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Abstract 
 
Subjective assessments of pain, quality of life, ability etc. measured by rating scales and 
questionnaires are common in clinical research. The resulting responses are categorical with 
an ordered structure and the statistical methods must take account of this type of data 
structure. In this paper we give an overview of methods for analysis of dependent ordered 
categorical data and a comparison of standard models and measures with nonparametric 
augmented rank measures proposed by Svensson. We focus on assumptions and issues behind 
model specifications and data as well as implications of the methods. First we summarise 
some fundamental models for categorical data and two main approaches for repeated ordinal 
data; marginal and cluster-specific models. We then describe models and measures for 
application in agreement studies and finally give a summary of the approach of Svensson. The 
paper concludes with a summary of important aspects.  
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Introduction 
 

More and more frequently assessments of subjective phenomena such as pain, mood, 

functioning, quality of life, quality of care, ability etc. occur in clinical research. Stevens [1] 

characterised the properties of data in terms of nominal, ordinal, interval and ratio scales. This 

characterisation is widely adopted although it is by no means complete. Measurements in 

physical, biological and medical sciences obtained from laboratory instruments are 

standardised and often on the ratio scale. Contrary, subjective assessments and judgements are 

qualitative, and the data are not standardised. The data are merely a categorization of 

individuals in different classes. The categorisation indicates either just a classification into a 

category different from another (nominal), or a classification into a category indicating a 

relative order (ordinal). The subjective assessments are often measured by some rating scale 

or questionnaire. The rating scales often results in responses that are ordinal with a discrete or 

a continuous range of possible values. 

 

The aim of clinical research is often to evaluate changes in responses to treatment or medical 

care. Then the study design is longitudinal and the same individuals are evaluated at two or 

more occasions. Observations are taken independently but data are related within individual 

repetitions. Other research questions in clinical research may concern the quality of rating 

scales. Validity and reliability may be evaluated by intra or inter rater designs to assess 

agreement. Raters judge independently the same individuals repeatedly and the response is 

dependent within repetitions. Thus, in many studies researchers are faced with dependent 

ordered categorical data and the statistical methods must take account of this type of data 

structure.    

 

Overviews and survey articles of statistical analysis of dependent ordered categorical data 

appear occasionally in the scientific literature. Often there is either a very broad scope or a 

more specific focus in the articles, e.g. overviews of ordinal categorical data or surveys of 

modelling pattern of agreement [2-8]. This paper aims at an overview of methods for analysis 

of dependent ordered categorical data and to compare standard methods and measures with 

the measures of Svensson´s approach [9-13]. The focus will be at the assumptions behind 

model specifications and data, the usefulness for descriptions and inferences, and 

implications. First we will briefly describe some of the fundamental models for categorical 
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data and then describe two approaches for clustered, e.g. repeated, ordinal data. We then turn 

to log linear models. Descriptions of models and summary measures for application to order 

consistency and agreement precede an introduction to Svensson’s methods, and the paper 

concludes with a summary of important aspects and conclusions.    

 

Methods and estimation 
 

Basic asymmetric models for categorical data 

 

The basic model for nominal data is the baseline category model, which in its logit form looks 

like 
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One category is defined as a baseline category and the other categories are paired off with this 

category. The model simultaneously estimates the effects. The effects may vary with the 

paired comparisons. A severe limitation is that the model formulation not recognizes the 

ordered structure in the response variable. 

 

For ordinal data the most common and useful model is the cumulative logit model which may 

be written as 

 

[ ] xβ '

)(
)(log

)(1
)(log)(logit +=⎥

⎦

⎤
⎢
⎣

⎡
>
≤

=⎥
⎦

⎤
⎢
⎣

⎡
≤−

≤
=≤ iiYP

iYP
iYP

iYPiYP α    , i=1,…, I-1 

 

A consequence of the model formulated as above, is constant effect for each category – the 

log cumulative odds ratio is proportional to the distance of two covariate settings for each 

category and thus the model is called the proportional odds model [7]. It implies stochastic 

ordering and linearity of the response. The model is invariant to reversed order of the 

response scale and allows collapsing the categories. The odds ratios refer to the entire scale in 

terms of cumulative frequencies. Among other advantages no scores on response are required 

for the fit of the model [6], and it requires only one parameter for each predictor which means 
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fewer degrees of freedom and a more parsimonious model. The assumptions of stochastic 

ordering and proportional odds are not valid when there is shift in variability. This is a 

location and scale problem and then one has to use models which incorporate varying 

dispersion, which leads to non-linear models. For cumulative probabilities other links than the 

logit link are available as well, e.g. probit, complementary log-log link [7]. 

 

The adjacent categories logit model, which may be written 
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is related to the baseline category model. The adjacent categories model with a common effect 

can be expressed as baseline category model and as such reducing the number of parameters. 

The effects refer to individual and adjacent response categories and not to the entire scale for 

the response as in the cumulative logit model. Like the cumulative logit model it implies 

stochastic ordering. By simplifying the model letting the parameters  be fixed and assigning 

scores to the response then there is correspondence to the loglinear linear-by-linear 

association model [14, 15]. The results from the model are not invariant to the choice of and 

the number of response categories. Since ordinal data has an inherent ordered structure the 

crucial is to choose the first category, representing the best or the worst status. 

iβ

 

The continuation ratio logit model 
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is a useful model when there is some sequential mechanism that determines the outcome [4, 6, 

16]. If modelling separate effects for each category on the response the multinomial 

likelihood factors into a product of binomial likelihoods for the separate likelihoods and 

separate fitting of models for different continuation-ratio logits is equivalent to simultaneous 

fitting [6]. If reversing the category order it becomes a different model and collapsing 

categories also results in a different model. In a discussion of the paper of Liu and Agresti [6], 
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Tutz put forward advantageous properties of the continuation-ratio model regarding using 

category specific effects compared to cumulative type of models, particularly in connection 

with more complex models such as marginal and conditional models. 

 

 

Modelling clustered ordinal data 

 

In modelling dependent, i.e. clustered, ordered categorical data, two major classes of 

asymmetric models are common. These are marginal models for which effects are averaged 

over all clusters at particular levels of predictors, and cluster-specific models for which effects 

apply at the cluster level. Cluster-specific models are also called conditional models due to 

the method to estimate the fixed effects by conditioning on the cluster-specific effects. For 

example, Agresti and Natarajan [5], surveys various ways of modelling these types of data 

including other methods as well, such as Bayesian methods, semi-parametric and 

nonparametric methods. Generalized estimating equation (GEE) estimation method of 

marginal models is marginal modelling of generalized linear models (GLM), and generalized 

linear mixed models (GLMM) of random effects is an extension of GLM.  

 

 

Marginal modelling 

 

Marginal models focus at the marginal distributions and not explicitly on the individual 

response. There are three different approaches of estimation. 

  

Maximum likelihood 

The maximum likelihood approach for fitting marginal logit models is problematic. The 

model refers to marginal distributions when likelihood refers to joint multinomial 

probabilities. So, if the number of categories i = 1,…,I, the number of responses t = 1,…Tk 

within clusters k = 1,…n, or the number of predictors is large the ML approach is not 

practical. The lack of a simple multivariate distribution for describing marginal moments and 

correlations for categorical responses in contrast to the multivariate normal distribution is also 

a problem.  
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The ML methods used are based on generalized loglinear formulation of marginal logit 

models which incorporates model constraints together with identifiability constraints. The ML 

fit is then the solution to Lagrangian likelihood equations using Newton-Raphson algorithms, 

see [17-20]. There are several alternative fitting approaches [19, 20]. Other ML methods 

define multivariate logistic models with one-to-one correspondence with the joint multinomial 

probabilities and marginal model parameters as well as higher order parameters of joint 

distributions; see [21-23].  With the ML approach one has a likelihood function and hence the 

possibility to use likelihood ratio tests and tests of goodness of fit.    

 

GEE 

One successful alternative to ML estimation in marginal modelling is a multivariate 

generalization of quasi-likelihood which links the mean vector to a linear predictor and 

specifies how the covariance matrix depends on the mean vector [24]. The method requires a 

working guess of the covariance structure but it is not necessary to assume a particular 

multivariate distribution. By further assuming that the multivariate distribution belongs to the 

exponential family with that mean vector and covariance matrix, the parameter estimates then 

are the solution of the likelihood equations. These equations are called the set of generalized 

estimating equations (GEE) [25]. The method applies to the marginal distribution for each Yt.  

The parameter estimates are consistent even if the covariance structure is miss-specified. The 

GEE method is very attractive as it is computational more simple than ML methods are. As 

the generalized quasi-likelihood not requires the multivariate joint distribution, the full 

likelihood function is not specified. Thus, likelihood based methods for tests of fit, comparing 

models, and parameter tests and interval estimation are not available. Inference is based on 

Wald statistics. The most common link functions in applications of marginal models of 

ordinal data with GEE are cumulative logit and cumulative probit. 

 

WLS 

An alternative estimating method to ML is the weighted least squares (WLS) which is an 

extension to the ordinary least squares (OLS) to handle correlated response and non constant 

variances. The advantage in modelling clustered data is that it is a simple estimation process 

but it also has very severe limitations. For example, it is only applicable to categorical 

explanatory variables and the sample sizes must be large, the contingency tables must be 

small and not to sparse. It is not so often used nowadays when computer routines are available 
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for ML solutions. The WLS was made popular for categorical data by Grizzle, Starmer and 

Koch in 1969 [26] and further elaborated in Koch et.al. [27]. 

 

 

Conditional modelling  

 

An alternative way of modelling dependent ordered categorical data is to explicitly model the 

joint distribution, i.e. modelling cluster-level terms in the model. It is not recommended to use 

ordinary ML to estimate the cluster-specific parameters as fixed effects. One can handle the 

large number of cluster-specific parameters by treating them as nuisance parameters and 

either eliminating them by condition on their sufficient statistics or treating them as random 

effects, varying randomly among clusters.  

 

Conditional maximum likelihood 

The conditional ML has several drawbacks compared to random effects but is in some 

instances advantageous to consider. First, in retrospective sampling the clusters are not 

randomly sampled and then one may introduce bias by modelling the cluster-specific effects 

with a random model. Secondly, if a random effect model is appropriate it may be difficult to 

check the assumed parametric distribution. Some drawbacks with conditional ML is 

restriction to inference about within-cluster effects, no information about { , less efficient 

than the random effects approach for estimating the fixed effects, restricted to canonical links 

[28, 29]. The restriction to canonical link functions for ordinal data excludes the possibility to 

use the cumulative logit models [5]. 

}ku

 

Random effect 

Random effects may be modelled by the generalized linear mixed model (GLMM) which is 

an extension of GLM that permit random effects as well as fixed effects in the linear 

predictor. Some specific random effect mixed models has been in use since 1970s, for 

example the negative binomial model for count data and beta binomial model for binary data 

[30, 31]. Since the Rasch models and other item response models were introduced these has 

been further developed in the framework of random effects models [5, 32]. By the GLMMs 

these, and other mixed models (not all), are included in a general framework. 
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GLMM 

Agresti et.al. [32] give an overview of modelling cluster-level random effects by generalized 

linear mixed models (GLMM). In a general form the linear predictor of the model may be 

written as 

kktktktg uzβx '')( +=µ  

for a link function  and where intercepts are treated as random. The vector  is a 

column vector of explanatory variables for the k:th cluster and t:th observation in the cluster, 

and β is a column vector of fixed effect parameters. Often, the observation unit in a cluster is 

a subject, but it could also be a time point in a longitudinal study for subject then constituting 

a cluster. The column vector  denotes the design vector for the random effects . 

Typically, the random effects are assumed to be multivariate normal with mean vector 0 and 

covariance matrix Σ, i.e. N(0, Σ). Characteristic for a GLMM is that the model is built up in 

two stages. Conditionally on the random effects it is a GLM, and the random effects is 

specified by an assumption of their multivariate distribution. The most common link functions 

in applications of random effects models are cumulative logit, cumulative probit, 

continuation-ratio logits, adjacent-categories logits, and other cumulative links such as 

complementary log-log link.  

)(⋅g ktx

ktz ku

 

By introducing cluster specific random effects the variability of  induces a correlation 

between responses within a cluster. This is so because heterogeneity of the observations [28, 

32]. Thus, the model incorporates the dependencies between observations within a cluster. As 

the variances of  increases, the correlation increases. The estimated random effects may be 

of interest to assess the observation unit heterogeneity and also for prediction of probabilities 

and odds ratios. Whether the assumption of multivariate normality of the random effects is 

valid is of no concern regarding the estimates of the fixed effects, but if the aim is to estimate 

and make inference about the random effects the distributional assumption is important. 

ku

ku

 

One of the drawbacks of GLMM is the difficulty by which the parameters are estimated 

within the framework of maximum likelihood. This is due to the complex form of the 

likelihood function, in which one has to integrate out the random effects. Two types of 

methods are distinguished, numerical or Monte Carlo methods to solve the integral in the 

likelihood function, or approximate ML methods. Numerical or Monte Carlo methods are 
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complex and difficult to program and implement in statistical software but they converge to 

the ML estimates. Approximate ML methods, such as penalized quasi-likelihood and 

marginal quasi-likelihood methods are much easier to implement, but can be very biased in 

some cases [29, 32, 33]. An approach that uses a combination of a fully multivariate Taylor 

expansion and a Laplace approximation has been proposed by Raudenbush et al. [34]. 

Bayesian approaches also exits.  

    

Inference about  is based on the asymptotic normality of the ML estimate of β . Hypothesis 

involving βmay be tested using asymptotic likelihood ratio tests. Testing the variance 

components is more troublesome. The likelihood ratio statistic does not necessarily have an 

asymptotic chi-square distribution under the null hypothesis when it involves parameter on 

the boundary of the parameter space (σ

β

2=0) [32]. Sometimes, interest may be on estimates of 

the random effects. These estimates may be obtained by empirical Bayes methods [35].  

 

 

Log linear models 

 

To describe association between categorical variables we also have the association models 

within the class of loglinear models [36, 37]. Special cases are the models of linear-by-linear 

association, row effects, column effects, and row and column effects [36, 38, 39]. These are 

models which all treat the variables symmetrically, i.e. make no distinction between response 

and explanatory variables, in contrast to logit models in which one response variable depends 

on one or several explanatory variables. Loglinear models focus on associations and 

interaction in their joint distribution but connection exists between them [7]. A general 

structural form for a loglinear model of association between two variables X and Y may look 

like  

 

ji
Y
j

X
iijm νµλλµ +++=log  

 

for categories i and j. The form of the interaction term identifies some common models. When 

µiυj = βuiυj with {ui} and {υj} being fixed monotone constants the model is the linear-by-

linear association model [36, 38]. When using them with equally spaced scores they relate to 

adjacent category models [28]. The linear-by-linear association model is an extension of the 
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saturated log linear model for two variables. One advantage is that the model has one 

parameter instead of (I-1)(J-1).  

 

One may generalize the linear-by-linear model to apply to scores as parameters rather than 

fixed ones.  If, for example, the row scores {µi} are treated as parameters and the column 

scores {υj} are retained as fixed monotone scores we have a row-effect model. In a 

contingency table setting that is to say that X (row variable) is treated as nominal and Y 

(column variable) is treated as ordinal. Instead to having one parameter reflecting the ordered 

structure in the linear-by-linear model we have now (I-1) parameters. Letting the Y variable 

be the nominal and X the ordinal variable and letting the categories for the columns be 

represented by parameters we have the column-effect model. Both models may be formulated 

in adjacent-categories logit form [28]. 

 

Further generalizations of the linear-by-linear models are to replace both the row scores and 

the column scores by parameters. For identification purpose location and scale constraints are 

required. The model is no longer a log-linear model, but rather a log-multiplicative. The 

model may be used to estimate scores and these may in turn be used to describe 

distinguishability of categories [40]. 

 

Log linear models has been modified to reflect situations in which there are square tables and 

when the categories in the rows exactly corresponds to the categories in the columns and 

within this framework we may also model dependent data. The models are further extended to 

model categorical variables with ordered structure. 

 

Measures of order consistency  
 

When evaluating and comparing rating scales it may concern assessment of construct validity. 

Construct validity refers to how closely two measurement instruments with different 

operational definitions for the same theoretical concept to be measured are related, that is, the 

extent of interchangeability of the scales [12]. If the scales are interchangeable the different 

scaling methods should produce the same ordering of individuals, i.e. there should be a high 

level of order consistency between the scales [12]. Assessment of order consistency may be 

achieved by measures of concordance. 

  10



   

 

As Kruskal in [41], page 818, says: “Some measures of association reflect aspects of 

concordance (greater values of X go with greater values of Y), while other measures reflect 

aspects of connection that do not take the sense or direction into account” . Measures of 

association based on concordance or correlation expresses both direction and strength. It is a 

matter of sign and distances which is illustrated by Daniels [42] in his unification of measures 

in the correlation family. The correlation ρ is also a measure of concordance, in which the 

distances between pairs of observations are weights.  

 

The most commonly used measures of association for ordered categorical data are measures 

of differences between probabilities of concordant and discordant pairs. Examples of these are 

Kendall’s tau-a, Kendall’s tau-b, Stuart’s tau-c, Goodman-Kruskal’s gamma, Somers’ delta 

[12]. The difference in these measures lies in the handling of ties. A standard non-parametric 

measure of association is also the Spearman rank-correlation ρs. In the definition of measures 

using concordance and discordance no scores, rank or other, need to be used. But Kendall’s 

tau may be formulated as a Pearson product-moment correlation between signed indicators of 

X’s and Y’s, and Spearman’s rank-correlation is the Pearson product-moment correlation with 

the ranks instead of the actual variates [41-43]. The different ways of adjusting for tied 

observations affect the possibility of attaining the limiting values of the measures, viz. -1 and 

+1. They are also affected by the frequency distributions [12]. In order to attain the limiting 

values Kendall’s tau-b require all observations on the main diagonal in a square (m x m) table 

or untied observations while Stuart’s tau-c requires that the number of observations n is a 

multiple of the number of cells in the longest diagonal and all observations uniformly 

distributed on the m cells. Somers’ delta attain the limiting values provided a strict 

monotonicity in the dependent variable and Goodman-Kruskal’s gamma requires 

monotonicity but not necessarily strict monotonicity, i.e. gamma equals one when there is 

total order consistency. If we have total order consistency only gamma attain one while the 

other measures requires further conditions. Both tau-b and delta are less in absolute value than 

gamma, but gamma seems more dependent than tau-b on the number of categories and the 

way that they are defined [12, 14]. 
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Measures of agreement 
 

As Agresti [28], pages 431-432, points out, “With subjective scales, agreement is less than 

perfect. Analyses focus on describing strength of agreement and detecting patterns of 

disagreement. Agreement and association are distinct facets of the joint distribution. Strong 

agreement requires strong association, but strong association can exist without strong 

agreement.” A further requirement for strong agreement is similar marginal distributions. 

Landis and Koch [44], page 113, summarized the distinction between association and 

agreement: “Whereas measures of association reflect the strength of the predictable 

relationship between ratings of the two observers, measures of agreement pertain to the 

extent to which they classify a given subject identically into the same category. As such, 

agreement is a special case of association”. So in general, a measure of association is not 

adequate as a measure of agreement if not there is similar marginal distributions. But if a 

measure of association is formulated as the extent to which the data cluster on the main 

diagonal it may serve as a measure of agreement. Later, we will see that a novel ranking 

system and a way to construct the best common ordering of paired classification make it 

possible to construct measures of association that reflect agreement and order consistency.  

 

An intuitive and simple approach to evaluate agreement is to compare the number of exact 

agreement to the total number of observations in a ratio, i.e. the sum of the observations on 

the main diagonal to the total number of observations. One disadvantage of this measure is 

that some of the agreement may have arisen due to chance only [45]. The development of 

other agreement measure, such as Cohen’s kappa has this as its starting point. Perfect 

agreement can only occur when the marginals are homogeneous, so bias corrected measures 

has been devised [10, 12]. 

 

Cohen’s kappa   

Kappa is a measure of agreement adjusted for chance expected agreement. Kappa has the 

form  

e

eo

π
ππ

κ
−
−

=
1

  

where πo is the observed probability of agreement and πe is the expected probability of 

agreement under some hypothesis, such as independence. By this, the kappa measure 
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quantifies agreement beyond what is expected by chance under the hypothesis of 

independence.  

 

Originally, kappa was applied for a 2 x 2 table in which results for two equally skilled raters 

judging outcome of a variable for a group of individuals were recorded [46]. Equally skilled 

raters imply no bias in classification of the individuals (marginal homogeneity). The kappa 

statistic does not get hold of any bias, which occurs when two raters uses the scale differently. 

Even in situations when marginal homogeneity occurs, the kappa measure is dependent on the 

prevalence of the attribute being measured. Different tables may give rise to the same value 

[47]. The maximum value of kappa is + 1, which is attainable when perfect agreement occurs 

and the off diagonal cells are zero. That implies equal marginal frequencies. It may be of 

interest to determine the maximum value of kappa given the marginal frequencies, so kappa 

max was defined in [46] but is not commonly used. 

 

In assessing inter rater agreement it is equally important to measure the level of agreement 

and bias. In a 2 x 2 table marginal homogeneity can be tested by the McNemar’s test.  

Kappa is extended to treat nominal variables with more than two categories and to treat 

ordinal variables.  

 

Weighted kappa 

If observations are classified in more than two categories, the possibility for disagreement 

increases. Then a weighted kappa measure with different types of weights has been proposed 

[48]. The different weighting systems have the purpose of adjusting for the seriousness of 

different levels of disagreement. It amounts to assigning numerical values to the categories 

[49]. A linear weighting system may assign maximum weights (=1) to perfect agreement and 

minimum weights (=0) to the most extreme disagreement observations and equidistant 

weights in-between. The weighted kappa with quadratic weights has been shown to equal the 

intra class correlation coefficient, irrespective of the marginal distributions [50]. Marginal 

heterogeneity is not as easily tested as in the case of a 2 x 2 table. Models of symmetry may 

be used. 
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Models of symmetry, quasi-symmetry and quasi-independence for agreement 

Based on log-linear association models agreement was assessed by symmetry, quasi-

symmetry and marginal homogeneity parameterizations beginning in the mid 1960s and 

continuing into the early 1990s. Extension to exploit ordinality in the classifications was 

carried out in the 1980s, starting with  McCullagh in 1978, and Goodman 1979 and 1985 [36, 

37, 51, 52]. Darroch and McCloud [53] defined the degree of distinguishability as a measure 

of category distinguishability and argued that the kappa measure was unsatisfactory in the 

framework of a quasi-symmetry model. Becker [54], Agresti [3], and Schuster and von Eye 

[55] gave compact and concise overviews of different log-linear models to analyse agreement. 

Some fundamental log-linear and association models are extended via arguments from 

Darroch and McCloud about the property of quasi-symmetry. Adding parameters to account 

for association and agreement, either constant or uniform association and agreement, or 

different parameters for the categories make modelling flexible. Although research and 

development of log-linear models for agreement is ongoing, much more efforts seem to be on 

logit and related asymmetric models. 

 

Svensson´s methods 
 

Svensson has devised and developed methods for comprehensive evaluation of paired 

dependent ordered categorical data [9-11, 13]. The methods exploit the rank invariant 

properties of the data and assume nothing further. Thus, the methods are non-parametric. The 

systematic part (bias) of the difference between the paired observations is clear from the 

marginal distributions in a contingency table. The type of systematic difference may be 

visualized by a type of curve, called ROC (Relative Operating Characteristic) or Q-Q plot, see 

figure 1. This way of illustrate two responses has been used in psychology [56], and this 

application differs from applications in diagnostic test procedures where Receiver Operating 

Characteristic curves is used. If there is a constant shift to higher frequencies on the second 

variable (occasion) compared to the first variable or the reverse, we have a case of stochastic 

ordering, and Svensson [9, 13] define the parameter of the systematic disagreement in 

position empirically measured by the measure of relative position (RP). In this case the ROC 

curve is concave or convex and we have a case when links for cumulative odds may also be 

used for estimation and test, see figure 1a. If there is a systematic shift in concentration of the 

classification to central categories on one variable compared to the other, Svensson [9, 13] 
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defined the parameter of systematic disagreement in concentration to represent it. The 

parameter is measured by the empirical measure of relative concentration (RC). Then the 

ROC curve is S-shaped along the diagonal line, see figure 1b.  
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Figure 1.  Relative Operating Characteristic curves illustrating, a) systematic disagreement in 
position measured by the measure of relative position (RP), and, b) systematic disagreement 
in concentration measured by the measure of relative concentration (RC). 
 

More specifically, for the pairs of ordered classifications (Xk, Yk) and (Xl, Yl) the parameter 

of systematic disagreement in position is defined [9, 13] 
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where  and  are the νth category probabilities for classification X and Y, 

respectively, and  and  are the cumulative νth category probabilities for the ν=1,…, 

m categories. The parameter satisfies

)( Xpν
)(Ypν

)( XPν
)(YPν

11 ≤≤− γ . The empirical measure of relative position 

(RP) replaces the probabilities by the corresponding relative frequencies. 

 

The parameter of systematic difference in concentration has its departure from the expression  

 

)()( mklmkl YXYPXYXP <<−<< ,  

 

for any independent random variables Xl, Yl , Xk, Yk , Xm, and Ym with distributions 

 and [9, 13]. This expression is normalized by its bounds 

and the parameter is 
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It is shown in [9] that  11 ≤≤− δ . Substituting the probabilities by their corresponding 

relative frequencies yields the empirical measure of relative concentration (RC). Situations 

when there is a systematic shift in concentration occur now and then. Models that imply 

stochastic ordering is then not applicable.  

 

If the difference (disagreement or change) is purely systematic the marginal frequencies 

completely determines the pattern of systematic change in pairs of observations. Thus, given a 

contingency table with observed data, it is possible to construct a table with purely systematic 

difference by pairing off the two set of marginal frequencies. Such a construction Svensson 

[9, 13] called the rank transformable pattern of agreement (or change), RTPA (or RTPC). We 

then have a table with cell frequencies that are consistent with pure systematic difference. The 

pairing off procedure may change an individual position in the table, i.e. an individual may 

have been placed in other categories, but none of the individual observation has changed its 

ordering relative to the other observations. By comparing the actual cell frequencies with the 

cell frequencies in the RTPA (RTPC) we get an idea of the extra individual difference in 

addition to the systematic difference. A rank transformable pattern of agreement exists for any 

pair of two marginal distributions, including homogeneous distributions, so there are 

examples of tables with no systematic part of difference and a significant individual part. 

Complete agreement, or no change, is a table with all observations on the main diagonal in a 

square table. If observations in a table differ from the RTPA, then it is a sign of individual 

difference.  

 

An extension of the common way to rank observations is to rank them tied to the paired 

observation [9, 13]. Each observation is ranked on one of the observation in the pair while 

considering the position of the other observation in the pair. The result is two rank values for 

each of the observation, and in the contingency table we construct two rank values in each 

cell, one rank value for the row variable conditional on the position of the column variable 

and the other rank value for the column variable conditional on the position of the row 
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variable. This ranking is called the augmented ranking approach. When the two rank values 

differ there is a sign of individual dispersion of pattern of change from the systematic 

difference. The table with RTPA has equal augmented rank values in each cell. A measure of 

individual dispersion from RTPA is then the relative rank variance RV. To be specific, the 

parameter of the Variance of the Relative Rank Difference [9] for a probability 

distribution , i=1,…, m and j=1,…,m with , is defined as ijp ∑∑
= =

=
m

i

m
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ijp

1 1
1
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, and where the upper case acronyms ul and lr 

stands for upper left and lower right, respectively. To make the parameter to have the 

attractive interval [0, 1] a normalizing factor of 6 is multiplied 

 
26τψ =  

 

The empirical measure of random differences between two ordered categorical judgments on 

the same individual, called the relative rank variance is obtained by substituting the 

probabilities by their observed relative frequencies [9, 13]. 

 

The rank transformable pattern of agreement is a pattern of total agreement of ordering all 

pairs of observations. It is an expected pattern of paired classifications when there is a total 

agreement in the ordering of all pairs [12, 57]. RV is a measure of dispersion of observations 

from the best possible agreement in ordering (RTPA), given the marginal distribution. In the 

repeated measures situation it is a measure of dispersion of observations from the ordered-

preserved group change in categories between occasions [58]. A measure of the closeness of 

observations to the best possible agreement in ordering when the marginal heterogeneity is 

taken into account is the augmented rank-order agreement coefficient ra  [10]. It is a measure 

of the consistency of the observations to the rank transformable pattern of agreement. The 

augmented rank-order agreement coefficient (ra) is also the Pearson product-moment 

correlation coefficient based on pairs of augmented mean ranks. 
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In the presentation of the concepts of concordance and association we saw that the classical 

measures differ in how they corrected for ties. If we take into account the information on the 

mutual relationship between the paired judgements on the same variable for the same 

individual we have in the augmented ranking approach some new measures of concordance 

for agreement evaluation may be defined. The parameter of the measure of disorder (ΘD) and 

a coefficient of monotonic agreement (Θ) are defined as [12, 57]: 

 

∑ ∑
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where the scales has I categories for the row variables Xk and J categories for the Yk variables, 

k=1,…,n and I and J not necessary the same. Due to the fact that ties only occurs in identical 

pairs, the other observations are either disordered or ordered, so a measure of excess ordered 

pairs over disordered is:  

 

DΘ−=Θ 21  

 

The range of possible values of the coefficient of monotonic agreement is  . The 

pattern of total order consistency, as defined by RTPA, implies no disordered observations, 

and thus . The pattern of total inconsistency in order (

11 ≤Θ≤−

1=Θ 1=ΘD ) result in . 1−=Θ

 

Summary of important aspects and conclusions 
 

Models for dependent ordered categorical data are often considered as superior to tests and 

summary measures. Agresti [3] pointed out regarding modelling agreement that model-based 

approaches yield additional and more precise information than provided by summary 

measures. However, in reducing the degrees of freedom by modelling the risk for 

misspecification increases due to the restrictions put on the data. Models are also used for 

tests, and within the framework of the likelihood principle several different tests are available. 

Models may also be used for estimation of different aspects of the data and to predict, for 

example, probabilities. Residuals may be used for comparing different models. The models 

are most often fitted by the maximum likelihood principle even if it may be computationally 
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difficult in some cases. During the latest decade Bayesian approaches [5, 6, 59] to modelling 

has become popular. The risk of modelling is violations of fundamental assumptions. 

 

Marginal models focus on marginal distributions and not explicitly on the individual 

responses. Conditional models explicitly model the joint distribution. The choice of approach 

is a question of the application at hand. Conditional models are most useful when the 

objective is to make inference specifically about subjects and when interests are in 

heterogeneity of the subjects. The mixed model approach takes care of within-cluster 

dependencies and between-subject heterogeneity. The models produce consistent parameter 

estimates with improved efficiency compared to fixed effects models and other models not 

taken care of the within-cluster dependencies. Conditional models produce estimates of 

subject-specific effects. When population-averaged effects are of primary interest it is more 

relevant to parameterize in such a way that the regression parameters has a direct marginal 

interpretation. By the GEE methodology estimation is easier, and consistent estimates of 

population-averaged effects are obtained even if the working guess of the correlation matrix is 

misspecified [29, 32]. In the discussion of which approach to use, Lee and Nelder [60] 

concluded that the conditional model approach is the basic model and that a marginal model 

may be deducted from any conditional model. The seemingly notable differences in 

regression parameters are caused by unidentifiable constraints on the random effects. There 

are at least two potential drawbacks with GLMM, the first has to do with the assumption of a 

particular distribution for the random effect. The assumption may be important if the purpose 

is to estimate and make inference about the random effects[32]. The second is the estimation 

of the parameters in the model. In applications where the dimension of the integral in the 

likelihood function is small, numerical integration such as Gauss-Hermite quadrature methods 

works well [29, 32]. But with higher dimension other methods are preferable, some which are 

not available in standard computer software. Both marginal models and conditional models 

uses custom link functions, with specifically defined ways of dichotomization the multinomial 

response.  

 

Models for ordinal categorical data should exploit the rank invariant properties of the data. 

Cumulative models for ordinal data are not permutation invariant, which is as it should be, but 

models with e.g. logit and probit links are palindromic invariant. The models with 

complementary log – log link and log – log link are not palindromic invariant. This can be 

seen from the form of the distribution function (link function). Symmetrical distribution 
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function as links allows palindromic invariance [7]. Instead of using asymmetric GLM 

models for ordered categorical data describing stochastic ordering one may use scores in log 

linear models for that purpose. The result from the log-linear model is then not invariant to 

redefinition of categories or grouping categories together.  

 

When applying maximum likelihood (ML) methods to ordered categorical data it is common 

to use some scoring system for the ordinal variables. Then the ML estimates are dependent of 

the choice of scores. Often more than one scoring system is plausible. Rank scores is always a 

possibility, but for example, when a variable is a classified quantitative variable other 

possibilities such as class midpoints may be used. One characteristic of ordered categorical 

data is its invariance under monotone-ordered transformations. Thus, the statistical methods 

should be unaffected by any kind of ordered re-labelling of scale categories [1, 11]. The 

interpretation of cumulative odds models is not dependent of assigning scores to the response 

categories, but these models may be motivated by the assumption that a continuous variable is 

underlying the response categories [7]. The models imply stochastic ordering and constant 

odds ratios which may be relevant in many applications, but not in cases where, for example, 

there is a difference in concentration in response categories. The cumulative odds models are 

invariant to how to choose response categories, grouping, merging, and splitting categories, 

and the same parameters with reference to the latent continuous response variable apply [7, 

16]. Adjacent-categories models, and related log linear models, are not invariant to the 

number and choice of categories. In general, the continuation-ratio model are not invariant to 

merging categories [16]. Tutz in the discussion of the paper by Liu and Agresti [6] refers to 

relative merits of sequential models (e.g. continuation ratio logit model) over cumulative 

models regarding the possibility of allowing for category-specific effects . The cumulative 

model has restrictions that imply severe restriction on the parameters and for which values of 

x the model can hold. There are also numerical problems in fitting cumulative type models 

with category-specific effects. The drawbacks of the cumulative models in marginal or mixed 

models become more severe. But as Liu and Agresti [6] says in the reply, a reason that the 

sequential  type of models are not so common in use is that results are not invariant to the 

choice of ascending or descending ordering of the response.   

jβ

 

Log linear models sometimes have connections to some asymmetric GLMs and share the 

drawbacks of those.  Some log linear models may be formulated as logit models, for example, 
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association plus linear-by-linear model and other models with quasi-symmetric structure 

useful for agreement studies. When log linear models are formulated as logit models the 

design matrix is specified by scores or the rows or columns are parameterized by restrictions 

for the ordering of the categories (row effect model or column effect model). In logit models 

it is not crucial to score the categories of the response, but by the log linear formulation we 

have the drawback to find and determine scores for the categories. It is often difficult to 

justify a particular choice of scores if the response is an ordinal categorical variable [55]. 

Whether the parameterization is to be regarded as a possibility or a drawback may vary from 

one situation to another.  

 

Models that originate from a fully parameterized quasi-symmetry model [54] are good 

starting points for analyzing square contingency tables with categories in the rows exactly 

corresponding to the categories in the columns. Models for agreement are often based on log 

linear models having a quasi-symmetric structure [55]. It is difficult to find one single model 

which gets hold of both systematic and individual patterns as well as association. But by 

quasi-symmetric models it is possible to test for marginal homogeneity [3, 54], and by 

comparison of models which are hierarchical ordered it is also possible to test for marginal 

homogeneity. Parameter estimates of differences of marginal frequencies are not obtained by 

log linear models, but by using conditional modelling (not CML) estimates are obtainable. If 

the sole purpose is to estimate parameters for marginal frequencies marginal models may be 

used. It is easily seen that it is problematic to specify and find the best model as well as to 

estimate and interpret all possible models. This is most often avoided by using Svensson’s 

approach.  

 

In the application of log linear models for agreement in reliability studies it is of great 

relevance to estimate the degree of distinguishability of categories. Recently, an extension to 

the log linear models for agreement, i.e. association plus agreement models which satisfy the 

quasi-symmetry property has been proposed [61]. These parameterize different variations of 

distinguishabilities between adjacent categories. The models become more and more 

complicated to parameterize and interpret, e.g. odds ratios and degree of distinguishability, 

and the models and parameters become numerous which may make the user confused. To 

compare models they have to be hierarchical for the LR-test and one has to be observant of 

the multiple test situations for p-values. To further expand the models it is possible to estimate 

the degree of distinguishability by the log-multiplicative RC models which are not easily 
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estimated. Log-multiplicative models may also be used for the simultaneous modelling of 

pairwise agreement on individuals and the overall agreement in using the scale [62]. 

 

Trying to capture the many aspects of change, association or agreement by one single 

measure is problematic. Measures which are not model-based are attractive as they often are 

easy to understand and applicable irrespective of model. The most used measure of agreement 

- the kappa measure - has many limitations, such as its dependency of the marginal 

frequencies, it does not exploit the order structure, its sensitivity of the prevalence of the 

phenomenon under study, it elucidate only perfect agreement and it indicates nothing about 

bias. The extension of the ordinary kappa measure to be applicable to ordered category by 

weights induces the problem of choosing the weights. The many different weighting 

possibilities may be looked upon as a drawback. Different weights result in different values of 

the kappa measure. Many articles have pointed on the shortcomings of the kappa measures [3, 

13, 47, 49, 53, 62-64].  

 

Measures of concordance and association have limitation as measures of agreement. 

Association is not always the same as agreement and the different ways of adjusting for tied 

observations affect the possibility of attaining the limiting values of the measures.  The 

measures are also affected of the frequency distributions [12]. 

 

The measures from Svensson´s approach are not based on specific assumptions. They are 

specifically designed for paired data and exploit the ordered structure in ordinal categorical 

data and thus rank-invariant. The measures may be used in different designs. Due to the 

augmented bivariate ranking approach it is possible to evaluate both systematic and individual 

change or disagreement. The measures are easy to use and interpret. In contrast to the 

traditional measures of concordance, in the novel measure based on Svensson´s approach the 

limits are attainable irrespective of the number of possible response categories and of the type 

of scaling and the category distributions [12, 57].   

 

There are however some limitations. The Svensson´s approach applies so far only to paired 

designs, or in multiple designs, to pairwise comparisons. Methods for simultaneous 

comparisons of more than two repeated observations are to be developed. All the necessary 

statistical properties for inference are not yet completely known. Using Jackknife estimates of 
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standard errors and rely on asymptotic normality makes Wald type of inference as a pragmatic 

option as well as bootstrap techniques for confidence interval estimation. 
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Table 1. Summary of fundamental assumptions and implications of methods reviewed in this paper. 
METHOD 
APPROACH 

ASSUMPTIONS AND ISSUES IMPLICATIONS ESTIMATION 

Baseline category 
model 

Nominal. 
Canonical link. 
Stochastic ordering[5]. 
Individual response categories[5].  
 

Location and scale parameters[5]. 
Permutaion invariant. 
 

ML. 
Available software. 

Cumulative model No scores necessary [6, 7]. 
Not canonical link. 
Stochastic ordering, proportional odds 
[5, 7]. 
Underlying continuous response 
categories [5]. 
Monotone cut-points for positive 
probabilities [7]. 

Location and scale parameters by reformulation, shift in varaiability not taken care 
of as is[5, 7]. 
Palindromic invariant for common link functions [7]. 
Dependent OR [9].  
Possible to redefine response categories, merging or splitting[6, 7]. 
 
 

ML. 
No computational difficulties[7]. 
Patterns of zeros in sparse tables causes problems 
[7]. 
LR, Score and Wald tests. 
Good knowledge and available software. 

Adjacent categories 
model 

No scores necessary. 
Canonical link. 
Stochastic ordering[5]. 
Individual response categories[5]. 
 

Location and scale parameters[5]. 
Connections to certain ordinal log linear models via scores [6]. 
Not invariant to choice of and number of response categories [7]. 
Not possible to merging or splitting of response categories. 
 

ML. 
Available software. 

Continuation ratio 
model 

No scores necessary. 
Canonical link. 
Stochastic ordering in many cases[7]. 
Sequential mechanism [16]. 
Proportional odds. 
Extend possibilities of modelling vs 
cumulative models[6]. 
 

Location and scale parameters[5]. 
Groupings of categories [5]. 
Not palindromic invariant [9, 65]. 
Independent OR [9]. 
Not possible to merging or splitting of response categories. 
Useful for data which cannot sensible be grouped[7]. 
 

ML. 
Available software. 

Marginal models, GEE  See different GLM models [66]. 
Exponential family. 
Working guess of covariance 
structure[25]. 
Missing observations are missing 
completely at random [25]. 
 

Consistent estimators of β and Var(β)[25]. 
Population specific. 
 

ML, conditional, WLS and quasi likelihood. 
Computational difficulties with marginal models 
but not with GEE. 
Model and identifiability constraints for marginal 
models with ML. 
Full likelihood function not specified. 
LR and goodness of fit tests for marginal models 
with ML, but Wald tests only for GEE. 
Available software. 
 

Conditional cluster 
specific models 

See different GLM models[66]. 
Linear logit[66]. 
No distributional assumptions about 
the random subject effects[5, 66]. 
 

Consistent estimates [66]. 
Limited to models with canonical links and to within cluster effects [5]. 
Subject specific. 
 
 

Conditional ML. 
Available software. 
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METHOD 
APPROACH 

ASSUMPTIONS AND ISSUES IMPLICATIONS ESTIMATION 

(Random effect 
models) GLMM 

See different GLM models [66]. 
Given the random effects, GLMM is a 
GLM. 
Some distribution, often normal, for 
the random effect[5]. 
 

Subject specific. 
Relatively flexible description of the nature of association[32]. 
 
 

Numerical integration and ML or approximate 
ML. 
Computational difficulties. 
Estimation complexities. 
LR. 
Problems with tests of σ2 = 0. 
Available software. 
 

Log linear association 
models 
 

Choice of scores[40]. 
Poisson, multinomial. 
Scores, but not for RC models. 
Quasi-symmetry for agreement [53]. 

Focus on associations and interactions in joint distribution. Exact fit on the main 
diagonal undesirable [54]. 
Simple interpretations through OR. 
Not invariant to choice and number of categories [67]. 
Both permutation invariant (nominal) and palindromic invariant (ordinal)[7, 52]. 
Not permutation invariant in some applications[7]. 
Not possible to merging or splitting response categories [7]. 
Flexible description of the nature of association[3, 40]. 
Parameter interpretation plus residual description [40]. 
Investigate the structure of agreement in the data[68]. 
Different models for agreement and change[54]. 
 

Iterative ML. 
Goodness of fit tests of nested sequence of 
models [49]. 
LR, score tests [40]. 
In sparse tables, LR not χ2 [40, 54]. 
Good knowledge and available software. 
 

Kappa  Unbiased raters, dependences on 
frequencies, number of categories, 
marginal distributions. 
Nominal. 
No scores. 
For perfect agreement: marginal 
homogeneity[46]. 
 
 

Not detecting bias. 
Ignores the degree of disagreement[49]. 
Not possible to merging or splitting response categories. 
OR parameters not easy to get [3]. 
If strong assumptions it describes both the pattern and strength of agreement[3]. 
Mixes together bias and rank-order differences [49]. 
Not flexible; single number [49]. 
 

Good knowledge and available software. 
 

Weighted kappa 
 

Ordinal. 
Scores [49]. 
Setting of the weights[48]. 
Assign numerical values[49]. 
 

Different weighting system for flexible description of the nature of association 
[48]. 
 

 
 

Measures of 
concordance 
association: Kendall’s 
Tau-b, Tau-c, Gamma, 
Delta 
 

Ordinal. 
No scores. 
No specific assumption [41]. 

Tau-b ordinal invariant[41]. 
Ways of adjusting for ties affects attaining limits [12]. 
Affected by merging or splitting response categories. 
In special cases OR parameters[14]. 

Good knowledge and available software. 
 

Spearmans roh 
 

Ordinal. 
No scores. 
No specific assumptions [41]. 

Ordinal invariant[41]. 
Limitation in agreement studies; rs < 1 if heterogeneity [10]. 
 
 

Good knowledge and available software. 
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METHOD 
APPROACH 

ASSUMPTIONS AND ISSUES IMPLICATIONS ESTIMATION 

Svensson´s approach: 
RP, RC, RV, ra, MA 
 

Ordinal. 
No scores. 
No specific assumptions [9]. 

Rank invariant [9]. 
Affected by merging or splitting response categories. 
If ra = 0 one classification is reversed relative the other [10]. 
RV is a measure of disagreement when marginal heterogeneity is taken into 
account. ra  is an agreement measure and also a correlation [10]. 
MA agreement measure and also a correlation and concordance[10].  
Flexible description of the nature of association[10]. 
Easy to interpret. 
 

No computational difficulties. 
Allows for small data sets and zero cells[6]. 
Not so well known. 
Limited software. 
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