−1)
2,MSE =

MSE(t̂
(a)
yc )−MSE(t̂

(a−1)
yc )

E(C
(a)
T )− E(C

(a−1)
T )

(4)

CE
(a|a−1)
2,BR =

BR2(t̂
(a)
yc )−BR2(t̂

(a−1)
yc )

E(C
(a)
T )− E(C

(a−1)
T )

(5)

where MSE(t̂
(a)
yc ) = V (t̂

(a)
yc ) + B2(t̂

(a)
yc ) and BR2(t̂

(a)
yc ) = B2(t̂

(a)
yc )/V (t̂

(a)
yc ) are

the mean square error and squared bias ratio, respectively, while C
(a)
T is the

total cost of P(a), the survey procedure terminated at time a, which is a
stochastic variable.
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One of these measures is chosen. For every pair of time points, the fol-
lowing steps are then performed:

Step 1 The chosen cost e�ciency measure is calculated. The decision rule
is that the survey strategy (P(a), t̂

(a)
yc ) is cost e�cient, relative to

(P(a−1), t̂
(a−1)
yc ), if

CE
(a|a−1)
1 > δ, δ > 0 or CE

(a|a−1)
2 < δ, δ < 0

depending on which measure is chosen. The constant δ is chosen to
re�ect the importance of a quality improvement.

Step 2 The variance of the point estimator at time a − 1 is calculated, to
determine if the precision requirements are met under P(a−1).

Step 3 The magnitude of the absolute and relative bias at time a − 1 is
calculated. Even if one or more e�orts are not found to be cost
e�cient and thus could be excluded, there may still be a large bias
present. If so, the complete survey procedure must be reappraised.

Using the information from steps 1, 2 and 3 for all pairs of time points, an
assessment of the e�ciency of the reduction strategy as a whole can be made.

3 The evaluation approach in less than ideal

situations

3.1 The problem

As stated in the introduction, the purpose of this paper is to suggest how to
use the approach in Tångdahl (2006) in practical situations that may occur.
The evaluation approach, described in section 2, is straightforward to apply
given that all required quantities are known. In practice this is rarely, if ever,
the case. In this paper, several more or less plausible situations, with varying
amounts of information are considered. It is obvious that the less information
we have, the more the evaluation must depend upon various assumptions.

We suggest how to deal with the uncertainty about the quantities used
in steps 1-3 of the evaluation approach in each of the situations considered.
These are described in section 3.2. Since steps 2 and 3 of the approach involve
calculation or estimation of the variance and the bias, which are included in
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step 1, focus will mainly be on step 1. Brief statements on how steps 2 and
3 should be performed are given.

Unfortunately, the nature of a situation with nonresponse is that assump-
tions about the nonresponse mechanism are unveri�able, since we lack data
to test them on. In those cases, it is up to the survey administration, and
the survey statistician in particular, to use their judgment and past expe-
rience of similar surveys to make di�erent but realistic assumptions. The
approach proposed here is simulation based. When extensive information is
available, the CE measure, the variance and the bias can be estimated with
arbitrary precision. In the cases with little information, the simulations must
be based on several more or less plausible assumptions about unknown and
unestimable quantities, performing an evaluation for each of those assump-
tions and comparing the conclusions drawn under the di�erent assumptions.
If the same or at least similar conclusions can be drawn, we can be fairly
con�dent that they are correct. If, however, the results are inconclusive,
resources to collect additional information must be found, so that we may
narrow down the range of alternative assumptions.

An alternative to a simulation approach is to use the available informa-
tion in each situation to �nd point estimators of the cost e�ciency measure,
the variance and the bias. Replacing the components of the cost e�ciency
measure with estimates requires that we �nd point estimators of the vari-
ance, the squared bias and the expected cost at time a − 1 and a. As an
unbiased estimator of the expected cost, the realized cost in the survey can
be used. Since standard variance estimators may be biased, jackkni�ng can
be used to estimate the point estimator variance. Jackknife for reweighting
estimators under nonresponse has been treated in e.g. Kott (1998) and Kott
(2001).

In more ideal situations, it may be possible to �nd an unbiased estimator
of the bias, but in most cases this is impossible. Instead, auxiliary informa-
tion must be used (if any is available) to make informed guesses about the
bias. Even in cases where we can estimate the bias, the variance and the
expected cost and insert these into the expression for the cost e�ciency to
arrive at an approximately unbiased point estimator for the cost e�ciency,
we must still try to provide some estimate of the uncertainty in the estima-
tors. If it is possible to estimate the variance of the cost e�ciency estimator,
the bias estimator and the variance estimator, and also �nd their sampling
distributions, con�dence intervals can be constructed in each of steps 1-3. It
turns out, however, that even in the most ideal situations this is di�cult.
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3.2 The situations

In practice, we may have access to di�erent types of information, and it may
be available at di�erent levels. In particular, it may be that, at the evaluation
stage, we have access to auxiliary information not used in the current estima-
tion. Denote this additional information zk for element k, to distinguish it
from xk, the auxiliary information used in the current estimator. The vector
zk may be an updated version of xk, but may also contain one or more new
variables, not used previously. We will assume that z has a stronger predic-
tive ability than x, when used in the estimation of tyU . Another, even more
favorable situation, is when the values of the study variable yk become known
at the evaluation stage, for all elements in the population. An example is
Omsättningsstatistiken at Statistics Sweden, a monthly survey on turnover
for businesses in the service sector. Estimation of monthly turnover is based
on questionnaire data from the responding elements of a sample, while a reg-
ister variable from which turnover can be calculated becomes available after
each quarter.

Consider a survey that has been carried out regularly for some time, with
few changes in the general setup. In this case, we may have a fair idea about
the form of the true response distribution. Assume that the parameters of
the response distribution are known from previous experience or that we
have access to the information we need to estimate these parameters from
the obtained sample. We denote this case RD known. Of course, if we
have a fair idea about the form of the response distribution, that would be
used at the estimation stage, in our current standard estimators. If that was
possible, point and variance estimators would have negligible bias. What
we assume here is that the information required is not available until the
evaluation stage, so that less than perfect information must be used in the
current estimator.

The case RD unknown denotes situations where the form of the true
response distribution is unknown (which is the most common situation in
practice), or where it is known but can not be fully identi�ed with the avail-
able information (for example if we know that there are response groups
de�ned by age by income classes, but income is unknown even at the evalu-
ation stage).

Table 1 summarizes the di�erent situations that are more or less likely to
occur. We will focus on the situations 1a), 1c), 1d), 3c) and 3d), as marked
in table 1. Case 1a) is unrealistic in practice, but will serve as a transition

8



yk known for
k ∈ U k ∈ s k ∈ r(A)

RD known
zk known for k ∈ U 1a) 2a) 3a)
no additional information 1b) 2b) 3b)

RD unknown
zk known for k ∈ U 1c) 2c) 3c)

no additional information 1d) 2d) 3d)

Table 1: Di�erent cases that may occur at the evaluation stage

between the ideal situation considered in section 2 and the less than ideal
cases where RD is unknown. The other cases are chosen because in some
respects, they represent �extreme� situations. The case where yk is known
for all k ∈ s is most likely rare in practice and will not be covered here. The
suggested methods for the case yk known for k ∈ r(A) can also be applied
when yk is known for k ∈ s, the main di�erence being that we are in a better
position to estimate unknown quantities. Although the situations in table
1 are di�erent, they share some common features and conditions that must
be ful�lled. Firstly, we will assume that data on the data collection process
are collected, in particular that the in�ow of each response is registered, i.e.
we have a time stamp on incoming questionnaires or on interviews. This
is necessary in order to determine which elements belong to the response
set r(a), and which belong to the nonresponse set s − r(a), for any choice
of a ≤ A. Also, in interviewer assisted surveys, process data need to be
collected so that all contact attempts can be identi�ed. Secondly, we will
assume that a cost model has been formulated, describing the data collection
process in terms of the reduction e�orts, and in factors that can be related
to the error model, which in our case is a function of the (unknown) response
distribution. Thirdly, detailed cost data must be collected, so that the costs
of each reduction e�ort can be identi�ed and separated from the other costs.
To be able to use the methods suggested in the following, per element costs,
not only total costs of each reduction e�ort must be known.
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3.3 The next to ideal situation

In this section, we deal only with case 1a), the situation where yk is known
for all k ∈ U and RD is known. Four di�erent scenarios are identi�ed in this
case. The situations θ

(a)
k|s is independent of s and θ

(a)
k|s depends on s require

slightly di�erent approaches, and for each of these we may have θ
(a)
k|s is known

or θ
(a)
k|s must be estimated.

3.3.1 RD known, θ
(a)
k|s independent of s and are known

In the ideal situation where yk and the response probabilities θ
(a)
k|s (=θ

(a)
k for

every s) are known for all k ∈ U and for a = 1, . . . , A, it is in principle
possible to directly calculate the bias, variance, squared bias and expected
total cost. This means that the cost e�ciency measure can be calculated and
steps 1-3 from section 2 directly applied . However, to do this, explicit ex-
pressions for the components of the cost e�ciency measure, i.e. the variance,
squared bias and expected cost, need to be derived. In many applications,
this is prohibitively di�cult or even impossible. In Appendix A, an explicit
expression is derived for the cost e�ciency measure for the simple case of a
direct element simple random sampling design and the simple RHG estima-
tor. In this simple case, the derivation is fairly straightforward, but for other
designs and estimators, the expression can become unwieldy.

In situations when explicit expressions cannot be derived for the quanti-
ties required in the evaluation steps, particularly the components of the cost
e�ciency measure, the known values of the study variable and the response
probabilities can be used to perform a Monte Carlo simulation to estimate
these quantities as follows.

For i = 1, . . . ,M :

i. Draw a sample si using the same sampling design as in the original
survey.

ii. Generate response sets r
(1)
i , . . . , r

(a)
i , . . . , r

(A)
i using the known response

probabilities.

iii. Calculate t̂
(1)
yci, . . . , t̂

(A)
yci and the costs C

(1)
Ti , . . . , C

(A)
Ti based on the response

sets realized in step ii.
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From the simulation, we get input for all three steps of the evaluation ap-
proach. Recall that the components of the cost e�ciency measures are ex-
pected cost, bias and variance. The variance V (t̂

(a)
yc ) is estimated by

V̂MC(t̂(a)
yc ) =

1

M − 1

M∑
i=1

(
t̂
(a)
yci −

1

M

M∑
i=1

t̂
(a)
yci

)2

(6)

and the squared bias B2(t̂
(a)
yc ) can be estimated unbiasedly by

B̂2
MC = M̂SEMC(t̂(a)

yc )− V̂MC(t̂(a)
yc ) (7)

where

M̂SEMC(t̂(a)
yc ) =

1

M

M∑
i=1

(
t̂
(a)
yci − tyU

)2

(8)

is an unbiased estimator of the mean square error MSE(t̂
(a)
yc ). An unbiased

estimator of the expected cost is

ÊMC(C
(a)
T ) =

1

M

M∑
i=1

C
(a)
Ti (9)

Remark 3 For most cost models, it is likely that we could calculate the ex-
pected cost using the known response probabilities in an explicit expression
instead of estimating it from the simulation. This will in�uence the precision
of the estimator of the cost e�ciency, but it has not been investigated which
one of the two is the better.

The bias, needed in step 3 of the evaluation approach, is estimated from
the simulation using

B̂MC =
1

M

M∑
i=1

t̂
(a)
yci − tyU (10)

where
1

M

∑M
i=1 t̂

(a)
yci is an unbiased estimator of EpERD(t̂

(a)
yc ).

For step 1 of the evaluation approach, the estimates of variance, squared
bias and expected cost, i.e. (6), (7) and (9), replace the corresponding true
values in the formula for the CE measure, one of (2) to (5), which gives an
estimate ĈEMC . (In the cost e�ciency measures involving MSE, formula
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(8) can be used directly.) In steps 2 and 3, the simulation variance (6) and
simulation bias (10) are used, respectively.

In the case when we can calculate directly from explicit expressions the
cost e�ciency measure in step 1, the variance in step 2 and the bias in step
3, there is no issue of inference and the decision rules from section 2 apply
directly. If a simulation is used to approximate these quantities, the results
are a�icted with some uncertainty, mainly determined by the number of
iterations, M . M should be chosen to achieve desired precision in estimation
of the variance, since more observations are usually required to estimate
variances with satisfactory precision, compared to estimates of means, such
as (10) above.

M can be determined by the following reasoning: Since t̂
(a)
yci are based

on independent samples si, i = 1, . . . ,M and are approximately normally
distributed for large samples and response sets, we have approximately

(M − 1)V̂MC(t̂
(a)
yc )

V (t̂
(a)
yc )

∼ χ2
(M−1) (11)

For large M , this can be approximated with the normal distribution. One
approximation is

χ2
(M−1) ∼ N(M − 1,

√
2(M − 1)) (12)

so that
(M − 1)V̂MC(t̂

(a)
yc )

V (t̂
(a)
yc )

− (M − 1)√
2(M − 1)

= Z ∼ N(0, 1) (13)

Half the length of a 100(1− 2α)% con�dence interval for V (t̂
(a)
yc ) , expressed

as a percentage of V (t̂
(a)
yc ), is given by

z1−α − zα√
2(M − 1)

100 (14)

Say we require that (14) does not exceed ε, we can then solve for M and
get

M − 1 ≥ (z1−α − zα)2

2ε2
10000 (15)

Since we can achieve arbitrary precision in estimates from the simulation by
increasing the number of iterations, we can disregard this source of uncer-
tainty in the analysis. It is then straightforward to follow the steps of the
approach outlined in section 2.
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3.3.2 RD known, θ
(a)
k|s independent of s but are unknown

In this case, assume that the form of the response distribution is known, but
that the parameters of this distribution must be estimated. The approach
proposed in the previous section can still be used, but since using estimates
of the response probabilities in the calculations adds uncertainty, it must be
adjusted.

Since the response probabilities are independent of s, data from the re-
alized sample can be used to estimate them unbiasedly. How this should be
done depends on the form of the response distribution. Here, the case of
response groups is used as an example.

Assume that the response distribution is such that there are response
groups Ug, de�ned in the population, with response probabilities

Pr(k ∈ r(a)) = θ
(a)
k = θ(a)

g at time a for k ∈ Ug

and
Pr(k&l ∈ r(a)) = θ

(a)
k θ

(a)
l at time a for all k 6= l ∈ U

Assuming that the event ng ≤ 1 has negligible probability, unbiased estima-
tors of θ

(a)
g , g = 1, . . . , G, a = 1, . . . , A, are given by

θ̂(a)
g =

m
(a)
g

ng

=
1

ng

∑
sg

R
(a)
k|s (16)

where R
(a)
k|s = 1 if k ∈ r(a)|s, 0 otherwise, and ERD(R

(a)
k|s) = θ

(a)
k . The es-

timated response probabilities automatically ful�ll condition (1). For other
forms of the response distribution this may not be the case, so special care
must be taken in forming estimators θ̂

(a)
k for a = 1, . . . , A.

The estimator θ̂
(a)
g is unbiased since

E
(
θ̂(a)

g

)
= Ep

(
1

ng

ERD

(∑
sg

R
(a)
k|s|s

))
= Ep

(
1

ng

∑
sg

θ
(a)
g

)
= θ(a)

g

If the estimated response probabilities, given by (16), are used as if they
are the true ones, this would fail to take into account the additional uncer-
tainty from using only estimates of the true response probabilities. Instead,
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the variability of the estimated response probabilities should be incorporated
into the simulation. If observations could be drawn from the distribution of
θ̂

(a)
g to use as input to the simulation, the variability of the output would
re�ect the variability of the estimated response probabilities. Now, the dis-
tribution of θ̂

(a)
g is unknown but, conditional on s, we can estimate it as

follows.
De�ne the mutually exclusive and exhaustive (on sg) sets r

(1)
g , r

(2)
g −

r
(1)
g , . . . , r

(A)
g − r

(A−1)
g , sg − r

(A)
g for g = 1, . . . , G. Conditional on s, the sets

are of sizes m
(1)
g , m

(2)
g − m

(1)
g , . . . , m

(A)
g − m

(A−1)
g , ng − m

(A)
g . With ng �xed,

the vector of subset sizes m∗
g = (m

(1)
g , m

(2)
g −m

(1)
g , . . . , ng −m

(A)
g ), follows a

multinomial distribution with parameters

(ng, θ
∗
g) = (ng, θ

(1)
g , θ(2)

g − θ(1)
g , . . . , θ(A)

g − θ(A−1)
g , 1− θ(A)

g ) (17)

where θ
(a)
g − θ

(a−1)
g is the probability that an element in group g belongs to

r
(a)
g − r

(a−1)
g . Since the vector of probabilities θ∗

g is unknown, it is estimated

with θ̂
∗
g = (θ̂

(1)
g , θ̂

(2)
g − θ̂

(1)
g , . . . , 1− θ̂

(A)
g ) where θ̂

(a)
g is given by (16). To gener-

ate observations from the estimated distribution of θ̂g, observations are �rst
generated on m∗

g from the multinomial distribution with parameters (ng, θ̂
∗
g).

The observations m∗
g are then transformed back into observations on θ̂g.

The simulation from the previous section is extended to incorporate the
e�ect of using response probabilities generated from the estimated distribu-
tion. However, since the estimated distribution of θ̂

(a)
g is conditional on s, so

are the results from the simulation and the subsequent analysis. The idea is
very similar to that of the parametric bootstrap, hence we rely on basic boot-
strap results of asymptotic validity of the method. The parametric bootstrap
is used when we know that the data are from a particular parametric class
of distributions. In our case m∗

g follow the multinomial distribution. The
parameters of the known distribution are replaced by maximum likelihood
estimates and resampling is made from the resulting distribution. For details
on the parametric bootstrap, see for example Efron and Tibshirani (1993).

Draw J repeated observations (sequences of response probabilities for
a = 1, . . . , A) from the estimated distribution of θ̂

(a)
g . For each generated

sequence, either the CE-measure is calculated directly (if possible) or esti-
mated in a simulation of size M as suggested in the previous case. That is,
if explicit expressions can be derived for the CE measure, the variance, the
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squared bias and expected cost, the iterations over i in the simulation below
are replaced by a simple calculation of these quantities. If these quantities
must be estimated, the total simulation will be of size J ×M . The steps of
such a simulation are summarized in the following.

For j = 1, . . . , J :

i. Generate response probabilities from the estimated conditional distribu-
tion of θ̂

(a)
g , for all G groups and all time points a = 1, . . . , A.

For i = 1, . . . ,M :

a. Draw a sample si using the same sampling design as in the original
sample.

b. Generate response sets r
(1)
i , . . . , r

(A)
i using the response probabilities

generated in step i.

c. Calculate t̂
(1)
yci, . . . , t̂

(A)
yci and the realized costs C

(1)
Ti , . . . , C

(A)
Ti using the

known form of the cost model.

ii. Calculate estimates of the variance, the squared bias and expected cost
using formulas (6), (7) and (9), for all time points that are to be eval-
uated. Use these to calculate CE estimates for all the chosen pairs of
time points.

The J iterations result in J estimates of the true CE, the variance and
the bias. The distributions of the simulated values are estimates of the true
distributions, conditional on s.

Conditional on a given generated sequence of response probabilities, the
only variability in the estimators comes from using a limited number of itera-
tions M . To determine M , the number of iterations required to estimate the
variance, the bias and the total cost for each generated sequence of response
probabilities with su�cient precision, the same reasoning as in the case RD
known, θ

(a)
k|s independent of s and are known is used, i.e. M is determined by

(15). As before, we can disregard this source of uncertainty when analyzing
the simulation results since arbitrary precision can be achieved by increasing
M .

The decision rules in steps 1-3 of the proposed evaluation approach should
now be adjusted. Instead of comparing a single value of the cost e�ciency,
the bias and the variance with prespeci�ed limits, we produce uncertainty
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intervals1 for these quantities, to be compared to the same limits. The
output from the simulation is J estimates of the cost e�ciency, the variance
and the bias. For large J , uncertainty intervals can be calculated using the
empirical distribution of the estimators. The basic idea is borrowed from
the bootstrap. There are several di�erent methods to produce bootstrap
con�dence intervals, and there is debate on which is the best, as there is
no uniformly �best� method, it depends on the parameter being estimated.
As a simple and straightforward approach, the limits of a 1− 2α uncertainty
interval are de�ned by the α and 1−α percentiles of the empirical cumulative
distributions of ĈE, B̂ and V̂ , respectively. The interval may be written as[

Θ̂L, Θ̂U

]
=
[
Θ̂α, Θ̂1−α

]
(18)

where Θ̂ denotes either of ĈE, B̂ and V̂ and Θα is the 100 · αth percentile
of the distribution of the J simulation outcomes on Θ̂.

This corresponds to the method of percentile intervals in the bootstrap.
It is preferred here since it avoids any normality assumptions which, for small
response sets, may be grossly in error. For details on the bootstrap, see for
example Efron and Tibshirani (1993) or Davison and Hinkley (1997).

For reliable and stable interval limits, J needs to be �su�ciently� large.
Little is o�ered by the theory for the bootstrap. Anything from 50 replica-
tions (for estimation of means) up to 1000 (for estimation of percentiles) is
recommended, depending on the type of parameter. In our application, it
is di�cult to give exact recommendations, so the choice of J must largely
be determined by a compromise between the available computer power and
the need for exact interval limits. Some guidance might be given by running
the simulation a limited number of times to see if the results seem to point
in any direction. If that is the case, we may achieve reasonably accurate
results with a smaller number of iterations. If J is too small to provide prob-
abilistic information, histograms of the simulation values may still provide
an impression of the shape of the distributions the values are (indirectly)
sampled from. As with real data, the simulated data may deserve a closer
look, regardless of the size of J , as it may reveal unexpected patterns in the
distributions.

Note that the proposed approach only takes into account the variabil-
ity in the estimated response probabilities, given the realized sample, i.e.

1We use the term uncertainty interval rather than con�dence interval, since what we

propose is not a con�dence interval in the strict, traditional, sense.
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variability in θ̂
(a)
g over the sampling design is ignored.

Since sampling randomly from the distribution of θ̂g may cause the total
number of iterations required (J × M) to be prohibitively large, we may
seek an alternative, more e�cient way to sample from this distribution. In
our speci�c application, we must generate observations independently for G
groups, on A random variables that are dependent. Borrowing the idea of
Latin Hypercube sampling, LHS, originally proposed by McKay, Beckman,
and Conover (1979) in the context of computer simulations, this may be
handled as follows.

i. For a = 1: The sample space 0 ≤ m
(1)
g ≤ ng is partitioned into J1 classes

of (approximately) equal probability. Let the number of outcomes in
class j1 be ngj1 . For every class j1, draw one observation randomly with
probability 1/ngj1 .

ii. For a = 2: For class j1, the sample space for m
(2)
g − m

(1)
g is 0 ≤ m

(2)
g −

m
(1)
g ≤ ng − m

(1)
gj1
, where m

(1)
gj1

is the generated number in class j1 for
group g and a = 1. Each sample space (one for each of the J1 classes)
is partitioned into J2 classes of (approximately) equal probability. One
observation is drawn randomly in each class j2 with probability 1/ngj2 ,
where ngj2 is the number of outcomes in class j2.

iii. Repeat step ii for a = 3, . . . , A.

Steps i�iii are repeated for all G groups. This produces sequences of re-
sponse set sizes for the response sets r

(1)
g , r

(2)
g − r

(1)
g , . . . , sg − r

(A)
g , which

are transformed into sequences of response probabilities θ̂
(1)
g , . . . , θ̂

(A)
g . The

generation of the sequences of response probabilities is done independently
between groups. A sequence for group 1 is then combined at random without
replacement with a sequence for group 2, and so on until sequences for all G
groups are combined. Each of the J1×J2×· · ·×JA = J generated sequences
of response probabilities form an iteration in the Monte Carlo simulation.
The resulting J estimates of the cost e�ciency, the bias and the variance
are no longer independent. Nonetheless, the distribution of values re�ects
the uncertainty in estimators due to uncertainty about the true response
probabilities.

Estimators of means of functions of the input variables are shown to be
unbiased under LHS. Although this has not been shown for our speci�c situa-
tion, we believe that it may work well for our purposes. Note, however, that
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this approach can become computationally heavy, since we must calculate
the probabilities of every possible outcome for each a, for each outcome of
the preceding time point, a− 1. The properties of the approach, in terms of
unbiasedness of estimators and computational burden, and also on the choice
of the number of classes for each variable (time point), must be further in-
vestigated before any recommendation on its use can be given.

3.3.3 RD known, θ
(a)
k|s dependent of s and are unknown

The di�erence between the case in the previous section and the one in the
present section is that now the response probabilities depend on s. Direct
calculation of the CE measure is no longer possible since the variance and
expected values taken over all possible samples cannot be evaluated. How-
ever, under certain assumptions about the nature of the dependence of the
response probabilities on s, we can still perform a simulation to estimate
V (t̂

(a)
yc ), B2(t̂

(a)
yc ) and E(C

(a)
T ), but appropriate adjustments must be made

to the estimation of the response probabilities. To capture the uncertainty
in the CE measure resulting from using estimated response probabilities, a
simulation similar to the one suggested in the previous case may be used.
However, the simulation must be altered to take into account that the re-
sponse probabilities now depend on s.

How to estimate the response probabilities depends on the (known) form
of the response distribution. As an example, assume that the sequences of
response distributions is such that a given sample s may be partitioned into
response groups sg, g = 1, . . . , G and that elements in the same group have
the same response probability. The partitioning is allowed to vary between
di�erent samples, but for a given sample the partitioning is always the same.
We have

Pr(k ∈ r(a)|s) = θ
(a)
k|s = θ

(a)
g|s at time a for k ∈ sg (19)

and
Pr(k&l ∈ r(a)|s) = θ

(a)
k|sθ

(a)
l|s at time a for k 6= l (20)

Assume also that, for a given sample s, the partitioning into groups sg is
known, but that the levels θ

(a)
g|s must be estimated for every a and g. The

problem is that the data we have is from s, the realized sample, and the
response probabilities need to be estimated for samples si, i = 1, . . . ,M ,
drawn in the simulation. Let the response groups in si be sigi

, gi = 1, . . . , Gi,
with true but unknown response probabilities θ

(a)
gi|si

at time a for k ∈ sigi
.
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The same partitioning can be applied to s, let these groups be sgi
of size ngi

.
To estimate θ

(a)
gi|si

, we propose to use

θ̂
(a)
gi|si

=
1

ngi

∑
sgi

R
(a)
k|s =

m
(a)
gi

ngi

(21)

i.e. the response rates in s, in the groups gi de�ned in si. The properties
of this estimator depend on both samples s and si, generated by the design
p(·). Since ERD(R

(a)
k|s) = θ

(a)
g|s , the estimator will be biased if θ

(a)
g|s 6= θ

(a)
gi|si

. If
the dependence on s is not too strong, implying that the groups g and gi and
the levels θ

(a)
g|s and θ

(a)
gi|si

are not too di�erent, the estimator (21) should work
well enough for our purposes.

Remark 4 To be able to use (21) we need to know, for every i, to which
group gi element k ∈ s belongs. In the following, we assume this is the case.

Using the estimated response probabilities, a simulation similar to the
one in the previous case, RD known, θ

(a)
k|s independent of s but are unknown,

can be performed. Due to the dependence on s, we must start by drawing a
sample si so that we can calculate the estimated conditional response proba-
bilities, given by (21). For each sample si, J observations from the estimated
conditional distribution of θ̂

(a)
gi|si

are generated to go into the simulation. If we

are willing to assume that the dependence of θ
(a)
k|s on s is not too strong, the

same method as in the previous case can be used to generate observations
on θ̂

(a)
gi|si

, a = 1, . . . , A.

Remark 5 Since s is partitioned according to the grouping de�ned for si,
there is a risk of empty groups, i.e. that ngi

= 0 for one or more groups. If

that happens, the estimates θ̂
(a)
gi|si

, a = 1, . . . , A cannot be calculated for those

groups and the estimator t̂
(a)
yc will be biased for tyU . In the proposed procedure,

assume that the probability of the event

(ngi
= 0 for some gi = 1, . . . , Gi given s) (22)

is negligible. This assumption is likely to hold when the groups g and gi are
not too di�erent.

Under the assumption that the dependence on s is not too strong, the
simulation approach from the previous case (RD known, θ

(a)
k|s independent
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of s but are unknown) can be used. The subsequent analysis will also be
the same, i.e. uncertainty intervals for CE, V (t̂

(a)
yc ) and B(t̂

(a)
yc ) are produced

using (18).
To determine M , the same reasoning as in the previous cases is used.

This gives a required precision for each j, i.e. conditional on the estimated
response probabilities.

3.4 The less than ideal situations

A more plausible situation than that of the previous section is that the re-
sponse distribution is unknown. It is also more common that the study
variable values are known only for elements in the ultimate response set in
the current survey, r(A). Our possibilities to evaluate the reduction e�orts in
these cases are even more limited and we must largely rely on available aux-
iliary information and/or unveri�able assumptions for the evaluation. Still,
an analysis can be performed in much the same way as in section 3.3, but
now under various reasonable assumptions about unknown factors going into
the simulation.

3.4.1 yk known for k ∈ U , RD unknown

In this case, since we have access to the study variable values yk for all k ∈ U ,
these may be used in a simulation. However, since the true response proba-
bilities are unknown, or even the form of the true response distribution, the
simulation must be based on some assumed response distribution. The main
source of uncertainty now comes from not knowing the true response distribu-
tion, not from estimating the parameters of this distribution. An evaluation
can be done as in the previous cases, but the results of the evaluation (steps
1-3) now necessarily depend on the assumed response distribution. Since
we want to know how robust our conclusions are, the simulation must be
performed under a variety of di�erent response distributions.

The di�erent assumed (sequences of) response distributions should be
plausible, but should also to some extent represent variation from �best case�
to �worst case� scenarios. It is up to the statistician's experience, judgment
and knowledge of the speci�c survey to formulate a set of such response
distributions. In this process, all available information must be considered
for use. For instance, if the auxiliary vector z is available for k ∈ U (case
1c in table 1), the response probabilities can be de�ned as a function of
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variables in this vector. Of course, since y is available for all k ∈ U , the
response probabilities may alternatively be de�ned as a function of y, a case
with potential for large bias in estimators of tyU .

More or less complex models may be assumed for the true response distri-
bution. However, the auxiliary information used to specify the model is most
likely more important than the actual parametric form of the model, given
the information used. Also, simple models are preferred over (unnecessarily)
complex models. In the following, make the assumption that the response
distribution is the same as in the example in the case RD known, θ

(a)
k|s in-

dependent of s but are unknown, i.e. that there are response groups de�ned
in U with response probabilities θ

(a)
g for k ∈ Ug at time a. The partitioning

into groups then de�nes the properties of the estimator, given that the as-
sumed response distribution coincides with the true one. Other reasonable
parametric forms of the response distribution are logistic regression models,
or other models suitable for binary data. The use of logistic regression is
discussed in for example Alho (1990) and Laaksonen and Chambers (2006)
and an early application is found in Ekholm and Laaksonen (1991).

A �best case� scenario is easily found by letting the model for the response
distribution be close to, or even coincide with, the model used in the current
point estimator. In that case, the bias will be small or negligible. (If the
calibration estimator is used, the response distribution is not explicitly mod-
eled, but the nonresponse bias is determined by the ability of the auxiliary
vector x to predict the response probabilities and/or study variable values.)
As a �worst case� scenario, the response probabilities may be speci�ed as a
function of y. Unless the auxiliary vector x has very strong predictive power,
the point estimator can be severely biased. Intermediate cases include us-
ing di�erent subsets of z to specify the assumed response distribution. The
response probabilities are in any case estimated using (16), where g now rep-
resents the groups de�ned in the assumed true distribution. Note that the
purpose in this case is not to �nd the �true� response distribution that we
can use to evaluate the cost e�ciency, but to make a variety of plausible
assumptions about the unknown response distribution.

For each assumed sequence of response distributions, estimate the pa-
rameters of the distribution as if the sequence of RD's is the true one and
perform a simulation and subsequent analysis just as in section 3.3.1. The
main uncertainty most likely comes from not knowing the true sequence of
response distributions and not from not knowing the parameters of that dis-
tribution, should it be true. Thus, when comparing the conclusions under
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the di�erent assumed response distributions, a precision of a few percent,
given the assumed RD, is not likely to be of any practical signi�cance com-
pared to, say, 0.5 percent. For all practical purposes, the precision obtained
in the estimators from using J×M iterations as suggested in section 3.3.1, is
likely more than enough. Since one J ×M simulation must be performed for
every assumed RD, the computing cost will increase by a factor equal to the
number of di�erent assumed RD's compared to the case when the true RD
is known, and may be prohibitively large. To do the evaluation under the
di�erent alternatives, it should su�ce to accept lower precision in estimators
under each assumed sequence of response distributions than in the previous
cases. If computing cost is an issue, an extreme option is to disregard the
uncertainty in point estimates of the parameters of the response distribu-
tion and use the point estimates to do a simulation with only M iterations.
The result from the simulation is then not uncertainty intervals for the cost
e�ciency measure, the bias and the variance, but point estimates of them.

The analysis of the simulation results is done separately for each as-
sumed RD in the same way as in section 3.3. Evaluating the cost e�ciency
of the current data collection setup under the various assumed sequences of
response distributions will provide a span of possible conclusions. The vari-
ation between the conclusions under the di�erent response distributions will
also show how sensitive the conclusions are to the underlying assumptions.

3.4.2 yk known for k ∈ r(A), RD unknown, zk known for k ∈ U

The situation where yk is known only for k ∈ r(A) and the true RD is un-
known is even less favorable than the previous one. In this case the study
variable values cannot be used directly in the type of simulations suggested
so far. However, it is possible to base the simulation on proxy values ŷ, esti-
mated using the auxiliary vector z known for k ∈ U . Alternatively, the cost
e�ciency of e�orts can be evaluated for an estimator of a parameter for one
variable z, believed to be highly correlated with the study variable. If the
patterns over the data collection period are similar for ŷ and y or for z and
y, an informed guess can be made about the cost e�ciency for y based on
the conclusions for ŷ or z. When using z, the evaluation conditions are the
same as in the previous case yk known for k ∈ U , RD unknown, so we focus
here on the use of a linear combination of the variables in z as proxy for y.

Assuming that the relationship between y and z in the population can be
described by a linear regression yk = γ ′zk, where γ is an unknown column
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vector of regression coe�cients, we can use theory from Särndal, Swensson,
and Wretman (1992) to �nd a suitable estimator. The estimation of γ is
discussed at the end of this section.

The true response distribution is unknown, but the same reasoning as in
the previous case can be used here. Some plausible response distributions,
spanning from �worst case� to �best case� scenarios, are formulated, and for
each one of those a simulation and subsequent analysis is performed.

So, in this case, a separate simulation can be performed for each assumed
sequence of response distributions just as in the case yk known for k ∈ U ,
RD unknown, but now ŷ is used instead of y.

To calculate the proxy values ŷk, the vector of regression coe�cients, γ
needs to be estimated. We do not think of γ as estimates of regression coe�-
cients in a super population model, but rather as a characteristic describing
the �nite population point scatter (yk, z1k, . . . , zqk) : k = 1, . . . , N . The pa-
rameter of interest is γ = (

∑
Uzkz

′
k)

−1∑
Uzkyk, In the case of full response,

γ could be estimated by

γ̂s =

(∑
s

zkz
′
k

πk

)−1∑
s

zkyk

πk

(23)

Since yk is only available for k ∈ r(A), we could try to estimate γ by

γ̂r =

(∑
r(A)

zkz
′
k

πk

)−1∑
r(A)

zkyk

πk

(24)

If the response probabilities are de�ned for k ∈ U , i.e. are independent of s,
the approximate expected value of γ̂r is

E (γ̂r) = Ep

(∑
s

θ
(A)
k|s zkz

′
k

πk

)−1∑
s

θ
(A)
k|s zkyk

πk

∣∣∣∣s


≈
(∑

Uθ
(A)
k|s zkz

′
k

)−1∑
Uθ

(A)
k|s zkyk (25)

which, in general, is not equal to γ. However, since the estimator is a ratio
where the factors θ

(A)
k|s enter the formula in both the numerator and the

denominator, we will expect that E(γ̂r) does not deviate too much from γ
in most cases.
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An alternative estimator of γ is based on the assumed response distribu-
tion. We get

γ̂r,alt =

(∑
r(A)

zkz
′
k

θ̂
(A)
k πk

)−1∑
r(A)

zkyk

θ̂
(A)
k πk

(26)

where θ̂
(A)
k is the estimated response probability for unit k under the assumed

response distribution used in the simulation. This alternative gives di�erent
estimates of γ for each assumed response distribution. The approximate ex-
pected value of γ̂r,alt depends on how θ̂

(A)
k are formed. If E(θ̂

(A)
k ) ≈ θ

(A)
k ,

then γ̂r,alt is approximately unbiased. That case is very unlikely, and since
we assume response distributions ranging from �best case� to �worst case�
scenarios, the estimates of γ and consequently the proxy values ŷ under dif-
ferent response distributions may di�er considerably. In the analysis of the
simulation results, it can then be di�cult to separate the e�ects of the dif-
ferent assumed response distributions from the e�ect of using di�erent proxy
values ŷ. Thus, we recommend using γ̂r in each simulation, i.e. irrespective
of the assumed response distribution. An additional argument in favor of γ̂r

can be found in Särndal and Lundström (2005), chapter 9, in their discus-
sion of near-unbiasedness of the calibration estimator. They state that if the
study variable is perfectly linearly correlated with the auxiliary vector, then
the bias of the calibration estimator is zero. Now, the calibration estimator,
and its nearbias (approximate bias), can be expressed in terms of regression
coe�cients. It is stated that the nearbias of the calibration estimator is, in
our notation, (

∑
Uzk)

′ (E(γ̂r)− γ). 2 Zero bias then implies that E(γ̂r) ≈ γ.
The relationship between y and z will not be perfectly linear in practice, but
if the predictive ability of z is strong, the estimator γ̂r should work well.

Remark 6 In the cases where yk is known for all k ∈ s and RD is unknown,
the estimator γ̂s can be used. Since it is (approximately) unbiased for γ, that
situation is slightly more favorable than when yk is known only for k ∈ r(A).

The values ŷk = γ̂rzk will tend to have less variability in the population
than the set of values yk, since all values ŷk lie �on the regression surface�.
To introduce more natural variability in the data, we recommend adding
a randomly selected residual. The residuals are selected among the set of
observed values {ek : k ∈ r(A)} where ek = yk− γ̂rzk. This is in line with e.g.

2Note that the expression for the nearbias is based on the assumption that the response

probabilities are independent of s and de�ned for all k ∈ U .
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Särndal and Lundström (2005), where the approach is suggested for variance
estimation purposes under regression imputation.

Let the residual selected (randomly) from {ek : k ∈ r(A)} for element k
be e∗k. Using ŷk = γ̂rzk +e∗k for all k ∈ U , a simulation study and subsequent
analysis is performed as if the proxy values was the study variable, i.e. as
when yk is known for k ∈ U , for each of the assumed sequences of response
distributions. However, since the inference now applies to ŷ instead of y,
the conclusions that can be drawn from the simulations must necessarily be
di�erent. They will depend on the population correlation between y and ŷ.
If the correlation is high, the simulations will give at least an indication of
the uncertainty in the conclusions (about y). A comparison of the patterns
in point estimators and variance estimators from the successive response sets
for both ŷ and y may also give an indication of to what extent the conclusions
about the proxy values apply also to y.

3.4.3 yk known for k ∈ r(A), RD unknown, no additional informa-
tion

This is the least favorable situation since we do not have any information
other than what has already been used in our current point estimator. This
situation is, unfortunately, perhaps the most common in practice. It is pos-
sible to use a simulation as suggested in the previous cases, but we will have
no information to base the assumptions on. Of course, assumptions can be
made about both the study variable and the response probabilities and simu-
lations performed as suggested in the cases with more available information.
This will give a span of possible conclusions, but since we cannot know how
close our assumptions are to the truth, such an evaluation may be of very
limited use.

In an attempt to follow the three steps of the suggested evaluation ap-
proach, one might be tempted to try the following unsatisfactory approach:
To estimate the cost e�ciency in step 1, use the �standard� variance estima-
tor for V (t̂

(a)
yc ), estimate the bias using one of the methods proposed below,

and estimate the expected cost by the realized cost in the survey. Insert
this, taking the square of the bias estimate as an estimate of squared bias,
into the expression for the CE measure. This gives a very crude estimate of
the cost e�ciency for use in step 1 of the evaluation. The variance and bias
estimates are also used in steps 2 and 3 of the evaluation. Unfortunately, it is
di�cult to estimate the precision in the estimators, which is needed to draw
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conclusions based on inference procedures. Also, since the estimators of the
bias and the variance are most likely biased, using these point estimates can
be grossly misleading.

Instead we will take on a di�erent approach, focusing on estimation of
the bias di�erence B(t̂

(a)
yc ) − B(t̂

(a−1)
yc ). It is generally acknowledged that

point estimator bias is the main concern in surveys with nonresponse. Many
di�erent approaches to estimate the bias have been taken, most based on
purely empirical studies. An overview of some common methods is given in
Groves (2006). Methods presented therein include:

• Response rate comparisons across subgroups.

• Studying register variables for both respondents and nonrespondents.

• Comparisons with estimates from external sources.

• Nonresponse follow-up studies, e.g. comparisons across �waves�.

• Comparisons of di�erent types of estimators and with di�erent auxiliary
information.

Unfortunately, most of these methods require that additional auxiliary infor-
mation is available for the evaluation, so in this particular case they simply
cannot be used. However, it is not necessary to estimate the bias itself to be
able to estimate the bias di�erence. Expressions for the bias di�erence are
derived in Tångdahl (2004) for some commonly used estimators. A simple
and unbiased estimator of the bias di�erence is the di�erence between two
point estimators, i.e. B̂

(a−1,a)
dif = t̂

(a)
yc − t̂

(a−1)
yc . Study of the changes in the

levels of point estimates for a = 1, . . . , A can also be useful. This provides
no information on the potential bias remaining after the current cut-o� date
for the data collection period, but gives some guidance to how the estimators
would be a�ected if we cut down on the e�orts to reduce nonresponse. An
example of this is given in Japec (2005). Interpretation of the bias di�erence
is discussed in Tångdahl (2004),Tångdahl (2005) and Japec (2005). To assess
not only the e�ect on estimators, but the cost e�ciency of reduction e�orts,
the bias di�erence must be related to the increase in costs.

Remark 7 In the case when yk is known for all k ∈ s and RD is unknown,
an unbiased estimator of the bias can be formed as B̂

(a)
unb = t̂

(a)
yc − t̂ys where t̂ys

is the full response estimator corresponding to t̂
(a)
yc . This puts us in a slightly

better position than when yk is known only for k ∈ r(A).
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All of the methods mentioned here are in general unsatisfactory. At best,
they will give some insight into the change in point estimator bias between
successive cut-o� dates, but o�er little information on the cost e�ciency, the
uncertainty in the evaluation results and the remaining nonresponse bias (if
any). Another alternative, in case better support for decisions about the
data collection is needed, is to set aside resources (time and money) to do
a thorough study that will provide information on nonrespondents. The
characteristics of the survey may dictate the possibilities, but alternatives
include subsampling of nonrespondents, introduced by Hansen and Hurwitz
(1946) and a sequential design proposed by Groves (1989). Successfully exe-
cuted, subsampling of nonrespondents will give unbiased point and variance
estimates, making it possible to estimate the bias of point estimators from
successive response sets. The sequential design option involves collection of
detailed information on the outcome of every e�ort to contact elements in
the sample. By de�ning a simple error model and a cost model in terms
of type of outcome (of the contact attempt or refusal conversion attempt)
it is possible to estimate the change in bias, and to weigh this against the
increase in costs. Note that the estimates in that approach are based on
elements k ∈ r(A), which most likely are not representative of elements in the
sample.

4 Concluding remarks

The problem of nonresponse is one of survey planning, resource allocation
and estimation. It is the statisticians task to use all available information
in the best way possible to resolve these issues. Uninformed pursuit of high
response rates, whatever the cost, is not likely to mean that the money are
well spent, so the allocation of resources in the survey should be based on
informed decisions about the cost e�ciency of di�erent e�orts. As a last
resort, if nothing else is possible, we can at least make informed guesses
based on a variety of realistic assumptions.

The cost e�ciency evaluation approach proposed in Tångdahl (2006) can
serve as a tool for the statistician in making such informed decisions. How-
ever, except in the most ideal situation, we are faced with several di�culties
in performing the cost e�ciency evaluation as proposed. The simulation ap-
proach suggested here is perhaps only a partial solution, since it, in most
cases, must be based on unveri�able model assumptions. But it does provide
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a quick and relatively easy way to try out di�erent assumptions, even though
it might be computationally intensive, and it also gives an estimate of the
sensitivity of our conclusions to the model assumptions. Since the assump-
tions about the true response distribution must be made with the speci�c
survey in mind, we cannot give absolute recommendations on what response
distributions to use in the evaluation.

It should be noted that the typical survey situation is much more com-
plex than this paper suggests. Only one study variable and one parameter
is studied, while in practice there are usually many variables and many dif-
ferent types of parameters. Also, the estimation of parameters for domains
is usually important, and response patterns may di�er considerably between
domains. What is cost e�cient for one study variable, parameter or domain
may not be cost e�cient for another, so the results must be weighed against
each other, depending on how important that particular parameter, variable
or domain is. These issues have not been formalized in the approach, but
rather we leave it up to the statistician to use his scrutiny and general knowl-
edge of the survey to make such considerations before deciding on a strategy.
Should one decide on a new strategy for nonresponse rate reduction, it should
be tested in a formal (embedded) experiment �rst, to eliminate the risk of
negative side e�ects that were not anticipated.
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A Explicit expression for the CE measure

When the response probabilities are independent of s (i.e. θ
(a)
k|s = θ

(a)
k for

every s), the RHG grouping is the same for all possible samples and the
probability of empty groups is negligible, an explicit expression for the cost
e�ciency measure can be derived.

Remark 8 The expression for the cost e�ciency is valid whether the true
response distribution is known or not, although its use requires that the true
response distribution is known.

Assume that simple random sampling is used to draw the sample, that
the point estimator is

t̂
(a)
ycπ∗ =

H∑
h=1

nh

m
(a)
h

∑
r
(a)
h

y̌k =
N

n

H∑
h=1

nh

m
(a)
h

∑
r
(a)
h

yk (A.1)

and that the cost model is the one given in Tångdahl (2006, Appendix A),

C
(a)
T = CF + CQ + CTR +

∑
j≤a

C(j) + C
(a)
P (A.2)

where CF are the �xed costs, CQ = ncQ, CTR = ncTR, Cj = (n − m(j))cj,
C

(a)
P = m(a)cP and cQ, cTR, cj and cP are the per element costs of the ques-

tionnaire, thank you/reminder card, reminder j and processing, respectively.
These are speci�ed in Appendix A in Tångdahl (2006).

The cost e�ciency measures (2)�(5) are functions of the squared bias and
variance of the point estimator, and the expected cost E(C

(a)
T ), so we need

to derive explicit expressions for each of those components.
Starting with the variance, we have

V (t̂
(a)
ycπ∗) = VpERD(t̂

(a)
ycπ∗|s) + EpVRD(t̂

(a)
ycπ∗|s) (A.3)

There are alternative ways to derive the variance, but in this particular case
it is convenient to condition on the response homogeneity group sizes n =
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(n1, . . . , nh, . . . , nH). For the �rst term of (A.3) we have

VpERD(t̂
(a)
ycπ∗|s) ≈ Vp

(
H∑

h=1

nh∑
sh

θ
(a)
k

∑
sh

θ
(a)
k y̌k

)

=

(
N

n

)2

Vp

(
H∑

h=1

nh∑
sh

θ
(a)
k

∑
sh

θ
(a)
k yk

)
(A.4)

but for �xed n, s can be treated as a strati�ed simple random sample, so

VpERD(t̂
(a)
ycπ∗|s) ≈

(
N

n

)2

[VnE(·|n) + EnV (·|n)] =

(
N

n

)2

[V1 + V2] (A.5)

For notational convenience, let

K
(a)
h =

∑
Uh

θ
(a)
k yk∑

Uh
θ

(a)
k

Then, using properties of the multivariate hypergeometric distribution, we
get

V1 ≈Vn

[
H∑

h=1

nhK
(a)
h

]
=

H∑
h=1

(K
(a)
h )2V (nh) +

∑
h 6=h′

K
(a)
h K

(a)
h′ Cov(nh, nh′)

=
H∑

h=1

(K
(a)
h )2 n

N

(
N − n

N − 1

)
Nh

(
1− Nh

N

)
−
∑
h 6=h′

∑
K

(a)
h K

(a)
h′ n

Nh

N

Nh′

N

(
N − n

N − 1

)

=n

(
N − n

N − 1

){ H∑
h=1

Nh

N
(K

(a)
h )2

(
1− Nh

N

)

−

( H∑
h=1

Nh

N
K

(a)
h

)2

−
H∑

h=1

(
Nh

N

)2

(K
(a)
h )2


=n

(
N − n

N − 1

)
H∑

h=1

Nh

N
(K

(a)
h )2 −

(
H∑

h=1

Nh

N
K

(a)
h

)2
 (A.6)
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Continuing with V2, we have

V2 = EnV

(
H∑

h=1

nh∑
sh

θ
(a)
k

∑
sh

θ
(a)
k yk

∣∣∣∣n
)

= En

[
H∑

h=1

n2
hV

(∑
sh

θ
(a)
k yk∑

sh
θ

(a)
k

∣∣∣∣n
)]

≈ E

 H∑
h=1

n2
h

1(
θ̄

(a)
h

)2

(
1

nh

− 1

Nh

)
1

Nh − 1

∑
Uh

(
θ

(a)
k yk −K

(a)
h θ

(a)
k

)2


=

H∑
h=1

{
E(nh)−

E(n2
h)

Nh

}
1(

θ̄
(a)
h

)2

1

Nh − 1

∑
Uh

(
θ

(a)
k

)2 (
yk −K

(a)
h

)2

(A.7)

From the properties of the multivariate hypergeometric distribution, we know
that

E(nh) = n
Nh

N

and

E(n2
h) = V (nh) + (E(nh))

2 = n
Nh

N

(
1− Nh

N

)
N − n

N − 1
+

(
n

Nh

N

)2

Inserting this into (A.7) and simplifying gives

V2 =
H∑

h=1

{
n

Nh

N
− 1

Nh

[
n

Nh

N

(
1− Nh

N

)
N − n

N − 1
+

(
n

Nh

N

)2
]}

1(
θ̄

(a)
h

)2

1

Nh − 1

∑
Uh

(
θ

(a)
k|s

)2 (
yk −K

(a)
h

)2

=
H∑

h=1

n

N

{
Nh

(
1− n

N

)
−
(

1− Nh

N

)
N − n

N − 1

}
1(

θ̄
(a)
h

)2

1

Nh − 1

∑
Uh

(
θ

(a)
k

)2 (
yk −K

(a)
h

)2
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=
H∑

h=1

n

N

N − n

N − 1

{
Nh

N
(N − 1)−

(
1− Nh

N

)}
1(

θ̄
(a)
h

)2

1

Nh − 1

∑
Uh

(
θ

(a)
k

)2 (
yk −K

(a)
h

)2

=
H∑

h=1

n

N

N − n

N − 1

1(
θ̄

(a)
h

)2

∑
Uh

(
θ

(a)
k

)2 (
yk −K

(a)
h

)2

(A.8)

For the second term of (A.3), we use the derivation given in Tångdahl
(2005, eq. 14, page 12), where an approximate expression is given as an
expected value over the sampling design. The general expression is

EpVRD(t̂
(a)
ycπ∗|s) ≈ Ep

 H∑
h=1

(
nh

t̂
(a)
θh

)2∑
sh

θ
(a)
k|s(1− θ

(a)
k|s)

(
y̌k −

t̂
(a)
yθh

t̂
(a)
θh

)2


where t̂
(a)
yθh =

∑
sh

θ
(a)
k|s y̌k and t̂

(a)
θh =

∑
sh

θ
(a)
k|s . Evaluating the expected value

under simple random sampling and under the assumption that the response
probabilities are independent of s, we get

EpVRD(t̂
(a)
ycπ∗|s) ≈

H∑
h=1

( ∑
Uh

πk∑
Uh

πkθ
(a)
k

)2∑
Uh

πkθ
(a)
k (1− θ

(a)
k )

(
y̌k −

∑
Uh

θ
(a)
k yk∑

Uh
πkθ

(a)
k

)2

=
N

n

H∑
h=1

(
Nh∑
Uh

θ
(a)
k

)2∑
Uh

θ
(a)
k (1− θ

(a)
k )

(
yk −

∑
Uh

θ
(a)
k yk∑

Uh
θ

(a)
k

)2

=
N

n

H∑
h=1

1(
θ̄

(a)
h

)2

∑
Uh

θ
(a)
k (1− θ

(a)
k )
(
yk −K

(a)
h

)2

(A.9)

Remark 9 To arrive at an expression analogous to (A.6) and (A.8),
EpVRD(t̂

(a)
ycπ∗|s) can be derived by conditioning on the response homogeneity

group sizes n = (n1, . . . , nh, . . . , nH). The resulting expression, slightly dif-
ferent from (A.9), is

EpVRD(t̂
(a)
ycπ∗|s) ≈

N

n

H∑
h=1

Dh(
θ̄

(a)
h

)2

∑
Uh

θ
(a)
k (1− θ

(a)
k )
(
yk −K

(a)
h

)2
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where Dh = 1 +
1

n

(
N

Nh

− 1

)
N − n

N − 1

Inserting (A.6) and (A.8) into (A.5) and summing with (A.9) gives

V (t̂
(a)
ycπ∗) ≈

(
N

n

)2

n
N − n

N − 1

 H∑
h=1

Nh

N
(K

(a)
h )2 −

(
H∑

h=1

Nh

N
K

(a)
h

)2

+
1

N

H∑
h=1

1(
θ̄

(a)
h

)2

∑
Uh

(
θ

(a)
k

)2 (
yk −K

(a)
h

)2


+

H∑
h=1

1(
θ̄

(a)
h

)2

∑
Uh

θ
(a)
k

(
1− θ

(a)
k

)(
yk −K

(a)
h

)2

(A.10)

Further, the squared bias of t̂
(a)
ycπ∗ is

B2(t̂
(a)
ycπ∗) =

[
EpERD(t̂

(a)
ycπ∗)− tyU

]2
and an approximate expression under simple random sampling is

B2(t̂
(a)
ycπ∗) ≈

[
Ep

(
H∑

h=1

nh∑
sh

θ
(a)
k

∑
sh

θ
(a)
k y̌k

)
− tyU

]2

≈

[
H∑

h=1

Nh∑
Uh

θ
(a)
k

∑
Uh

θ
(a)
k yk − tyU

]2

=

[
H∑

h=1

NhK
(a)
h − tyU

]2

(A.11)

Finally, the expected cost, i.e. the expected value of (A.2), is

E(C
(a)
T ) = EpERD

(
CF + CQ + CTR +

∑
j≤a

Cj + C
(a)
P

)

= CF + CQ + CTR + EpERD

(∑
j≤a

Cj + C
(a)
P

)
(A.12)

34



Since ∑
j≤a

Cj + C
(a)
P =

∑
j≤a

(n−m(j))cj + m(a)cP

=
∑
j≤a

(n−
∑

sR
(j)
k|s)cj +

∑
sR

(a)
k|scP

and ERD(R
(a)
k|s) = θ

(a)
k , we get

E(C
(a)
T ) = CF + CQ + CTR

+ Ep

(∑
j≤a

(
n−

∑
sθ

(j)
k

)
cj +

∑
sθ

(a)
k cP

)
= CF + CQ + CTR

+
∑
j≤a

(
n− n

N

∑
Uθ

(j)
k

)
cj +

n

N

∑
Uθ

(a)
k cP (A.13)

As a �nal step, insert (A.10), (A.11) and (A.13) into the expression for
the cost e�ciency, one of equations (2)�(5).
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