
WORKING PAPER SERIES 
 

WORKING PAPER NO 4, 2009 

 

 

 

 

Swedish Business School at Örebro University 

 
 

 

An efficient algorithm for the pseudo likelihood estimation of the generalized 
linear mixed models (GLMM) with correlated random effects 

 

Md Moudud Alam 
Swedish Business School, Örebro University, Sweden 

 
 

 
 
 
 
 
 
 

 
http://www.oru.se/esi/wps 

 
SE-701 82 Örebro 

SWEDEN 
 
 
 
 

ISSN 1403-0586 



An e¢ cient algorithm for the pseudo likelihood estimation of
the generalized linear mixed models (GLMM) with correlated

random e¤ects

Md Moudud Alam�

December 18, 2008

Abstract

This paper presents a two-step pseudo likelihood estimation technique for generalized
linear mixed models with correlated random e¤ects. The proposed estimation technique
does not require reparametarisation of the model. Multivariate Taylor�s approximation has
been used to approximate the intractable integrals in the likelihood function of the GLMM.
Based on the analytical expression for the estimator of the covariance matrix of the random
e¤ects, a condition has been presented as to when such a covariance matrix can be estimated
through the estimates of the random e¤ects. An application of the model with a binary
response variable has been presented using a real data set on credit defaults from two Swedish
banks. Due to the use of two-step estimation technique, proposed algorithm outperforms the
conventional pseudo likelihood algorithms in terms of computational time.
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1 Introduction

The literature on estimation of the generalized linear mixed models (GLMM) is abundant. The

justi�cation of yet another paper is given from the fact that none of the estimation method

currently available can provide an exact maximum likelihood estimator except for the case of

Gaussian family with identity link. Moreover, most of them are computationally too heavy and

all needs some restrictive assumptions about the random e¤ects, namely they being indepen-

dent. This paper presents a general (in that it works for independent or correlated random

e¤ects) algorithm to estimate the GLMM parameters using a two-step estimation procedure.

The estimation procedure is derived on the second order Taylor�s series approximation of the

likelihood function. From the analytical view point the proposed approach can be regarded as

a generalization of the Pseudo (or Penalized Quasi) Likelihood (PL or PQL) approach (Breslow

& Clayton 1993, Wol�nger & O�Connell 1993) for correlated random e¤ects. A brief discussion

on the PL and other methods and algorithms for GLMM is o¤ered in Section 2.

The PL approach has been chosen to work with because of the speed of the algorithm. It

is worth noting that, anything faster than PQL is to be the fastest algorithm. However, while

the available computer implementation of the PL or PQL requires independence of the random

e¤ects, between subjects, the proposed method does not require any independence assumption

for the random e¤ects terms.

The proposed two-step estimation procedure, in the �rst step, estimates the �xed e¤ect

parameters via a simple generalized linear model (GLM) (McCullagh & Nelder 1989) procedure

while, in the second step, the random e¤ects and the covariance parameters are estimated

via a procedure similar to PQL. This two-step estimation procedure makes the mathematical

derivation simple and computational implementation fast in comparison to the conventional

PQL approaches.

The paper has been organized in the following way. Section two outlines on the GLMM and

available estimation techniques while section three provides the mathematical explanation of the

proposed estimation technique and section four gives an application of the technique to a real

data set. Section �ve ends the paper with a concluding discussion.

2 Estimation of generalized linear mixed models

The extension of the generalized linear models with random e¤ects terms is called the generalized

linear mixed model (McCulloch & Searle 2001). The conditional independence assumption of

the response variable, given the random e¤ects, plays an important role in the formulation of

the GLMM. This paper retains the conditional independence assumption. Subject to the above

assumption, the joint likelihood function of the �xed e¤ects parameters, �; and the covariance
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parameter of the random e¤ects, D; for a GLMM is given as

L(�; DjY) =
Z
L (�; DjY;u) f (u) du (1)

where, Y = fyijg ; (i = 1; 2; ::; nj and j = 1; 2; ::; k) is the vector of response variable, u =

(u1; u2; :::; uk)
T is the vector of random e¤ects and the integration is taken over a k dimensional

space. Under the standard assumption of the GLMM the distribution of the response variable,

yij ; given the random e¤ect, uj ; belongs to a member of the exponential family of distributions.

While, f(u) is a speci�c pdf often it is i.i.d normal which converts the multivariate integral

in equation (1) into a product of k univariate integrals. However, this paper drops the last

assumption and considers u as a multivariate normal variate with mean vector, 0, and an

unstructured covariance matrix, D: Examples of such kind of correlated random e¤ects can

be given from the genetic relation�s view point (see e.g. Searle, Casella & McCulloch (1992)

pp. 383) or from the inter-industry default correlation�s perspective (see e.g. Alam & Carling

(2008)). It is worth noting that the i.i.d uj�s are a special form of multinormal u; with a diagonal

covariance matrix, D; having all the diagonal elements identical. Therefore, a method derived

for the unstructured D contains i.i.d. uj�s as a special case.

2.1 Estimation theory

There are several approaches to approximate integrals in (1). The PQL approach uses the

Laplace approximation which is, in fact, based on the �rst (or sometimes second) order Taylor�s

approximation. The numerical integration method uses Gauss-Hermite quadrature (Broström

2007, Butler & Mo¢ tt 1982) or Adaptive Gaussian method to evaluate the integral numerically

(Littell, Milliken, Stroup & D. 1996). More computationally intensive Markov-chain Monte-

Carlo (MCMC) method uses MCMC integration (McCulloch & Searle 2001) while hierarchical

(h-) likelihood method bypasses the integration via h-likelihood (Lee & Nelder 1996, Lee &

Nelder 2006).

Since the work in this paper is based on the arguments similar to PL or PQL, I skip this

discussion by o¤ering only a detailed theoretical discussion on PQL regarding the parameter

estimates. Under the formal GLMM assumption, the conditional likelihood, L (�; DjY;u) ;
with a canonical link is expressed as

L (�;DjY;u) = exp

24 njX
j=1

nX
i=1

(
yij�ij � b

�
�ij
�

a (�)
+ c (yij;�)

)35
) log (L (�;DjY;u)) = l =

njX
j=1

nX
i=1

(
yij�ij � b

�
�ij
�

a (�)
+ c (yij;�)

)
(2)

where, �ij = Xij� + Ziju is called the linear predictor, b (:) is called the cumulant function,

a (�) is called the dispersion parameter which is 1 for the Binomial and the Poisson distribution,
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and the conditional expectation, E(Yju) =�; satis�es g(�) = � for some function, g(:); which
is called the link function. Using matrix notations, equation (2) can be written as

l =
YT (X� + Zu)� 1T b (X� + Zu)

a (�)
+ 1T c (Y;�) (3)

Then equation (1) can be re-expressed as

L(�; DjY) =
Z
exp [l] f (u) du (4)

where, following the assumption of the multivariate normal distribution of u, f(u) can be given

as

f (u) = (2�)�
k
2 jDj�

1
2 exp

�
�1
2
uTD�1u

�
substituting in equation (4) we have

L(�; DjY) =

Z
exp

�
YT (X� + Zu)� 1T b (X� + Zu)

a (�)
+ 1T c (Y;�)

�
(2�)�

k
2 jDj�

1
2 exp

�
�1
2
uTD�1u

�
du

= (2�)�
k
2 jDj�

1
2 exp

�
1T c (Y;�)

� Z
exp

�
YT (X� + Zu)� 1T b (X� + Zu)

a (�)
� 1
2
uTD�1u

�
du

Now, it is obvious from the above equation that the integral in the right hand side has the form,

I =
R
R exp [�h (u)] du; which leaves a scope for the application of the Laplace approximation

1 to

evaluate the integral. Following, the Laplace approximation based on the second order Taylor�s

series approximation on h(u), the log likelihood can be expressed as

lPQL =
YT (X� + Zeu)� 1T b (X� + Zeu)

a (�)
+ 1T c (Y;�)� 1

2
euTD�1eu (5)

where, lPQL is the log-likelihood function of the GLMM under PQL approach and eu is the value
of u evaluated at the minimum of h(u) (see also Breslow & Clayton (1993) and Wand (2002)):

From equation (5) it is clear that the log-likelihood, after applying Laplace approximation, splits

into two parts. The �rst part contains only the �xed parameters and the second part contains

the covariance of the random e¤ects. This feature of the lPQL leaves a scope for the standard

PQL approaches to use GLM procedure to estimate the model parameters.

2.2 Estimation in practice

Based on the PQL and the quadrature methods to evaluate the integral in (1), several similar

algorithms have been developed for the estimation of the GLMM and di¤erent computer package

uses di¤erent version of them. A comparative review of the di¤erent software packages for the

GLMM is provided in Zhou, Perkins & Hui (1999). The implementations of those methods in

the standard computer packages, e.g. SAS (Littell et al. 1996) or R (Broström 2007, Venables &

1Evans & Swartz (1995) contains a brief discussion on the Laplace approximation.
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Ripley 2002), are not intended to capture a random e¤ect having an unstructured covariance ma-

trix as presented in model (1). A popular alternative solution in those cases is to reparametarise

the unstructured D as D = �2LLT where L is a lower triangular matrix such as the Cholesky

decomposition of D (Lam & Lee 2004, Lindstrom & Bates 1998). With such decomposition of

D; the transformed random e¤ects vector, v; de�ned as u = Lv again become i.i.d. N(0;�2)

thus the formal computational methods derived on diagonal D is applied. The elements in L

are either estimated as the �xed parameters or are assumed to be known and their values are

provided from some external sources. However, this paper presents a way to estimate D where

no such reparametarisation is required (see section 3). The estimation technique proposed in

section 3 is applicable for the GLMMs with the random e¤ects being correlated within or be-

tween subjects while those techniques implemented in the standard computer packages, e.g. R

and SAS, are applicable only when the random e¤ects are independent between subjects.

Several application of PQL revealed that it becomes very slow with large data sets (see e.g.

Carling, Rönnegård & Rosczbach (2004)) though it was still faster than any other alternative.

Therefore, this paper follows the same line of PQL but with some further modi�cation with an

aim to make it more general and faster.

3 Modi�cation to the pseudo likelihood approach

From equation (4), the marginal likelihood of � and D can be interpreted as an expectation,

E (exp [l]) ; with respect to the multivariate normal distribution of u: Using the multivariate

version of Taylor�s expansion (Raudenbush, Yang & Yosef 2000) of the function m(u) = exp [l]

around the marginal mean of u; which is 0, we have

m(u) = m (0) +m(1) (u)u=0 (u� 0) +
1X
k=2

1

k!

"
k�1O

(u� 0)T
#
m(k) (u)u=0 (u� 0)

) L(�; DjY) =E (m(u)) � m (0) + 0+ 1
2
E
n
uTm(2) (u)u=0 u

o
(6)

where, m(k) (u) = @vecm(k�1)(u)
@uT

, 
 represents Kronecker product and the correction terms

being,
1X
k=3

1
k!E

("
k�1O

uT

#
m(k) (u)u=0 u

)
.

Now, regarding the estimation of the �xed e¤ects parameters, �; already the second order

term in equation (6) is relatively �at and commonly ignored in the PQL methods2(Wand 2002).

Therefore, after ignoring the second order term, the likelihood for � becomes a likelihood of

GLM having no random e¤ect left in it. This is not surprising since Maddala (1987) concluded

2Note that PQL uses the Taylor�s expansion of the function exp
�
l � 1

2
uTD�1u

�
evaluated at the maximum

point of it.
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that the �xed e¤ect approach can produce a consistent estimate of the � parameters even if

there is an autocorrelation in the model due to the random e¤ects, while Alam & Carling (2008)

supported Maddala (1987)�s claim by empirical evidence. Therefore, the �rst order Taylor�s

approximation around u = E (u) suggests estimating the � parameters through a simple GLM

ignoring the random e¤ect terms.

The estimation technique suggested here for � might intuitively look confusing since the

estimation ignores the realization of the random e¤ects while other PQLs do consider them.

Analytically, it is valid as long as the �rst order Taylor�s approximation is reasonable. However,

such approximation is not strange since in statistical literature we often see such approximation

which we call the Delta method. In linear mixed model (LMM) case, the proposed estimator for

�xed e¤ects is an OLS estimator. It is well established for the balanced experiments with LMM

that OLS=GLS=ML. For unbalanced experiments such equality holds if and only if there exist

a matrix Q such that V (Y)X = XQ (see Searle et al. (1992), pp. 159-161):

In order to make the scenario more clear we plot the log-likelihood for � of a logistic mixed

model using simulated data with true D = I; xikt s N(0; 1); � = 0:5; k = 3; t = 20 and 40,

nkt = 200 (see section 4 for detailed model speci�cation). Figure 1 and 2 present the plots of the

conditional log-likelihoods for the single �xed e¤ect parameter, �; evaluated, in each cases with

t=20 (see Fig. 1) and 40 (see Fig. 2), at the true value of the random e¤ects, i.e. u = utrue,

(solid line) and at its marginal mean i.e. u = 0 (dotted line): Figures 1 and 2 reveal that the

both conditional log-likelihoods have their maximum at the same value for � hence they should

provide the same estimate for it. The situation might be a little worse for small t (Fig. 1) but

it becomes better as t increases (Fig. 2).
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Figure 1: Conditional log-likelihood
for a logistic GLMM with t=20
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Figure 2: Conditional log-likelihood
for a logistic GLMM with t=40

This paper does not, however, suggest using the same likelihood as presented in equation (6)

for the estimation of the covariance parameters. This is, �rstly, because there is no guarantee
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that higher order terms that we ignored in (6) are also �at in D. Secondly, the simpli�cation of

the Taylor�s expansion of m (u) with higher order terms is not easy. Thus, for the estimation of

D; equation (4) will be treated in the way similar to PQL (see Section 2). From equation (4)

we have

L(�; DjY) =
Z
exp [l]

jD�1j1=2

(2�)k=2
exp

�
�1
2
uTD�1u

�
du

) L(�; DjY) = jD
�1j1=2

(2�)k=2

Z
exp

�
�
�
�l + 1

2
uTD�1u

��
du (7)

Let, h (u) = �l+ 1
2u

TD�1u and assume h (u) has a single minima at u = eu . Then, applying
the multivariate version of the Laplace approximation (Evans & Swartz 1995) in equation (7)

we have

L(�; DjY) �jD
�1j1=2

(2�)k=2
(2�)k=2 fdet [Hh (eu)]g� 1

2 exp [�h (eu)] [where,Hh is the Hessian of h]
) ln (L(�; DjY))= �1

2
ln (jDj)� 1

2
ln fjHh (eu) jg � h (eu) (8)

where, Hh (eu) = ZTfWZ=a (�) + D�1 and fW is the diagonal weight matrix (McCullagh &

Nelder 1989) evaluated at u =eu (see appendix A-2): Since eu is the minima of h(u), it can be
solved from the equation @h(u)

@u ju=eu = 0 for which a Newton-Raphson algorithm leads us to solve
iteratively the following equation (see appendix A.1 for detailed derivation)

eur+1 = �ZTgWrZ+D
�1
��1

ZTfWr (Y
��X�) (9)

where,Y� is the linearized version of the response variable which is given as: Y� = fW�1 (Y�e�)+e� and the "r"�s in the subscript indicate that the matrix/vector is evaluated at the rth iteration
when u =eur; (r = 0; 1; :::). There is nothing new in equation (9) since Raudenbush et al. (2000)
suggested exactly the same equation for estimating u: Using further Laplace approximation it

can be shown that E (ujY) = eu (see Khuri (2003), pp. 548-549 for an outline of the proof). So,
this eu produces the predicted values of the random e¤ect vector, u; given the data: It is worth

noting that for known D matrix, equation (9) provides the predicted random e¤ects however,

for an unknown D we have to estimate it from (8).

The covariance matrix of the random e¤ects, D; can be estimated by maximizing equation

(8) given a particular value of eu and b�: Later, we show that for a given eu and b� the maximum
(pseudo) likelihood estimate of D can be obtained analytically (see equation (12)). Since the

proposed estimation procedure estimates �xed e¤ects parameters independently of u and D; let

us call it a two-step pseudo likelihood (2PL) approach. It reduces the computational e¤ort of
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conventional PQL since in 2PL approach we have to check only the joint convergence of eu and bD;
while in PQL the convergence of b� is also checked at the same time. In practical applications,
researches generally have more simple form of D for instance D = �2G where G is a know

matrix and the research interest is only in estimating �2 (Searle et al. 1992): In those cases, the

procedure becomes more simple. While, in a general case an initial estimate of D through the

�xed e¤ect approach as proposed in Alam & Carling (2008) would reduce the computational

burden to some extent.

Now, in order to estimate D we have to maximize equation (8) with respect to D: The

calculation is shown below

ln (L(�; DjY))= �1
2
ln (jDj)� 1

2
ln
n
jZTfWZ=a (�) +D�1j

o
+ el � 1

2
euTD�1eu (10)

where el stands for l evaluated at u =eu:
After taking matrix di¤erentiation of (10) and simplifying (detailed calculation is presented

in Appendix A.2) it can be shown that

@ ln (L(�; DjY))
@vec (D)

= �1
2
vec

�
D�1�T + 1

2
vec

��
ZTfWZ=a (�) +D�1

��1�T
(11)�

D�1 
D�1�+ 1
2
vec

�
D�1eueuTD�1�T

Now, equation (11) can be used to �nd a direct solution of D using @ ln(L(�; DjY))
@vec(D) = 0 for

given b�; eu and a (�). For binomial and Poisson distributions, we have a (�) = 1 which gives the
following equation to solve for D (see Appendix A.3 for detailed calculation)

D =
�
ZTfWZ+D�1

��1
+ eueuT

) bD = H�1
h(u) + eueuT (12)

Summarizing the derivations presented in this section, the 2PL algorithm can be presented

as

1. Step 1: Estimate � using a GLM procedure with L(�jY;u = 0).

2. Step 2: Estimate u and D using the following iterative algorithm.

(a) Initialize u and D. Replace � with its estimate from step 1.

(b) Update u by iteratively solving eur+1 = �ZTgWrZ+D
�1
��1

ZTfWr (Y
��X�) :

(c) Update D with bD = H�1
h(u) + eueuT :

(d) Stop if D converges otherwise go to (b):
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Equations (9) and (12) lead us to conclude that, the covariance parameters of the random

e¤ects can be estimated consistently along with the random e¤ects through a joint iterative

procedure. All PQL based algorithms somehow relies on numerical procedure (e.g. Newton-

Raphson or something similar) for jointly estimating all the model parameters, including �xed

e¤ects and the variance components, while the proposed 2PL algorithm estimates �xed e¤ects

just once and uses Newton-Raphson method only for u; which makes the algorithm faster. At

the same time, its ability to handle any type of D matrix makes it a generalized version of the

PL/PQL type algorithms. It should be noted here again, that the procedure for the models

with a free dispersion parameter, a (�) is not discussed in this paper. With non-canonical link,

the calculations presented in this section become more complex and are avoided in this paper.

The right hand side of equation (12) can be explained as E (V (ujY)) + V (E (ujY)) sinceeu = E (ujY) and E (eu) = 0: From such a structure the consistency arguments for bD is very

straightforward. Furthermore, a relation of E (V (ujY)) to the Hessian of h (u) reveals that
E (V (ujY)) ! 0 as nij ! 1: This means that given a large data set we can estimate the
covariance matrix, D; by using eu only: This feature justi�es the �xed e¤ect approach suggested
in Alam and Carling (Alam & Carling 2008) for estimating D:

4 Application with credit default data

This section presents an application of the proposed algorithm with a real data set, collected

from two major Swedish banks, on credit default . This data set was �rst analyzed by Carling

et al. (2004). In the data set there are quarterly information, between the 2nd quarter of 1994 and

the 2nd quarter of 2000, on the borrowing companies��nancial status, bank data on loan types,

credit bureau data, two macro economic variables and an indicator variable stating whether a

loan is default by a certain quarter. The research interest involved with the data analysis was

to derive a credit risk model by incorporating industry speci�c default correlation. In Carling

et al. (2004), only the within industry default correlation was considered while this paper aims

at investigating the possibility of both within and between industry correlation.

In Carling et al. (2004) the industries were de�ned from some external justi�cation while in

this paper industries are de�ned by merging the SNI industries3, at the �rst two digits level, in

the way that closely resembles their (Carling et al. 2004) industry de�nition. Since, it was not

possible to construct exactly the same industry de�nition presented in Carling et al. (2004) by

merging SNI industries, the industry de�nition used in this paper di¤ers slightly from that of

Carling et al. (2004). Furthermore, with the 7 industries as presented in Carling et al. (2004),

neither the �xed e¤ects nor the random e¤ects model with logistic link converge. This is because

3A detailed description about the SNI industry classi�cation can be obtailed from Statistics Sweden�s (SCB)

o¢ cial website, www.scb.se.
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in some of the industries the relative frequencies of defaults in some quarters are very close to

zero which makes the GLM estimation impossible. For that reason, the number of industries

has been reduced from 7 to 6.

Following Carling et al. (2004) and considering a between industry correlation I propose the

following GLMM speci�cation for the credit default model.

yiktjuk v iid Bin (1; pikt)

log

�
pikt

1� pikt

�
= xikt� + ziktut

and

utviid MNK (0;D)

where, i = 1; 2; :::; nkt; k = 1; 2; :::;K = 6 (number of industries), t = 1; 2; :::; T = 25 (number

of quarters), xikt is the iktth row of the observed design matrix, � is the vector of �xed e¤ects

parameters, zikt is the iktth row of the design matrix associated with the random e¤ects and

contains a 1 in its kth position and 0 otherwise and ut is an iid realization of the random e¤ect

u at quarter t. The above model is a logistic mixed model with a multinormal u. The model

presented in Carling et al. (2004) was a complementary log-log mixed model with independent

ukt: To insure comparability, Carling et al. (2004)�s model is reanalyzed with logistic link but

with the new 6 industries. Latter we compare the results to see if the data suggests a complex

correlation among the defaults. From here onwards, the logistic model with diagonal D will be

denoted as PQLD wich resembles the model used in Carling et al. (2004) while the same model

with unstructured D will be denoted as PQLU. The same model with cluster e¤ects as �xed

e¤ects is also estimated and that model will be denoted as FE.

The �xed e¤ects parameter estimates from those three models are given in the Table 1.

Regarding the statistical test of signi�cance for the �xed e¤ects parameters, PQLD uses t-test

implemented through %GLIMMIX macro (Littell et al. 1996) in SAS 9.1 while PQLU and FE

use Wald Chi-squared test implemented through SAS GENMOD procedure (Olsson 2002).

Table 1 shows that most of the �xed e¤ects parameter estimates are very close between

the three models. Except for the coe¢ cient associated with "Bank A". The big di¤erences

in estimates are found for the coe¢ cients whose estimates are not signi�cant (see variables

and their respective coe¢ cient estimates in rows 2-6 in Table 1). The above feature indicates

that the �xed e¤ects parameter estimates are not much sensitive to these three types of model

speci�cations.
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Table 1 Fixed effects parameter estimates
Models

PQLD PQLU FE
Effects

Estimate SE Estimate SE Estimate SE
Intercept 4.44 0.214 4.34 0.175 3.90 0.378
Credit Survived 1 Year 0.18 0.137 0.30 0.132 0.18ns 0.136
Credit Survived 2 Year 0.03ns 0.137 0.05ns 0.132 0.02ns 0.137
Credit Survived 3 Year 0.13ns 0.138 0.16ns 0.133 0.17ns 0.138
Credit Survived 4 Year 0.28ns 0.136 0.22ns 0.132 0.28ns 0.135
Credit Survived 5 Year+ 0.30ns 0.148 0.10ns 0.141 0.31ns 0.148
Short term credit 0.53 0.039 0.50 0.039 0.54 0.039
Long term credit 0.32 0.051 0.30 0.050 0.31 0.051
Mixed credit 0.00 NA 0.00 NA 0.00 NA
Account. data complete 2.60 0.090 2.53 0.088 2.61 0.090
,, Reported previously 0.73 0.087 0.74 0.084 0.73 0.087
,, Reported afterwards 3.55 0.242 3.44 0.240 3.56 0.241
,, Missing 0.00 NA 0.00 NA 0.00 NA
Bank A 0.09 0.040 0.18 0.035 0.08ns 0.041
Remarks 8,11,16,25 1.09 0.055 1.08 0.054 1.09 0.055
Remark 25 1.11 0.077 1.11 0.075 1.12 0.076
Sales data missing 0.85 0.120 0.85 0.115 0.86 0.120
Sales (loge) 0.04 0.005 0.04 0.005 0.04 0.005
Earnings/Sales 0.25 0.038 0.24 0.038 0.25 0.038
Inventory/Sales 0.54 0.106 0.53 0.102 0.53 0.106
Loan/Asset 1.02 0.041 1.04 0.040 1.01 0.041
Output gap 0.18 0.024 0.19 0.010 NA NA
Yield curve 0.23 0.060 0.26 0.021 NA NA
Note: SE stands for standard errors of the estimates.
ns stands for not significant at 2.5% level.

The covariance matrix, D; estimated through PQLD is a diagonal matrix with the diag-

onal elements being (0.3577, 0.2592, 0.2514, 0.1097, 0.2312, 0.4203). However, the D matrix

estimated by PQLU is an unstructured matrix. The covariance matrix, D; is also estimated

by using the realization of the random e¤ects obtained in PQLD. The estimates of D through

PQLD and PQLU are given in Table 2.

Table 2 Estimated covariance matrices of the random effects
D matrix estimated through PQLU D matrix estimated through PQLD
0.28 0.16 0.18 0.16 0.16 0.26 0.31 0.16 0.18 0.09 0.15 0.21
0.16 0.25 0.25 0.17 0.23 0.15 0.16 0.24 0.22 0.09 0.18 0.13
0.18 0.25 0.26 0.18 0.22 0.16 0.18 0.22 0.23 0.09 0.17 0.13
0.16 0.17 0.18 0.14 0.15 0.13 0.09 0.09 0.09 0.05 0.06 0.06
0.16 0.23 0.22 0.15 0.22 0.16 0.15 0.18 0.17 0.06 0.19 0.13
0.26 0.15 0.16 0.13 0.16 0.36 0.21 0.13 0.13 0.06 0.13 0.31

11



From Table 2 we see that the covariance parameters estimates are not much di¤erent between the

two models except for those parameters regarding 4th industry. The close similarity in the above

covariance matrix is not surprising in this case since the Hessian matrix for u was pointwise

very closed to zero.

The computational time is often a matter of great concern especially for the large data

cases. The estimation of PQLD implemented in SAS 9.1 using %GLIMMIX macro (Wol�nger

& O�Connell 1993) required 44 minutes (appr.) on a Pentium 4 PC (3.19 GHz processor, 0.99

GB RAM). On the contrary, the estimation of the �xed e¤ects part of PQLU using GENMOD

procedure of SAS 9.1 required only 1.33 minutes. The arrangement of SAS GENMOD outputs

for further analysis took another 3.8 seconds. The random e¤ects part and their covariance

matrix estimation, implemented in R 2.2.0 using the author�s self written R codes for 2PL,

took another 27.8 minutes, including the time for importing the SAS outputs, saved in a text

�le, to R. Though the di¤erence in time requirement for estimating PQLD and PQLU does not

vary a lot, it should be kept in mind, while comparing the time requirements, that the PQLD

estimated only 7 covariance parameters, including an additional over dispersion parameter, when

the PQLU estimated 21 covariance parameters.

5 Concluding discussion

Approximate likelihood methods, e.g. PQL and h-likelihood, are widely criticized especially for

binary response models (Engel 1998). However, we should note that the Laplace approximation

used in PQL approaches is an asymptotic approximation (Evans & Swartz 1995). Therefore,

they may not perform well for small sample cases and they should be judged on the basis of

their large sample performances which the critics of PQL have hardly considered. Moreover, for

large sample cases, simulation based computation, e.g. MCMC methods, for GLMM is awfully

time consuming. High speed computers are becoming available but still there is a need for some

approximate method which can handle large data sets within a reasonable time limit.

In Alam & Carling (2008), it is claimed, on the basis of simulation, that PQL and FE

methods become numerically equal when the cluster size, nikt; is between 50 and 200. Here, an

analytical expression has been presented in terms of Hh(u) for such approximation to hold. Such

condition can always be checked using the expression, Hh (eu)�1 = �ZTfWZ=a (�) + bD�1
��1

:

The estimates of the random e¤ects, eu; are explained as the conditional expectation of the
random e¤ects given the data, y: Therefore, intuitively a confusion arises while estimating the

marginal covariance matrix of u based on eu as to why such estimation procedure should hold.
Here, an analytical reason is presented since bE (V (ujY)) is the inverse of the negative of a
Hessian and hence E (V (ujY))! 0 as nij !1 while V (E (ujY)) is given by V (eu) :
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A Appendix

The calculations presented in this Appendix will ferquently make use of the following properties

of the matrix di¤erentiation.

@jDj = jDjtr
�
D�1@D

�
@AD = A@D

@tr (D) = tr (@D)
@D�1 = �D�1 (@D)D�1

@vec (D) = vec (@D)

tr
�
ATB

�
= vec (A)T vec (B)

9>>>>>=>>>>>;
(A-1)

where, A and B are the matrices of constants, @ denotes di¤erential and the derivatives are

taken w.r. to D.

Chain Rule: Let, h be a composite function such that h (X) = g (F (X)) when F (X) = b

then D (h (X)) = (Dg (b))DF (X) ; where D operator stands for the matrix di¤erentiation i.e.

DF (X) = @
@vec(X)F (X). See Magnus & Neudecker (1999) for proof.
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For further detailed about the matrix di¤erentiation, readers are referred to advanced texts

in matrix algebra e.g. Harville (1997) and Magnus & Neudecker (1999).

A.1 Derivation of equation (9)

We have,

h (u) = �l + 1
2
uTD�1u

) h (u) =
�YT (X� + Zu) + 1T b (X� + Zu)

a (�)
� 1T c (Y;�) + 1

2
uTD�1u

) @h (u) =
�YTZ@u+ 1Tdiag

�
b(1) (X� + Zu)

�
Z@u

a (�)
+ uTD�1@u

) @h (u)
@u

=
�YTZ+ 1Tdiag

�
b(1) (X� + Zu)

�
Z

a (�)
+ uTD�1

Again,

@2h (u) =
1

a (�)
@b(1) (X� + Zu)T Z@u+ @uTD�1@u

) @2h (u) =
1

a (�)
@uTZTdiag

�
b(2) (X� + Zu)

�
Z@u+ @uTD�1@u

) @2h (u)

@u@uT
= ZTWZ+D�1

where,W = 1
a(�)diag

�
b(2) (X� + Zu)

�
is known as diagonal weight matrix (McCullagh & Nelder

1989).

Now, assuming a (�) = 1 a Newton-Raphson algorithm for calculating the maxima w.r.t. u

is given by eur+1 = eur �H�1
h(u)

@h (u)

@uT
ju = eur

) eur+1 = eur � �ZTfWrZ+D
�1
��1 �

�ZTY + ZTdiag
�
b(1) (X� + Zeur)�+D�1eur�

)
�
ZTfWrZ+D

�1
� eur+1 = ZTfWrZeur +D�1eur + ZTY � ZT e�r �D�1eur

) eur+1 = �ZTfWrZ+D
�1
��1

ZTfWr

�
Zeur + fW�1

r (Y�e�r)�
where, e�r is � evaluated at u = eur: Now, denoting fW�1

r (Y�e�r) + e�r = Y� we have

eur+1 = �ZTfWrZ+D
�1
��1

ZTfWr (Y
� �X�)

Note that, to minimize h (u) is equivalent to maximize �h (u) : In other words, eu is obtained
by maximizing the joint likelihood, L (�;D;ujY) ; w.r.t. u:
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A.2 Derivation of equation (11)

From equation (10) we have

ln (L(�; DjY))= �1
2
ln (jDj)� 1

2
ln
�
jZTfWZ=a (�) +D�1j

�
+ el � 1

2
euTD�1eu

) @ ln (L(�; DjY))= � 1

2jDj@jDj �
1

2
@ ln

�
jZTfWZ=a (�) +D�1j

�
� 1
2
euT@ �D�1� eu (A-2)

Using these results in (A-2) and the Chain rule we have

@ ln (L(�; DjY)) = � 1

2jDj jDjtr
�
D�1@D

�
� 1
2

1

jZTfWZ=a (�) +D�1j

�
jZTfWZ=a (�) +D�1j

�
vec

��
ZTfWZ=a (�) +D�1

��1�T �
�D�1 
D�1�T @vec (D) + 1

2
euTD�1 (@D)D�1eu

) @ ln (L(�; DjY))= �1
2
tr
�
D�1@D

�
+
1

2
vec

��
ZTfWZ=a (�) +D�1

��1�T �
D�1 
D�1�T @vec (D)

+
1

2
tr
�
D�1eueuTD�1 (@D)

�

) @ ln (L(�; DjY))= �1
2
vec

�
D�1�T vec (@D) + 1

2
vec

��
ZTfWZ=a (�) +D�1

��1�T
�
D�1 
D�1�T @vec (D) + 1

2
vec

�
D�1eueuTD�1�T vec (@D)

) @ ln (L(�; DjY))
@vec (D)T

= �1
2
vec

�
D�1�+

�
D�1 
D�1� vec��ZTfWZ=a (�) +D�1

��1�
2

+
1

2
vec

�
D�1eueuTD�1�

A.3 Derivation of equation (12)

Assuming a (�) = 1; and equating @ ln(L(�; DjY))
@vec(D)T

= 0 and using the following properties of

kronicker product

vec (ABC) =
�
CT 
A

�
vec (B)

and

(A
B)�1 = A�1 
B�1
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we have from A.1

�1
2
vec

�
D�1�+ 1

2

�
D�1 
D�1� vec��ZTfWZ+D�1

��1�
+
1

2
vec

�
D�1eueuTD�1� = 0

) �1
2
vec

�
D�1�+ 1

2

�
D�1 
D�1� vec��ZTfWZ+D�1

��1�
+
1

2

�
D�1 
D�1� vec �eueuT � = 0

) �1
2

�
D�1 
D�1��1 vec �D�1�+ 1

2
vec

��
ZTfWZ+D�1

��1�
� 1
2
vec

�eueuT � = 0
) �vec (D) + vec

��
ZTfWZ+D�1

��1�
+ vec

�eueuT � = 0
) �D+

�
ZTfWZ+D�1

��1
+ eueuT = 0

Equation (12) can easily be obtined from the last equation given above.
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