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ABSTRACT 

In this paper, we introduce a set of critical values for unit root tests that are robust in the 

presence of conditional heteroscedasticity errors using the normalizing and variance-

stabilizing transformation (NoVaS) in Politis (2007) and examine their properties using 

Monte Carlo methods. In terms of the size of the test, our analysis reveals that unit root tests 

with NoVaS-modified critical values have actual sizes close to the nominal size. For the 

power of the test, we find that unit root tests with NoVaS-modified critical values either have 

the same power as, or slightly better than, tests using conventional Dickey–Fuller critical 

values across the sample range considered. 
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1. Introduction 

Recently, there has been great interest by researchers and practitioners in the simultaneous 

presence of high-persistence and conditional heteroscedasticity. The main reason is their 

occurrence in many economic time series, including stock index and exchange rate series, 

both a common subject for unit root tests. Alongside burgeoning interest in the second 

moment (or variance), the first difference of economic variables—here, stock index returns 

and exchange rate changes—has also been the subject of a sizeable modelling literature in 

finance and related disciplines, with the most representative approach being the 

autoregressive conditional heteroscedasticity (ARCH) and generalized ARCH (GARCH) 

family of models. 

Subsequent to the seminal work on ARCH/GARCH by Engle (1982) and Bollerslev 

(1986), the introduction of new models has continued apace, a common feature being that 

they estimate and allow for time-varying volatility. A number of suitable surveys of GARCH 

models are available, with Giraitis, Leipus and Surgailis (2006) providing a useful reference 

of existing work across the various models that have predictive ability for squared returns (or 

variance). Of this body of work, Pantula (1989) is one of the first studies investigating non-

stationary univariate autoregressive models with a regular unit root and a first-order ARCH 

error, deriving the asymptotic distribution of the least squares estimator (LSE) of the unit root, 

the same as that given by Dickey and Fuller (1979). 

Subsequently, Kim and Schmidt (1993) employed Monte Carlo simulation to show that 

the Dickey–Fuller (DF) tests tended to over-reject in the presence of GARCH errors. 

However, they also found that the problem was not very serious, the exception being near-

integration of the GARCH process errors where the volatility parameter was not small. Ling 
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and Li (1998a) later investigated an autoregressive integrated moving average (ARIMA) 

model with GARCH (p, q) errors and derived the asymptotic distribution of the maximum 

likelihood estimation (MLE). They found that the asymptotic distribution of the MLE of 

various unit roots involves a series of bivariate Brownian motions and that the MLE of unit 

roots is more efficient than the corresponding LSE when GARCH innovations are present. 

Using these asymptotic distributions, Ling and Li (1998b) later constructed some new unit 

root tests and showed, using Monte Carlo simulation, that these tests could provide better 

performance than DF tests. 

While there are differences across these and other studies, they all suggest that unit root 

tests require a set of robust critical values that apply in the presence of GARCH errors. For 

this purpose, this paper provides a simple and easy-to-apply algorithm using the normalizing 

and variance-stabilizing transformation (NoVaS) in Politis (2007) to produce robust critical 

values for ensuring DF tests have appropriate size and adequate power in the presence of 

conditional heteroscedasticity. However, because the subject of unit root tests is large, we 

limit the analysis here to investigating and demonstrating our procedure as it applies to unit 

root tests in the absence of serial correlation. 

The remainder of the paper is organized as follows. Section 2 presents the simple NoVaS 

and the unit root test applying in the absence of serial correlation. In Section 3, we present our 

simulations and use these to establish the size and power properties of the tests. Section 4 

provides a brief summary and the main conclusions. 
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2. NoVaS transformation and the unit root test 

2.1. Simple NoVaS transformation 

Politis (2007) first defined and analysed the properties of the NoVaS transformation. Let us 

consider the NoVaS more closely and thereby observe the motivation for our study. 

Let 
t  

be a sequence of random variables following the ARCH(q) model 

2

1

        
q

t t t t i t i

i

e h h a

 

  (1.1) 

where 0 , 0ia , 1 i q  and the innovations te are i.i.d 0,1N . 

Note, we use the innovations te
 
as a standard normal because we can interpret the 

quantity 

2

1

S t
t q

i t i

i

a

    (1.2) 

as a ―studentized‖ 
t

 sequence. Moreover, this provides an intuitive explanation of the 

following NoVaS (2.3) quantity 
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Equation (1.3) describes the NoVaS transformation proposed by Politis (2007) under 

which the data series 
t

 is mapped to the new series ,t au . 
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The practitioner needs to select the order ( 0)k  and the vector of non-negative 

parameters with the twin goals of normalization/variance-stabilization in mind. With a focus 

on that primary goal of normalization and variance stabilization, Politis (2007) introduced the 

so-called simple NoVaS transformation for choosing the order ( 0)k  of the parameters ia  in 

(2.3). Mantalos (2010) subsequently modified the algorithm for the simple NoVaS as follows. 

Let 0  and then 1 1ia k  for all 0 i k . 

Select the order ( 0)k  such that the p-value of the Jarque–Bera statistic for the 
,t au  

NoVaS-transformed series is maximized. In our analysis, we undertake this in a loop for k = 1 

to 25. 

Consider now that 
,at t t au W  is the new NoVaS-transformed innovation. Then the 

transformed series has the following mean 

 ,

,

( )
( ) t

t a

t a

E
E u

E W
.

    (1.4) 

It is not difficult to show that, based on the assumption that the innovations te  are i.i.d 

0,1N  (see equation (1.1)), that (1.4) becomes zero, that is 

,

,

( )
( ) 0t

t a

t a

E
E u

E W
.

    (1.5) 

As shown in the Appendix, the variance of the Simple NoVaS transformed series is 

2 2
2

, 2

,

( ) ( )
( ) 1

( )

t t
t a at

tt a

E E
Var u E u

EE W
.  (1.6) 

The skewness of the innovations te  are i.i.d 0,1N  is zero. Lastly, as also shown in the 

Appendix, the kurtosis is 
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4 4 2

,

2 2
2 2 2

,

( )
3

2( )

at t t az

at t t a

E u E E W k
kurt

kE u E E W
.  (1.7) 

As Equations (1.5) and (1.6) provide zero skewness and kurtosis close to three, the 

transformed series exhibits the same properties as an i.i.d 0,1N  variable. 

2.2. DF unit root tests in the absence of serial correlation 

It is well known (Hamilton 1994) that when testing for unit roots it is important to specify the 

null and alternative hypotheses appropriately based on the type of the data at hand. For 

example, if the data do not display any increasing or decreasing trend, then we should not 

include a time trend in the test regression. Moreover, the inclusion of deterministic terms will 

also influence the asymptotic distribution of the unit root test statistics. Consequently, given 

the importance of the correct alternative hypothesis and the trend type, the data will determine 

the form of the test regression used. For this reason, and also because non-trending financial 

series, such as interest and exchange rates and spreads, exhibit non-zero means and GARCH 

errors, the first model we consider is the following. 

2.2.1  Model 1: Constant term in the regression 

The test regression is 

1t t ty c y     (1.8) 

and the hypotheses to be tested are 

0 : 1 (1) without a drifttH y I    (1.9) 

: 1 (0) with non-zero meanA tH y I
.
  (1.10) 

The test statistic we use is that proposed by Dickey–Fuller: 
ˆ 1

ˆ( )
t

SE
. 
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We remind ourselves here that t  
follows an unknown ARCH/GARCH process that we 

could estimate, but which we do not require for the purpose of our test procedure. 

The second model we consider is as follows. 

2.2.2 Model 2: Time trend and constant term in the regression 

The test regression is 

1t t ty c y bt
.
    (1.11) 

In this case, we assume that the data under the null hypothesis, with an example being a 

GDP series, follow a simple random walk with drift. That is 

1t t ty c y ,   (1.12) 

whereas under the alternative hypothesis it is an AR(1) model with 1  and trend. 

However, even here we use the DF test statistic 
ˆ 1

ˆ( )
t

SE
. Note that this formulation is 

appropriate for time series such as asset prices, that is, trending time series with several 

possible kinds of GARCH errors. 

2.3. NoVaS critical values for DF unit root tests in the presence of GARCH errors 

The underlying idea and method we use in our procedure to produce robust critical values is 

simple and identical to the manner in which Dickey and Fuller (1979) produced their critical 

values for the unit root test, that is, by using Monte Carlo methods we can approximate the 

finite-sample distribution of the unit root test. 

Model 1 

Consider a sequence of T observations 1 2, , , Ty y y
 
for which we wish to test if there is 

a unit root in the series. In addition, we assume that our observed data do not display any 

increasing or decreasing trend while at the same time exhibiting a non-zero mean. 
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The first step is to estimate the test regression 

1t t ty c y
,    (1.13) 

and calculate the DF test statistic 
ˆ 1

ˆ( )
t

SE
. 

We perform the simple NoVaS transformation on the estimated residuals from (1.13) 

1
ˆˆ ˆ

t t ty c y , that it is, 2 2

, 0

1

ˆ ˆ
k

t a t i t i

i

W a a

.

 

Based on the simple NoVaS properties (2.5, 2.6, 2.7), 
, *t t a tu W z , is a good 

approximation of the error term in (2.13), where tz , are T i.i.d random numbers from 

the standard normal distribution. 

The next step is to calculate the new series under the null hypothesis *

1

T

t ty u . 

We then estimate the regression 
1

* * * *

tt ty c y e  and afterwards the DF test statistic 

*
*

*

ˆ 1

ˆ( )
t

SE
. 

Repeating steps 3–4 a large number of times, NMC (in our Monte Carlo simulations, N 

= 1000), we are able to approximate the finite-sample distribution of the DF unit root 

test. 

By taking the (1– ) quintile of the approximate finite-sample distribution of *t , we 

obtain the -level ―critical values‖ ( ct

*
) and finally reject Ho if Ts

ct

*
. 

A Monte Carlo estimate of the p-value for testing is 
* *P t t . We use this to study 

the size and power of the unit root test (with the assistance of the p-value plot). 

Model 2 

In the case of a trend 
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The first step is to estimate the test regression 

1t t ty c y bt
,
   (1.14) 

and calculate the DF test statistic 
ˆ 1

ˆ( )
t

SE
. 

We perform the simple NoVaS transformation on the estimated residuals from (1.14), 

such that 

1
ˆ ˆˆ ˆ

t t ty c y bt
. 
    (1.15)

 

That is, 2 2

, 0

1

ˆ ˆ
k

t a t i t i

i

W a a .

 

The next step is to calculate 
, *t t a tu W z , where tz  are as previously T i.i.d random 

numbers from the standard normal distribution. 

The next step is to calculate the new series under the null hypothesis *

1

ˆ( )
T

t ty c u . 

We then estimate the regression 
1

* * * * *

tt ty c y b t e  and afterwards the DF test 

statistic 

*
*

*

ˆ 1

ˆ( )
t

SE
. 

Steps 6–8 are the same as in Model 1. 

3. Simulations 

3.1. Monte Carlo 

In this section, we perform a simple Monte Carlo experiment by generating data for the size 

of the test for Model 1 using 

1t t ty y
. (1.16) 

For the power test, we generate data using 
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10,1 0,99t t ty y
. (1.17) 

The data-generating process for the size of the test for Model 2 is 

10.1t t ty y
, (1.18) 

For the power test, we generate data using 

 10,1 0,99 0.08t t ty y t
. (1.19) 

We study the performance of the NoVaS critical values with error terms i.i.d N(0,1). We 

assume white noise and in all other cases the errors follow a GARCH (1, 1) model with the 

following data -generating process

  
2

1 1        0,001 0,199 0,800

~ . . (0,1)

t t t t t t

t

e h h h

e i i dN
.

 (1.20) 

For each model, we perform 5,000 replications for the calculation of size and 1,000 

replications for the power functions. Our results are based on 600, 1100, and 2100 

replications, where the first 100 time series observations in each replication is discarded to 

avoid possible initial value effect.We calculate the estimated size of the test by counting how 

many times we reject the null hypothesis in repeated samples under conditions where the null 

is true. 

3.2. The p-value plots 

The conventional way of reporting the results of a Monte Carlo experiment is to tabulate the 

proportion of times we reject the null hypothesis in repeated samples under conditions where 

the null is true. Concerning the significance levels used when judging the properties of the 

tests, different studies have advocated both larger and smaller significance levels. For 

example, Maddala (1992) suggests significance levels of as much as 25% in diagnostic 

testing, while MacKinnon (1992) suggests going in the other direction. 
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To address this problem, in this study we use mainly graphical methods that potentially 

provide more information about the size and power of the tests. We use the simple graphical 

methods developed and illustrated in Davidson and MacKinnon (1998) as they are relatively 

easy to interpret. We employ the p-value plot to assess the size of the tests and size–power 

curves to evaluate the power of the tests. The graphs of the p-value plots and size–power 

curves are based on the empirical distribution function (EDF) of the p-values, denoted ˆ
jF x . 

For the p-value plots, if the distribution being used to compute the 
sp  terms is correct, each of 

the 
sp  terms should be distributed uniformly about (0,1). Therefore, the resulting graph 

should be close to the 45o

 line. The p-value plots also make it possible and easy to distinguish 

between tests that systematically over-reject or under-reject the null hypothesis and those tests 

that reject the null hypothesis near the right amount of time. 

To judge the reasonableness of the results, we use a 95% confidence interval for the 

actual size ( 0 ) given 
N

)1( 
 2 00

0
, where N is the number of Monte Carlo 

replications. We consider any results that lie between these bounds as satisfactory. For 

example, if we consider 5,000 Monte Carlo replications and a nominal size of 5%, we define 

a result as reasonable if the estimated size lies between 4.39% and 5.61%. 

Figure 1. Size of the unit root tests of Models 1 and 2 for 500 observations with white noise 

Figure 1a. Model 1 Figure 1b. Model 2 
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Solid line is unit root test with NoVaS critical values; dot–dash line is unit root test with DF 

critical values. 

3.3. White noise case 

We begin our study of the behaviour of our test procedure with the simple case of white noise 

errors, that is, series without GARCH errors. We show only the results for 500 observations 

given there is no difference between these and those for 1,000 or 2,000 observations. As 

shown in Figure 1a, in Model 1 the unit root test behaves well, with both the DF and NoVaS 

critical values indicating estimated sizes that are inside the confidence interval lines. As we 

observe the same behaviour for the unit root in Model 2, as shown in Figure 1b, we conclude 

that the NoVaS critical values work as well as we expect for the case of white noise. 

 

Figure 2. Power of the unit root tests of Model 1 for 500 observations with white noise 

Figure 2a. Model 1 Figure 2b. Model 2 
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Solid line is unit root test with NoVaS critical values; dot–dash line is unit root test with DF 

critical values. 

 

Figure 2 depicts the power of the tests. The first thing we observe is that the unit root 

tests display the same power when using both the DF and NoVaS critical values. It is also 

obvious that there is a sample effect (the lowest curves are for 500 observations, followed by 

1,000 observations, and the highest curves are for 2,000 observations). In sum, the unit root 

tests with NoVaS critical values assuming only white noise error work equally as well as the 

unit root tests with conventional DF critical values. 

 

3.4. GARCH case 

3.4.1. The size of the tests 

In this subsection, we present the results of our Monte Carlo experiment concerning the size 

of the unit root test given GARCH errors. As shown in Figure 3a for Model 1 and Figure 3b 

for Model 2 for 500, 1,000 and 2,000 observations, the p-value plots make it possible to easily 

distinguish that unit root tests with DF critical values systematically over-reject the null 
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hypothesis, whereas unit root tests with NoVaS critical values reject the null hypothesis at 

about the right amount of time. Once again, we recall that we use the constant term in the 

regression for Model 1 and a time trend and constant term in the regression in Model 2. As 

shown, the unit root test with DF critical values over-rejects by almost three times the 

nominal size, that is, for a 5% nominal size and Model 1, we estimated sizes of 15.35% for 

500 observations, 14.9% for 1,000 observations and for 14.35% for 2,000 observations. We 

observe a similar picture for the unit root test with DF critical values for Model 2, where for a 

5% nominal size we estimated sizes of 14.85 % for 500 observations, 16.26% for 1,000 

observations, and 15.9% for 2,000 observations. Overall, the unit roots tests with NoVaS 

critical values unlike those with DF critical values work well in the presence of GARCH 

errors. 

 

 

 

Figure 3. Size of the unit root tests for 500, 1,000 and 2,000 observations with GARCH errors 

Figure 3a. Model 1 

 

Figure 3b. Model 2 
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Solid line is unit root test with NoVaS critical values; dotted, dot–dash, and dashed lines are 

unit root tests with DF critical values for 500, 1,000, and 2,000 observations, respectively. 

3.4.2. The power of the tests 

In this subsection, we analyse the power of the Wald and bootstrap tests using sample sizes of 

500, 1,000, and 2,000 observations. We estimate the power function by calculating the 

rejection frequencies for 1,000 replications using Equation (1.17) for Model 1 and Equation 

(1.19) for Model 2. We employ the size–power curves to compare the estimated power 

functions of the alternative test statistics. We follow the same process to evaluate the EDFs 

denoted by F x j
 using the same sequence of random numbers used to estimate the size of 

the tests. 

Figure 4 displays the results using the size–power curves. As shown, the unit root tests 

with the DF critical values are now superior to the unit root tests with the NoVaS critical 

values. We also again observe a sample effect, such that the larger the sample, the greater the 

power of the tests. To ensure a fair comparison of the power of the unit tests with the DF and 

NoVaS critical values, we apply the size–power curves on a correct size-adjusted basis. 

Figure 4 plots the size–power curves and the estimated power functions against the 

nominal size. By plotting the estimated power functions against the true size, that is F x j  

against F x j
, we obtain size–power curves on a correct size-adjusted basis. As the unit root 

tests with DF and NoVaS critical values now share the same power, we can see they are even 

better for a small nominal size (less than 15%), as shown in Figure 5. The main finding for 

our power investigation is that unit root tests with NoVaS critical values generally perform 

adequately in both the white noise and GARCH error cases. 

 

Figure 4. Power of the unit root tests for 500, 1,000, and 2,000 observations with GARCH 

errors 
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Figure 4a. Model 1 

 

Figure 4b. Model 2 

 

 

Solid line is unit root test with NoVaS critical values; dotted, dot–dash, and dashed lines are 

unit root tests with DF critical values for 500, 1,000, and 2,000 observations, respectively. 

 

 

Figure 5. Size-adjusted power of the unit root tests for 500, 1,000, and 2,000 observations 

with GARCH errors 

Figure 5a. Model 1 

 

Figure 5b. Model 2 
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Solid line is unit root test with NoVaS critical values; dotted, dot–dash, and dashed lines are 

unit root tests with DF critical values for 500, 1,000, and 2,000 observations, respectively. 

4. Brief summary and conclusion 

In this section, we summarize the results of our investigation. The purpose of this study has 

been to study the unit root test in the presence of conditional heteroscedasticity errors with 

newly proposed critical values modified using the normalizing and variance-stabilizing 

transformation (NoVaS) method. The main conclusion is that NoVaS-modified critical values 

are robust, with respect to both white noise and conditional heteroscedasticity errors. 

Moreover, given they have an actual size that lies close to their nominal size and adequate 

power, it makes sense that we would select our NoVaS-modified critical values ahead of the 

conventional DF critical values, especially in the presence of conditional heteroscedasticity 

errors. 

In summarizing our methodology, we studied the estimated size and power of the unit 

root test in the presence of conditional heteroscedasticity errors using two sets of critical 

values: namely, conventional DF values and our newly proposed NoVaS-modified values. In 

terms of the size of the tests, we used Monte Carlo methods to investigate their properties 

using 5,000 replications per model, with 500, 1,000, and 2,000 observations. We employed p-

value plots to investigate the size of the tests and found that the unit root tests perform better 

with NoVaS-modified critical values across all of our samples. Importantly, when we 

consider the power results using the size–power curves, when considered on a correct size-

adjusted basis, the unit root tests with NoVaS-modified critical values share the same power 

as tests using DF critical values or at least the difference is very small across all of our 

samples. 
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6. Appendix 

6.1 Mean, variance, kurtosis and skewness of NoVaS 

Let us consider the model 
1|t t t ty E y  with 1| ~ (0, )t t tf h , where f is the 

unknown density function of the t  
conditional on the set of past information 1t . 

The first moment “the mean of NoVaS” 

First we remind ourselves that for the simple NoVaS, 0 . Now for the simple NoVaS with 

one lag, that is, 2 2

, 1t a t tW a a , such that we always take account that t  is variance 

stationary and 
2

2 tm E , then the mean is 

2 2 2 2 2

, 1 1 2( ) ( ) 2 ( ) 2t a t t t t tE W a a aE aE aE am .  (1.21) 

For two lags, the mean is , 23t aE W am , while for three lags it is , 24t aE W am , and 

finally for the general k
 
lags, the mean is 

, 21t aE W k am     (1.22) 

The second moment of NoVaS 

For the simple NoVaS model with one lag, we have 2 2

, 1t a t tW a a . By taking the squares 

of this and then the expectation, we have 

2
2 2 2

, 1t a t tE W E a a

2 4 2 4 2 2 2 2 4 2 4 2 2 2

1 1 1 12 2t t t t t t t tE a a a E a a a
 

2 2 4 2 4 2 2 2

, 1 12t a t t t tE W a E a E a E E .  (1.23) 
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If t  
is fourth-order stationary with 

4

4 tm E  and 
2

2 tm E , then we have 

22 2 4 2 4 2 2 2 2 2

, 1 1 4 22 2 2t a t t t tE W a E a E a E E a m a m   (1.24) 

In the same manner, we can show that the simple NoVaS model with two lags has 

 
22 2 2

, 4 23 3 2t aE W a m a m
,
   (1.25) 

for three lags 

22 2 2

, 4 24 6 2t aE W a m a m    (1.26) 

and finally for the general k lags 

22 2 2

, 4 21 ( 1)t aE W k a m k k a m
.
  (1.27) 

Now the variance is 

2
2

, , ,( )t a t a t aVar W E W E W
. 

Consequently, we have 

2 22 2 2 2

, 4 2 2( ) 1 ( 1) ( 1)t aVar W k a m k k a m k a m   (1.28)

2 2 2 2

, 4 2 2 4 2 4 2( )t aVar W am ka m m am a m a m m . (1.29) 

Kurtosis 

Consider that ,t t t az W  is the new NoVaS transformed series. Then the kurtosis of this 

series is 

 

4 4 2

,

2 2
2 2 2

,

( )

( )

t t t az

t t t a

E z E E W
kurt

E z E E W
.  (1.30) 

We can see from (1.22) that the mean of the simple NoVaS is 
2

, 1 ( )t a tE W k aE . It 

is easy to see that for 1 1a k
 
then (1.22) becomes 

2

, ( )t a tE W E
.
   (1.31) 
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Based on this, we have the kurtosis of the new transformed series as 

4

2

,

( )z t

t a

E
kurt

E W
.

   (1.32) 

Recall that we derived the second moment of the NoVaS for the general k
 
lags in 

(1.27). Now given we expect that ,t t aW
 
is i.i.d. normal, and 

4

tE , then 

4

, 4 2

, ,2

,

3 ( ) 3
t a

t a t t a

t a

E W
kurt W E E W

E W
.  (1.33) 

Consequently, with for a simple analysis of (1.33) with the substitution of the 
2

,t aE W , 

and the right-hand side of (1.27), the kurtosis of the NoVaS transformed series 

becomes
2

2

3 ( 1)

1 3 1

z k k a
kurt

k a
.

   (1.34) 

Moreover, for 1 1a k , (1.34) becomes 

3 3 ( 1)
3

1 3 1 21 3

z ka k k k
kurt

k k ka
.

  (1.35) 

The last part of this equation is the kurtosis of the simple NoVaS transformed series. 


