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Abstract

The multivariate reduced rank regression model plays an important role in econo-
metrics. Examples include co-integration analysis and models with a factor struc-
ture. Geweke (1996) provided the foundations for a Bayesian analysis of this model.
Unfortunately several of the full conditional posterior distributions, which forms the
basis for constructing a Gibbs sampler for the poster distribution, given by Geweke
contains errors. This paper provides correct full conditional posteriors for the re-
duced rank regression model under the prior distributions considered by Geweke.
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1 Introduction

Geweke (1996) studied the reduced rank regression model

Y = XΘ + ZA + E (1)

where Y is an n×L matrix of dependent variables, X and Z contains p and k explanatory
variables and Θ and A are parameter matrices where Θ is assumed to have reduced rank
q < min (L, p) . The rows of E are assumed to be independent normal with mean zero and
variance matrix Σ, i.e. e = vec (E) ∼ N (0,Σ⊗ I) . Under the reduced rank assumption
Θ can be factored into Θ = ΨΦ with Ψ a p × q matrix and Φ a q × L matrix, both of
rank q. To identify the model Geweke considers two normalizations, Φ = (Iq,Φ

∗) with Ψ
unrestricted (normalization 1) and Ψ′ = (Iq,Ψ

∗′) with Φ unrestricted (normalization 2).
Geweke then proceeds to derive the full conditional posterior distributions for the joint
prior distributions

π (Σ,A,Ψ,Φ∗) ∝ |Ψ|−(L+v+1)/2 exp

[
−1

2
tr SΣ−1

]
exp

[
−τ

2

2
tr (A′A + Ψ′Ψ + Φ∗′Φ∗)

]
and

π (Σ,A,Ψ∗,Φ) ∝ |Ψ|−(L+v+1)/2 exp

[
−1

2
tr SΣ−1

]
exp

[
−τ

2

2
tr (A′A + Ψ∗′Ψ∗+Φ′Φ)

]
under normalizations 1 and 2 respectively. The priors are standard, Σ is distributed as
inverse Wishart with parameter matrix S and v degrees of freedom, iW (S, v) , and the
elements of A, (Ψ,Φ∗) and (Φ∗,Ψ) are independent normal with mean zero and variance
1/τ 2.

The conditional posteriors given in Geweke (1996) are unfortunately incorrect in sev-
eral cases – the conditional posteriors for Φ∗ and Ψ with τ > 0 in normalization 1 and
the conditional posterior for Ψ∗ in normalization 2 with τ > 0. The errors are trivial in
nature but the incorrect expressions for the parameters of the posterior distributions have
been picked up in the literature, e.g. Carriero, Kapetanios and Marcellino (2011), and
used to construct Gibbs samplers with incorrect stationary distributions. Geweke (2004)
developed a method for checking the correctness of posterior simulators and detected
problems with the Gibbs sampler coded up for the 1996 paper but failed to connect this
with the incorrect expressions for the full conditional posteriors. It thus seems to be of
some importance to provide correct posterior distributions.

Section 2 below provides correct expressions for the full conditional posteriors in the
reduced rank regression model. For completeness, the conditional posteriors for Σ, Φ
(in normalization 2) and A (which are correct in Geweke (1996)) are restated. Section
3 provides derivations of the full conditional posteriors for Φ∗ and Ψ in normalization 1
and Ψ∗ in normalization 2.

2 Full conditional posteriors

Following Geweke (1996) we rewrite the model as

Y∗ = Y − ZA = XΘ + E (2)
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when conditioning on A. In addition, conditioning on Θ = ΨΦ, we can write the model
as

W = Y −XΘ = ZA + E (3)

2.1 A and Σ

Given Θ the model reduces to the standard multivariate regression model (3) with the
familiar full conditional posterior distributions given in Geweke (1996)

Σ|Y,Ψ,Φ,A ∼ iW
(
v,S
)

for v = n+ v and S = S + (W − ZA)′ (W − ZA) = S + (Y∗ −XΘ)′ (Y∗ −XΘ) and

vec (A) |Y,Ψ,Φ,Σ ∼ N
(

vec
(
Â
)
,Σ⊗ Z′Z + τ 2IkL

)
for Â = (Z′Z)−1 Z′W = (Z′Z)−1 Z′ (Y −XΘ) .

2.2 Φ∗ and Ψ in normalization 1

Let φ∗ = vec (Φ∗) , the correct full conditional posterior is then

φ∗|Y,A,Ψ,Σ ∼ N
(
φ
∗
,Vφ∗

)
(4)

for

Vφ∗ =
[
τ 2I + Σ22 ⊗Ψ′X′XΨ

]−1
φ
∗

= Vφ∗ vec
[
Ψ′X′Y∗1Σ

12 −Ψ′X′XΨΣ12 + Ψ′X′Y∗2Σ
22
]

where (Y∗1,Y
∗
2) = Y∗ partitions Y∗ into n × q and n × (L− q) matrices and Σ−1 is

partitioned into

Σ−1 =

(
Σ11 Σ12

Σ21 Σ22

)
(5)

with Σ11 and Σ22 q × q and (L− q)× (L− q) matrices.
Similarly for ψ = vec (Ψ) , the correct full conditional posterior is.

ψ|Y,A,Φ,Σ ∼ N
(
ψ,Vψ

)
(6)

for

Vψ =
(
τ 2I + ΦΣ−1Φ′ ⊗X′X

)−1
ψ = Vψ vec

(
X′Y∗Σ−1Φ′

)
.

Geweke (1996) also consider the case with improper uniform priors on Φ∗ and Ψ and
gives correct expressions for the full conditional posteriors in this case. These posteriors
can be obtained as special cases of the results above by setting τ = 0.
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2.3 Φ and Ψ∗ in normalization 2

The full conditional posterior distribution of φ = vec (Φ) is given in Geweke (1996) as

φ|Y,A,Ψ,Σ ∼ N
(
φ,Vφ

)
(7)

for

Vφ =
(
τ 2I + Σ−1 ⊗Ψ′X′XΨ

)−1
φ = Vφ vec

(
Ψ′X′Y∗Σ−1

)
.

For the correct full conditional poster distribution of Ψ∗ let ψ∗ = vec (Ψ∗) . We then
have

ψ∗|Y,A,Φ,Σ ∼ N
(
ψ
∗
,Vψ∗

)
(8)

for

Vψ∗ =
(
τ 2I + ΦΣ−1Φ′ ⊗X′2X2

)−1
ψ
∗

= Vψ∗ vec
(
X′2 (Y∗ −X1Φ) Σ−1Φ′

)
where X1 contains the first q columns of X and X2 the remaining columns.

As for normalization 1 the expressions for the full conditional posteriors with improper
uniform priors on Φ and Ψ∗ given in Geweke (1996) are correct and can be obtained as
special cases by setting τ to zero above.

3 Derivations

3.1 Conditional posterior for Φ∗ in normalization 1

In normalization 1 the model can be rewritten as

Y∗= (Y∗1,Y
∗
2) = (XΨ,XΨΦ∗) + E(

Ỹ∗1,Y
∗
2

)
= (Y∗1 −XΨ,Y∗2) = (0,XΨΦ∗) + E

with Y∗1 and Y∗2 n× q and n× (L− q) matrices. Vectorizing yields

ỹ∗ =

(
ỹ∗1
y∗2

)
= vec

(
Ỹ∗1,Y

∗
2

)
=

(
0

I⊗XΨ

)
φ∗ + e = Hφ∗ + e.

Conditional on A, Φ and Σ this is a standard regression model with a normal prior on
φ∗, φ∗ ∼ N

(
0, τ−2I

)
, and known error variance matrix. Routine calculations yield the

conditional posterior

φ∗|Y,A,Ψ,Σ ∼ N
(
φ
∗
,Vφ∗

)
with

Vφ∗ =
[
τ 2I + H′

(
Σ−1 ⊗ I

)
H
]−1

=

[
τ 2I+

(
0

I⊗XΨ

)′ (
Σ−1 ⊗ I

)( 0
I⊗XΨ

)]−1
=
[
τ 2I+ (I⊗XΨ)′

(
Σ22 ⊗ I

)
(I⊗XΨ)

]−1
=
[
τ 2I + Σ22 ⊗Ψ′X′XΨ

]−1
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for Σ22 the lower right (L− q)× (L− q) block of Σ−1 in (5) and

φ
∗

= Vφ∗
[
H′
(
Σ−1 ⊗ I

)
H
]
φ̂∗

= Vφ∗

(
0

I⊗XΨ

)′ (
Σ−1 ⊗ I

)( ỹ∗1
y∗2

)
= Vφ∗

[(
Σ21 ⊗Ψ′X′

)
ỹ∗1 +

(
Σ22 ⊗Ψ′X′

)
y∗2
]

= Vφ∗ vec
[
Ψ′X′Y∗1Σ

12 −Ψ′X′XΨΣ12 + Ψ′X′Y∗2Σ
22
]

where φ̂∗ is the generalized least squares estimate,

φ̂∗ =
[
H′
(
Σ−1 ⊗ I

)
H
]−1

H′
(
Σ−1 ⊗ I

)
ỹ∗

=
((

Σ22
)−1

Σ21 ⊗ (Ψ′X′XΨ)
−1

Ψ′X′
)

ỹ∗1 +
(
I⊗ (Ψ′X′XΨ)

−1
Ψ′X′

)
y∗2

or in matrix form

Φ̂∗ = (Ψ′X′XΨ)
−1

Ψ′X′Ỹ∗1Σ
12
(
Σ22
)−1

+ (Ψ′X′XΨ)
−1

Ψ′X′Y∗2

= (Ψ′X′XΨ)
−1

Ψ′X′Y∗1Σ
12
(
Σ22
)−1 −Σ12

(
Σ22
)−1

+ (Ψ′X′XΨ)
−1

Ψ′X′Y∗2.

Setting τ 2 to zero recovers the results of Geweke for this case whereas both the posterior
mean and variance for the τ > 0 case are incorrectly stated in equation (13) of Geweke
(1996).

3.2 Conditional posterior for Ψ in normalization 1

To derive the full conditional posterior for Ψ we vectorize (2)

y∗= (Φ′⊗X) vec (Ψ) + e.

= (Φ′⊗X)ψ + e

With the prior ψ ∼ N
(
0, τ−2I

)
and e ∼ N (0,Σ⊗ I) standard results yield

ψ|Y,A,Ψ,Σ ∼ N
(
ψ,Vψ

)
for

Vψ =
(
τ 2I + ΦΣ−1Φ′ ⊗X′X

)−1
ψ = Vψ

(
ΦΣ−1Φ′ ⊗X′X

)
ψ̂ = Vψ

(
ΦΣ−1 ⊗X′

)
y∗

= Vψ vec
(
X′Y∗Σ−1Φ′

)
since ψ̂ =

(
ΦΣ−1Φ′ ⊗X′X

)−1 (
ΦΣ−1 ⊗X′

)
y.

In Geweke (1996) the matrix Σ̃11 appears in the posterior variance instead of ΦΣ−1Φ′.

Σ̃11 is the upper left submatrix of Σ̃−1 = (C′ΣC)−1 = C−1Σ−1C−T for C = (Φ+,Φ0)
where Φ+ is the Moore-Penrose generalized inverse of Φ, i.e. ΦΦ+ = I and Φ0 is orthog-

onal to Φ+. It is easily verified that C−1 =

(
Φ
Φ0′

)
and

Σ̃−1 =

(
ΦΣ−1Φ′ ΦΣ−1Φ0′

Φ0′Σ−1Φ′ Φ0′Σ−1Φ0′

)
. (9)
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The expression for the posterior variance Vψ is thus in agreement with Geweke for both
the τ = 0 and τ > 0 case.

Turning to the posterior mean, this simplifies toψ = ψ̂ =
((

ΦΣ−1Φ′
)−1

ΦΣ−1 ⊗ (X′X)−1 X′
)

y∗

when τ = 0. Reshaping this to a matrix we have

Ψ̂ = (X′X)
−1

X′Y∗Σ−1Φ′
(
ΦΣ−1Φ′

)−1
and we can verify Geweke’s result for τ = 0 using that

Φ+ + Φ0Σ̃21
(
Σ̃11
)−1

= Φ+ + Φ0Φ0′Σ−1Φ′
(
ΦΣ−1Φ′

)−1
(10)

= Φ+ +
(
I−Φ+Φ

)
Σ−1Φ′

(
ΦΣ−1Φ′

)−1
= Σ−1Φ′

(
ΦΣ−1Φ′

)−1
.

For τ > 0 the posterior mean in equation (11) of Geweke is incorrectly stated since
the factor

(
ΦΣ−1Φ′ ⊗X′X

)
is missing.

3.3 Conditional posterior for Ψ∗ in normalization 2

With the normalization Ψ′ = (I,Ψ∗′) and Φ unrestricted we have

XΨΦ = X

(
Iq
Ψ∗

)
Φ = (X1 + X2Ψ

∗) Φ = X1Φ + X2Ψ
∗Φ

where X1 contains the first q columns of X and X2 the remaining columns. The vectorized
equation is thus

y∗ = vec (X1Φ) + (Φ′ ⊗X2) vec (Ψ∗) + e

or
y∗φ = y∗ − vec (X1Φ) = (Φ′ ⊗X2)ψ

∗ + e.

With the prior ψ∗ ∼ N (0, τ−2I) the posterior is immediate

ψ∗|Y,A,Φ,Σ ∼ N
(
ψ
∗
,Vψ∗

)
with

Vψ∗ =
(
τ 2I + ΦΣ−1Φ′ ⊗X′2X2

)−1
ψ
∗

= Vψ∗
(
ΦΣ−1Φ′ ⊗X′2X2

)
ψ̂∗.

Using that ψ̂∗ is the GLS estimate,

ψ̂∗ =
(
ΦΣ−1Φ′ ⊗X′2X2

)−1 (
ΦΣ−1 ⊗X′2

)
y∗φ

=
((

ΦΣ−1Φ′
)−1

ΦΣ−1 ⊗ (X′2X2)
−1

X′2

)
y∗φ,

the expression for ψ
∗

simplifies to

ψ
∗

= Vψ∗
(
ΦΣ−1 ⊗X′2

)
vec (Y∗ −X1Φ)

= Vψ∗ vec
[
X′2 (Y∗ −X1Φ) Σ−1Φ′

]
.
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In matrix form the GLS estimate (and posterior mean for the τ = 0 case) is

Ψ̂∗ = (X′2X2)
−1

X′2 (Y∗−X1Φ) Σ−1Φ′
(
ΦΣ−1Φ′

)−1
= (X′2X2)

−1
X′2Y

∗Σ−1Φ′
(
ΦΣ−1Φ′

)−1 − (X′2X2)
−1

X′2X1

= (X′2X2)
−1

X′2Y
∗
(

Φ+ + Φ0Σ̃21
(
Σ̃11
)−1)

− (X′2X2)
−1

X′2X1

where the last line follows from (10) and Σ̃21 and Σ̃11 are submatrices of Σ̃−1 from (9).
This reproduces the posterior mean given by Geweke in equation (14) for this case.

The posterior variance agrees with Geweke for both τ = 0 and τ > 0 but the posterior
mean for the τ > 0 case is incorrectly stated in equation (15) of Geweke (1996) since the
factor

(
ΦΣ−1Φ′ ⊗X′2X2

)
is missing.
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