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Abstract

The approach of controlling the false discovery rate (FDR) which is less conservative than
controlling the family wise error rate (FWER) has become a new and popular multiple test-
ing procedure in microarray studies. In addition to multiple testing problems the limitation
of sample size is another big challenge in this area. This thesis addresses the problem of
multiple testing in the context of FDR in small samples. The first paper makes a comparison
of three FDR estimation methods and the second paper investigates the effects of unequal
variance between groups on the estimation of FDR in small samples using standard methods.
This paper also presents a new FDR estimation procedure that deals with the above prob-
lem. Simulation results show that the new procedure works well for unequal group variance
in small samples and is reliable over wider set of conditions.
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1 Introduction

A major goal of statistics is to make definite decisions with respect to hypotheses about the
probability laws of random variables. Hypothesis testing in statistics deals with problems of
uncertainties and amounts to sampling the random variable whose probability law is referred
to in the hypothesis and, on the basis of the sample, deciding to accept or reject the stated
hypothesis.

Hypothesis testing can involve the testing of a single hypothesis or the simultaneous
testing of multiple hypotheses. The decision to reject or not reject a hypothesis is charac-
terised by uncertainty and so, as stated in the statistical literature (e.g. Lehmman, 1986),
a standard approach of single hypothesis tesing is to specify an acceptable type I error rate
(false positive, rejection of a true hypothesis) and base the conclusion by finding tests which
minimize the type II error (false negative, non-rejction of a false hypothesis) and thereby
maximize the power of the test.

Multiple hypothesis testing involves the testing of two or more single hypotheses at the
same time. When more than one hypothesis is tested, the appropriate threshold to declare
a test statistic’s p value significant becomes complex. Each test has a specified type I error
and the chance of drawing at least one false conclusion increases rapidly with the number of
tests performed. As stated by Dudiot et al., (2002), a p-value of 0.01 for a single hypothesis
among a list of several hypotheses would no longer correspond to a significant finding as
there is a high probability of getting a small p-value by chance when considering a large
set of hypotheses. This could lead to serious consequences if the set of conclusions must be
evaluated as a whole (Shaffer, 1995). This problem is commonly referred to as the multiple
testing problem.

The basic concern of the theory of multiple hypothesis testing is to control the type I
error by developing methods that would account or adjust for the multiplicity effect. The
traditional way of multiple testing procedures has been to control the probability of com-
mitting even one type I error, the family wise error rate (FWER) (Hochberg and Tamahane,
1987; Westfall and Young, 1993). A commonly known and used method is the Bonferroni
procedure. Other modifications and more powerful procedures of multiple testing problems
(e.g. step down procedure of Holm, 1979) are currently available. However, these meth-
ods are very conservative and their power is greatly reduced as the number of hypotheses
in the family increases leading practitioners to neglect multiplicity control even in medium
size problems (Benjamini and Yekutieli, 2001). On the other hand, large-scale simultaneous
hypothesis testing problems, with hundreds or thousands of cases considered together with
data-sets generated by modern technologies such as light spectroscopy, proteomic devices,
flow cytometry, functional resonance imaging, many social science surveys and microarray
have become a fact of current-day statistical practice (Efron, 2008).

The multiplicity problem gains a much larger dimension in the case of microarray data,
usually several thousands of cases are considered simultaneously. Microarray technology
enables researchers to measure the expression levels of thousands of genes in a single exper-
iment (Abul et al., 2004). Microarrays have increasingly been used to address a wide range
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of problems in biological and medical research such as classification of tumors, monitoring
response to different environmental stress conditions and study of host genomic response to
bacterial infections (Alon et al., 1999; Golub et al., 1999; Perou et al., 1999; Alizadeh et al.,
2000; Gash et al., 2000; Ross et al., 2000 ).

This thesis is mainly concerned with the first step in the statistical analysis of gene
expression data, the search of differentially expressed genes across two or more kinds of
tissue samples (e.g. tissues like normal and cancerous cervical) or samples obtained under
different experimental conditions (Dudoit et al., 2003). Testing of the null hypothesis of
no differential expression for each gene in microarray study requires inference on several
thousands of null hypotheses simultaneously. In light of the large-scale inference problem on
microarray data, Benjamini and Hochberg offer another measure of the likelihood of falsely
rejecting a number of true null hypotheses, the False discovery rate (FDR).

A number of recent articles have addressed the problem of multiple testing in the context
of FDR (e.g. Benjamini and Hochberg, 1995; 2000; Keselman et al, 2002; Pawitan et al,
2005a, 2005b; Ploner et al., 2006; storey 2002; Storey and Tibishirani, 2003). However in
addition to the multiple testing problem the limitation of replicated samples is another big
challenge in microarray data analyses which leads to problems in estimation of the FDR.

The objective of this thesis is to compare three FDR estimation methods and develop a
new FDR estimation procedure which is suitable for unequal group variances in small sample
microarray experiments. Paper 1 in the thesis deals with the comparison of FDR estimation
methods and paper 2 deals with the development of the new FDR estimation procedure.

In this summary, Section 2 presents some basic notions and ideas behind testing hy-
potheses which gives the necessary background of multiple hypotheses testing in microarray
studies. In Section 3 introduction and description of FDR is summarized. Section 4 presents
a brief summary of the two papers included in this thesis. In section 5 a direction to future
research is presented.

2 Multiple hypothesis testing

2.1 Single hypothesis testing

An important aspect of statistical inference is to specify and test hypothesis. Suppose a set
of data generated from some distribution Fθ belonging to a family of distributions indexed
by θ ∈ H is given. The null hypothesis (H0), which is some subset of H, is to be tested
against an alternative hypothesis (H1), which is another subset of H. The null hypothesis
H0 is tested based on a statistic T. The statistic T is a function of the data which is used to
decide whether θ ∈ H0 or θ ∈ H1.

In hypothesis testing the sample space of the test statistic T is partitioned into two dis-
joint parts, called rejection region (critical region) and acceptance region, which are denoted
by Υ and Γ respectively. If T ∈ Υ then H0 is rejected.

There are two types of errors which might be committed when testing hypothesis. We
might reject the hypothesis when it is true or we might accept the hypotheses when it is
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false. If we reject the hypotheses when it is true i.e. if T ∈ Υ when θ ∈ H0, we commit
a type I error. If we accept the hypotheses when it is false i.e. if T ∈ Γ when θ ∈ H1 we
commit a type II error.

The probability of making a type I error is usually controlled at some designated level
alpha. That is, the researcher controls the probability of rejecting the null hypothesis H0

when it is in fact true. Correspondingly, the probability of rejecting H0 when it is false
defines the power of the test. The power of a hypothesis test equals the probability of not
committing a type II error, that is:
Power = 1 - P(type II error)

2.2 Multiple hypotheses testing

In multiple hypothesis testing one or more single hypotheses are tested simultaneously. The
possible outcomes of testing m null hypotheses simultaneously can be summarized by Table
1 below (Benjamini and Hochberg, 1995). In the table, V denotes the number of type I errors
(false positives), T denotes the number of type II errors (false negatives) and R denotes the
number of rejected hypotheses. In the setting each of the m single hypothesis has possible
type I and type II errors

Table 1. Summary of type I and type II error rates of m hypotheses
Accept Reject Total

True null hypotheses U V m0
True alternative hypotheses T S m1
Total m-R R m

In order to measure the errors incurred in multiple hypotheses testing, a variety of gener-
alizations of type I error rates of single hypothesis testing have been proposed. The following
are the major ones (Shaffer, 1995).

• Per-comparison error rate (PCER), defined as the expected value of the ratio of the
number of false rejections to the number of hypotheses, i.e. PCER=E(V)/m,

• Per-family error rate (PFER), defined as the expected number of false rejections, i.e.,
PFER=E(V)

• Family-wise error rate (FWER), defined as the probability of at least one type I error,
i.e., FWER=pr(V≥1)

• False discovery rate (FDR), defined as the expected proportion of type I errors among
the rejected hypotheses (Benjamini and Hochberg ,1995), i.e, FDR=E(V/R) where
V/R=0, if R=0
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The p-value in single hypothesis testing is the level of the test at which the hypothesis H0

would just be rejected. An adjusted p-value in multiple hypothesis testing corresponding to
the test of single hypothesis is the level of the entire test procedure at which Hi (i=1,...,m)
would just be rejected, given the values of all test statistics involved (Shaffer, 1995; Yang and
Speed, 2003; Westfall and Young, 1993; Yekutiel and Benjamini, 1999). There are three ways
of adjusting p-values: the single step, the step down and and the step up procedures. The
single step procedure is a way of adjusting p-values where equivalent multiplicity procedures
are performed for all hypotheses, regardless of the ordering of the test statistics or unadjusted
p-values, each hypothesis has its own critical value which is not associated to the results of
tests of other hypotheses. In a step-down procedure multiplicity adjustments are performed
by ordering the unadjusted p-values starting with the most significant. This procedure is less
conservative than single-step procedure and hence improves power. In a step-up procedure
multiplicity adjustments are performed by ordering the unadjusted p-values starting with
the least significant. This procedure is less conservative than the step-down procedure under
the assumption of independence of tests.

Many types of multiple testing procedures are available and are to be discussed later. One
important question is which testing procedure to choose? The following are some common
criteria (Yang and Speed, 2003).

• relevance to the subject under investigation

• type of control: strong or weak; strong control is control of the type I error rate under
any combination of true and false hypotheses and weak control is control of the type I
error rate when all the null hypotheses are true (Dudoit et al., 2003)

• validity of assumptions

• computability: refers to whether there is numerical or simulation error

The Bonferronni procedure strongly controls the FWER at level α by rejecting any hy-
pothesis Hi with p-value less than or equal to α/m. The corresponding Bonferroni single
step adjusted p-values are given by p̃i=min(mpi,1). Another procedure which is less conser-
vative than the Bonferronni procedure is the Holm (1979) step down procedure. In this, let
the ordered unadjusted p-values be denoted by pr1≤ pr2≤...≤prm and let Hr1, Hr2, ..., Hrm

denote the corresponding null hypotheses. Then the Holm step down adjusted p-values are
given by

p̃i = max
k=1,...,i

{min ((m− k + 1)prk, 1)}

An alternative method which accounts for the dependence structure among the test
statistics and which is less conservative than the Holm procedure was proposed by Westfall
and Young (1993). Shaffer (1995) and Dudoit et al.(2003) have provided an in-depth review
of many of these methods.

In the next section, hypothesis testing in the context of a new scientific problem, mi-
croarray studies will be presented.
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2.3 Multiple hypotheses testing in microarray studies

The approach of controlling for the family-wise type I errors, such as the Bonferonni adjust-
ment, is often too conservative to be useful when large-scale simultaneous testing problems
with many thousands of cases are considered together such as in microarray technology. The
microarray is a device which enables the measurement of gene expression on a large scale
basis. Microarray technologies have extensively been used over the past few years and have
the potential to address a wide range of problems in biomedical research such as classifica-
tion of tumors or the study of host genomic responses to bacterial infections (Boldrick et al.,
2002; Golub et al., 1999; Pollak et al., 1999). However there still exists a challenge; how to
analyze and interpret large scale data. A common problem is to detect genes with differential
expressions under two experimental conditions, which may refer to samples drawn from two
types of tissues, tumors or cell lines.

Consider the common set up for a microarray experiment, which produces enormous
amounts of data with expression data on m genes (variables) for n samples. Let the gene
expression levels be put in an array form as m × n matrix as Y = (yij) where rows correspond
to gene i =1 to m and columns correspond to individual microarray experiments or samples
j, where j=1 to n. In the setting above the gene expression levels, y, are continuous variables
and usually this expression is associated with a response or covariate of interest which is
recorded for each sample. Suppose this covariate or response be x and the associated random
variable X . Then depending on the type of experiment x could be dichotomous, polytomous
or continuous. Here we consider x as dichotomous. Let the multiple testing problem to test
whether a gene is differentially expressed or not be statistically stated as follows

Hi: There is no association between Yi and X

where Yi is the random variable associated to the expression level for gene i and X is the
response variable. Then, as discussed by many authors (e.g. Dudiot et al., 2002; Efron et
al., 2000; Golub et al., 1999; Zhao and Pan, 2002; Ploner et al., 2005), the general procedure
for handling the biological problem of the question of differential expression as indicated
above has two steps. First, computing an appropriate univariate test statistics T for each
gene under the set up of the experimental design and then conducting a multiple testing
procedure to determine which hypotheses to reject while controlling a suitably defined type
I error rate. The first procedure to test the hypothesis that gene i is not differentially
expressed is a question of univariate hypothesis testing which has been reviewed in section
1.1 and thoroughly studied and discussed in the statistical literature (e.g. Lehmman, 1986).

As has been discussed in section 1.1 in each of these tests two types of errors can be
committed: a false positive (type I) error and a false negative (type II) error. With many
thousands of genes measured simultaneously in microarray experiment, we have to infer on
many thousands null hypotheses simultaneously. This situation leads to multiple testing
problem. When more than one test is performed, the appropriate threshold to declare
a test statistic’s p value significance becomes complex . Each test has a chance of α to
yield a significant result, and the chance of drawing at least one false conclusion increases
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rapidly with the number of tests performed. This leads to a question on how to determine
the true effect or on how to find for those of the many thousands of p-value that provide
enough evidence for a significant change in gene expression. The answer lies in defining an
appropriate compound error rate which is relevant to the subject under study, in this case
microarray data analyses.

3 False Discovery Rates

A classical and common approach in simultaneous testing has been to construct a procedure
that controls the FWER, the probability of committing at least one type-I error within the
tested family of hypotheses (Tukey, 1953; Hochberg and Tamahane, 1987). The main prob-
lem with such classical procedures is that they tend to have low power. A different and new
approach to multiple testing, the false discovery rate (FDR)was proposed by Benjamini and
Hochberg (1995). The FDR is the expected proportion of wrongly rejected null hypotheses
among the total number of null hypotheses rejected. Following the notation from table 1,
FDR is defined as E(Q) , where Q =V/R if R>0 and 0 if R=0. When FDR is equal to
the FWER under the complete null, the procedures that control the FDR also control the
FWER in the weak sense (Dudoit et al.,2003). When some of the tested hypotheses are in
fact false, FDR control is less strict than FWER control and thus FDR controlling procedures
are potentially more powerful. The approach of controlling false discovery rates which is less
conservative than the approach of controlling family wise error rate, has gained popularity
in microarray data analyses. However, some applications such as analysis of clinical trials
still require FWER control.

Under the assumption of independence of the test statistics, the following linear step-
up procedure of Benjamini and Hochberg (1995) leads to strong control of the FDR at
level α. Let pr1≤ pr2≤...≤prm be the observed ordered unadjusted p-values. Calculate
î = max{i : pri ≤ (i/m)α} then reject the null hypotheses corresponding to pr1,...,prî . It
was shown by Benjamini and Yekuteli (2001) that the above procedure controls the FDR
also under special forms of dependence structure such as positive regression dependence.
These authors also proposed a conservative modified procedure of controlling FDR which
works for general dependence structure.

4 Summary of papers

4.1 Paper I: A comparative review of estimates of FDR in small
microarray experiments

This paper shows the comparison of three FDR estimation methods in microarray studies
with the commonly posed question of identifying genes that are differentially expressed across
two or more types of samples obtained under different experimental conditions. The observed
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test statistics has the following form of mixture model

F (z) = π0F0(z) + (1− π0)F1(z)

where F is the distribution of the observed t- statistic Z, to test whether a gene is differentially
expressed (DE) or not between two groups, π0 is proportion of truly non-DE genes, F0 is the
distribution of the statistics of non-DE genes and F1 is the distribution of the statistics of
DE genes .

The three FDR estimation methods considered are

1. Direct FDR estimation using p-values (FDR.p) which is given as (Pawitan et al. 2005)

F̂DR(k) =
π̂0mp(k)

k

where (p(k)) is the k’th highest p-value; monotonicity is imposed by applying a cumu-
lative minimum over k,...,m.

2. FDR estimation using average of local false discovery rate (FDR.avg) is computed as

FDR(z) = E{fdr(Z) | Z ≤ z}

where fdr is local false discovery rate fdr(z) = π0f0(z)
f(z)

which is computed using Bayes

formula from the mixture model (5) of Ploner et al.(2006)

3. FDR estimation using average of multidimensional false discovery rate (FDR.avg.fdr2d).
The global FDR can also be found by taking average of the ordered fdr2d values as
(Ploner et al. 2006)

FDR(R)=E{ fdr(z1, z2) | R}

where R represents the rejection region of the two dimensional statistics (z1, z2) such
that ZεR are called DE

Simulation results show that when the proportion of non-differentially expressed genes
(p0) in the mixture frame work (5) is set at 0.9, FDR.p and FDR.avg are accurate for large
sample size such as n=10 up to n=20 per group. However when p0 is increased to 0.95 and
decreased to 0.8 both methods overestimate and underestimate the true FDR respectively,
indicating the effect of p0 in estimation of FDR. The comparison of FDR.p and FDR.avg to
FDR.avg.fdr2d based on a simulation plot of FDR of the first 10 percent top differentially
expressed genes indicates that FDR.avg.fdr2d performs better than the other two methods
when one uses reasonably large sample size and sample size as small as 5 subjects per group.
Analysis of a real data set also confirm that FDR.avg.fdr2d performs better than the other
two methods when sample size as small as 5 subjects per group is used. However, none of
the methods performs well when the sample size is reduced down to 3 subjects per group.
All methods turn out to be very far from the true FDR. This implies that there is a need to
develop a new FDR estimation procedure which is suitable for very small sample sizes.
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4.2 Paper II: Unequal group variances in microarray data analy-
ses: problem and solution

The purpose of this paper is to investigate the effects of unequal variance on the estimation
of false discovery rate using standard methods and to present a new procedure that deals
with this problem. The test being proposed is a moderated Welch statistics and its form is
motivated by the moderated t statistics proposed by Smyth, (2004)

Wm =
ȳ1 − ȳ2

sem
where sem is the moderated standard error

se2m =
d0s

2
0 + dwse

2
w

d0 + dw

and d0 and s2
0 are hyper-parameters to be estimated from the data.

Here, se2w is calculated as a weighted average of pooled and unpooled standard errors as

se2w = wse2p + (1− w)se2u

and its distribution is approximated by a scaled χ2 distribution with degrees of freedom
given by dw = wd+ (1−w)df , where d and df are the degrees of freedom of the pooled and
unpooled standard errors respectively.

The false discovery rate for the k top genes is then estimated by

F̂DR(k) = mπ0p(k)/k

where pk is the kth highest p-value. The proportion π0 of non-DE genes is estimated by
(Storey and Tibishirani, 2003)

π̂0 =
Numberofp− values > λ

m(1− λ)

Properties of the estimator along with other standard methods are studied using simu-
lation and exemplified with real data.

Simulation results show that when there is unequal group variance, standard procedures
like ordinary t and moderated (tm) give biased FDR estimates. The standard statistical test
that deals with unequal-variance-the Welch test-lacks power in small samples. Whereas, the
moderated form of the Welch test (MWT) performs well for unequal-group variance problem
in small samples. When group variances are the same tm performs similar to MWT. In
conclusion, results indicate the reliability of MWT over a wider set of conditions.

5 Future Research

One area for future research is to complement the findings in this thesis with studies of the
properties of the estimators under other proportions of non-DE genes. Also, the results show
the need for future developments of alternative procedures when the sample size is small.

8



The multiple testing problem of microarray data is challenging both in its magnitude
and in the typical nature of the data; genes being highly correlated. Some of the reasons of
dependency are (Pawitan et al 2006; Ploner et al 2005; Reiner et al)

• co-regulation based on genomic locations and gene expression biases based on effects
of aneuploidy in studies of cancer

• factors related to the normalization process

• pooled variability estimation and

• RNA resource

While the method (moderated Welch) described in paper II offers an attractive solution to
one of the most challenging recent problems in microarray data analysis, it is designed to
work under the assumption of independence of genes. That is to say the hierarchical model
described in paper II did not assume that the estimators ȳd and se2w from different genes are
dependent and so further research could be conducted under the general assumption of gene
dependence.
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