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ABSTRACT 

 

In this paper a test procedure is proposed for the skewness in autoregressive 

conditional volatility models. The size and the power of the test are 

investigated through a series of Monte Carlo simulations with various models. 

Furthermore, applications with financial data are analyzed in order to explore 

the applicability and the capabilities of the proposed testing procedure.  
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1. INTRODUCTION 

The moments and the variance of economic variables such as stock index 

returns and exchange rate changes have been the subject of a vast amount of 

works in financial literature with most representative modeling examples  the 

generalized autoregressive conditional heteroscedasticity (GARCH) models. 

Since the introduction of the ARCH/GARCH model by Engle (1982) and 

Bollerslev (1986), numerous new models are being introduced and 

investigated. All these models are estimated and allow for time-varying 

volatility. A natural question that arises is the following: What about for time-

varying skewness or kurtosis?  

It is specifically known that the excess kurtosis makes extreme observations 

more likely than in the normal case, which means that the market gives higher 

probability to extreme observations than in the normal distribution.  Moreover, 

the presence of a negative skewness has also interesting and practical 

implications: The effect of accentuating the left-hand side of the distribution, 

interpreted as that, the market gives higher probability to decreases than 

increases in asset pricing. 
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Some of the works that study that stock return distributions exhibit negative 

skewness and excess kurtosis, among others, are : Harvey and Siddique, 1999; 

Premaratne and Bera, 2000, Jondeau and Rockinger (2000) and León, Rubio 

and Serna, (2004). 

Harvey and Siddique (1999) present a way to jointly estimate time-varying 

conditional variance and skewness. Premaratne and Bera (2000) have 

suggested capturing asymmetry and excess kurtosis with the Pearson type IV 

distribution. Similarly, Jondeau and Rockinger (2000) employ a conditional 

generalized Student-t distribution to capture conditional skewness and 

kurtosis. Finally, León, Rubio and Serna, (2004) jointly estimate time-varying 

volatility, skewness and kurtosis using a Gram-Charlier series expansion. 

 

However, researchers before applying various models should ask the 

following question for capturing the kurtosis and skewness: Are the skewness 

and kurtosis explained by the second moment of those variables, that is, an 

ARCH/GARCH effect?  Or is it because the underline distribution of the error 

term is not normal? 

 

The purpose of the present work is to answer the skewness part of the 

question, by deriving a skewness test for series that have ARCH/GARCH 

effect. Such a test, in a easy and comprehensive way, can discriminate these 
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two causes, namely the ARCH/GARCH or the non-normal underline 

distribution.  

The test is developed with the implementation of the “Normalising and 

Variance-Stabilizing Transformation”, known as NoVaS transformation, 

proposed and developed by Politis in a series of papers (2003, 2007). 

The remainder of the paper is organized as follows. In Section 2 we 

evaluate the variance, the skewness and the kurtosis of the NoVaS transformed 

series and propose the new test procedure for the skewness of the error term. 

In Section 3, we present our simulations and use them to establish the size and 

power properties of the proposed test. Section 4 provides an application on 

financial data and a brief summary with the main conclusions. 

 

 

2. SKEWNESS, KURTOSIS & THE SKEWNESS TEST 

Let us consider the general model  

  1|t t t ty E y                                                      (2.1)           
    

 

with 1| ~ (0, )t t tf h   , where f is the unknown density function of t  

conditional on the set of past information 1t  . Let also the error  t be a 

sequence of random variables following the ARCH(q) model given by: 
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                                     (2.2)         

where 0  , 0ia  and the innovations te  are i.i.d  0,1N . Note that the 

standard normal assumption is used because the quantity 

2

1

S t
t q

i t i
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a




  







                                                  (2.3) 

can be viewed as the studentized  t  sequence. Moreover it helps in 

understanding the NoVaS transformation. 

It was the widely reported failure of the ARCH (and GARCH) models to 

predict squared returns one of the motivations for the  introduction of the 

“Normalizing and Variance–Stabilizing Transformation”, known as NoVaS, 

for financial returns series (see Politis, 2003; 2007). More specifically, Politis 

(2007) defined and analyzed the properties of the following NoVaS 

transformation:  

 ,

2 2 2

1 0
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t
t a k

t t i t i
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z

s a a



   





 

for 1, 2, ,t k k T                           (2.4) 
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 , 0  , 0 for all  0 ia i  and 
0
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k

i

i
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
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Equation (2.4) describes the proposed NoVaS transformation under which the 

data series  t  is mapped to the new series ,t az . The order ( 0)k   and the 

vector of nonnegative parameters have to be chosen by the practitioner with 

the twin goals of normalization/variance–stabilization in mind.  

 

Additionally, Politis (2007) introduced also the so called Simple NoVaS 

transformation for choosing the order ( 0)k   and the parameters ia  in (2.4). 

The algorithm for the simple NoVaS is: 

1. Let 0   and take  1 1ia a k    for all 0 i k  . 

2. Pick the order ( 0)k   such that the absolute value of the excess 

kurtosis of ,t az is minimized. 

Note that the simple NoVaS algorithm works in such a way that the coefficient 

a  is always adjusted with the nearest integer k  which gives the minimum 

excess kurtosis. Observe that due to step (1) of the algorithm, (2.4) reduces to: 

,

2

,

0

( )

t
t a

k

t i t a

i

z

a W



 







 for 1, 2, ,t k k T    .              (2.5) 

Let , ,t t t az W   be the new NoVaS transformed series. The following result 

provides the first 3 moments of the ,t aW  series (the proof is given in the 
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appendix) and is used in Lemma 2 where we provide the moments of new 

NoVas transformed series ,tz  . 

Lemma 1. Assume that the sequence t is variance stationary and  2

2 tm E 

. Then, the first moment of the ,t aW  series  is:  

   , 21t aE W k am   .                                                                                 (2.6) 

If in addition the sequence t is fourth-order stationary with   4

4 tm E  then 

the second and third moments of ,t aW  are:  

     
22 2 2

, 4 21 ( 1)t aE W k a m k k a m                                                          (2.7)  

and  

 3 2

, 4 2 2( )t aE W am akm m  .                                                                      (2.8) 

Lemma 2: Under the same assumptions as in Lemma 1, the simple NoVaS 

Transformated series has zero mean and variance 1. Furthermore, the third and 

fourth moments for a general lag k are given by:   

 
 
 

 

 

3 3

3

, 3 23 2 2
,

2t t

t a

t a t

E Ek
skew E z

kE W E


  

 


 

and  
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   
 

4 4
, , 2

4 2

t a t a

m
kurt z E z

am ka m
 


.  

Proof: Under the assumption that t   is variance stationary and  2

2 tm E   

and with the use of (2.6) we have that the mean of the transformed series is 

 
   

,

, ,( )

t t

t a

t a t a

E E
E z

E W E W

 
   .      

Due to the fact that  , 0t aE W  and based on (2.1) where   0tE   we have 

that  , 0t aE z  .  

The second moment of simple NoVaS transformed series is given by:  

 
 
 

 
 

2 2

2

, 2

,

1
1 ( )

t t

t a

tt a

E E
E z

k aEE W
  



 


                                                (2.9) 

Where the last equality holds for  1 1a k  . Thus, the NoVaS transformed 

variable ,t az  has mean zero and variance one. 

For the fourth moment of the simple NoVaS for general  k  lags recall the 

assumption that t  is fourth-order stationary with   4

4 tm E   and 

 2

2 tm E  . Then,  

 
 
 

4

4

, 2

,

t

t a

t a

E
E z

E W


  .                  (2.10) 



 

10 

 

Using (2.7) and taking  1 1a k  we have 

      
22

, 4 2t aE W am ka m  .                        (2.11) 

Combining (2.9) – (2.11) we have that the kurtosis of the simple NoVaS is: 

 
 

4
, 2

4 2

t a

m
kurt z

am ka m



                    (2.12)  

Restricted (2.12) to 3, or near to 3 (by the NoVaS algorithm), it is easy to 

derive that:  

 
2

2

4

3

2

k m
m

k



.                                    (2.13) 

Finally, for general  k lags the third moment of the simple NoVaS is: 

 
 
 

3

3

, 3 2

,

t

t a

t a

E
E z

E W


 .             (2.14)  

Using (2.13) and (2.14) we get:  

 
   

1 2
2

223 2

, 2 2

3
( )

2
t a

a k m
E W ak m m

k

    
    
      

                                          (2.15)

   
   

1 2
2

3 22

2 2

1

2 2

ak m k k
m m

k k

   
   

     

.                                  (2.16) 

Substituting (2.16) into (2.14) we finally obtain the third moment of the simple 

NoVaS transformed series: 
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 
 
 

 

 

3 3

3

, 3 23 2 2
,

2t t

t a

t a t

E Ek
E z

kE W E


 

 


.                           (2.17)                  

Expression (2.17) states the main result of our work because it reveals the 

relation between the skewness of the simple NoVaS and that of the original 
t  

series. More specifically, it states that the skewness of the simple NoVaS 

transformed series ,tz   
is 

2k

k



 
times the skewness of the original 

untransformed series t . 

Let us focus on the third moment of the untransformed series in 

ARCH/GARCH form: 

 

 3 3 3/2 3/2( ) ( ) e

t t t tE E e E h skew h                (2.18) 

 

where ,t te h  as in (2.2).  

It is easily seen from (2.18) that if 0eskew   then the skewness of the 

transformed series zskew is also zero. On the other hand, if 0eskew   then 

since (2.18) is not zero, so is the skewness of the NoVaS transformed series 

zskew . 

This last observation can be used to derive a skewness test for the error term in 

(2.1) as follows: 
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1. NoVaS transform the error  t  sequence.  

2. Calculate the test statistic: 

 
2

2
z

k
SKEW T skew

k



                                               (2.19)                          

where skew  is the sample skewness of the NoVaS transformed series given 

by:  

 
 

 

3

1

3 2
2

1

1

1

T

ti

T

ti

z z
Tskew

z z
T







 
 




.                                               (2.20)       

Observe that the test statistic (2.20) under the null hypothesis follows a chi-

square distribution with one degree of freedom 2

1 . The null hypothesis is 

therefore, rejected for values of the test statistic that exceed the 100(1 ) th
 

percentile 2

1;a .  

3. SIMULATIONS  

In this section we provide the characteristics of the Monte Carlo experiment. 

We calculate the estimated size by observing the number of times the correct 

null hypothesis is rejected in repeated samples. By varying factors such as the 

number of observations (500, 1000, 2000 and 3000) we obtain a succession of 

estimated percentages of correct rate of selection under different conditions.     
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The Monte Carlo experiment has been performed by generating data according 

to the following GARCH(1,1) data generating processes: 

 

2

1        t t t t t i te h h h        ,  1     . 

 

Models 1-5 are used to estimate the size of the test while, for the power we use 

Models 6 and 7.  Note also that for Models 5-7 for generating the innovations 

te  , we use the generalised lambda distribution suggested by Ramberg and 

Schmeiser (1974), which is an extension of Tukey's lambda distribution.  

The inverse distribution function formula is  

 

    431

1 21 /F u u u
      

 
                                                         (2.21) 

 

where 
1 and

2 represent the location and the scale parameters and 
3  and 

4  

jointly determine the shape of the distribution. Under this formulation we are 

allowed to study the skewness test under different shapes. Table 1 summarizes 

the models with different values of the parameters considered.  

The number of replications per model used is 5,000. 300 initial observations 

are discarded to remove initialization effects.The calculations were performed 

using GAUSS 8. 
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Table 1: Different models used for the performance of the Skewness test 

     Innovations te  1  
2  

3  
4  

Model 1 0,04 0,94 i.i.d  0,1N      

Model 2 0,25 0,70 i.i.d  0,1N      

Model 3 0,475 0,475 i.i.d  0,1N      

Model 4 0,60 0,30 i.i.d  0,1N      

Model 5 0,45 0,45 t-distr.  14 df 0.0000 0.05122 0.05122 0.078945 

Model 6 
0,04 

0,475 

0,94 

0,475 

skew=-0.30  

kurt=3.0 
0.3618 0.18590 0.09255 0.19910 

Model 7 0,475 0,475 
skew=-0.20  

kurt=3.3 
0.1687 0.10490 0.07651 0.14160 

 

The steps of the simulation procedure are as follows: 

1. Generate the GARCH(1,1) models as described before. 

2. Use the Simple NoVaS to Normalize the generating series. A loop with 

lags from 1 to 35 are used, that is, 35 different Simple NoVaS 

transformations are used. Each time we calculate the kurtosis and the 

statistic for the kurtosis: 

        
2

3 / 24Kurt T kurtosis                            (2.22) 

Calculate the p-value of the statistic and the lag that gives the 

maximum p-value, plus 3, is the lag k  that we use for the final 

(selected)  Simple NoVaS transformation. 
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3. Calculate the skewness, its usual statistic and the p-value  (using 2

1 ) 

for the original series: 

  2 / 6Skew T skewness                             (2.23) 

while for the NoVaS Normalized series we use the k  adjusted statistic: 

  
2

z

k
SKEW Skew

k



                             (2.24) 

In this section we use simple graphical methods (Davidson and MacKinnon 

1998), like the P-value plot and the Size-Power curve to study the size and the 

power of the proposed test. These graphs are based on the empirical 

distribution function (EDF) of the P-values which is denoted by ˆ
jF x . For the 

P-value plots, if the distribution used to compute the 
sp  terms is correct, each 

of the 
sp  terms should be distributed uniformly on (0,1) and the resulting 

graph should be close to the 45o line. For judging how reasonable the results 

are, we require that the estimated size should be bounded within the 95% 

confidence interval of the nominal size (two dot lines). For example, if one 

considers a nominal size of 5%and 5000 Monte Carlo replication, a result is 

defined as reasonable if the estimated size lies between 4.38% and 5.61%. All 

Size Figures show on the right hand side the truncated (up to 10% nominal 

level) P-value plots for the actual size of the Skewness tests.  
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3.1 The size and the power of the test 

Figure 1 shows the results for Models 1 and 2 and n=500. The Dash line is the 

p-value for the skewness of the original series and Model 1 while the Dot line 

refers to Model 2. In both cases the test over-rejects the null hypothesis. 

Notice that the higher value of the   the smaller the over-rejection rate. On 

the other hand the proposed skewness test behaves well; the estimated size of 

the test is inside the 95% confidence interval (two dot lines); see the the right 

hand truncated figure.   

 

Figure 1: Size of the test; Models 1 and 2; n=500 Observations 

 

Figure 2 shows the results for Models 3 & 4 with n=500. The skewness test for 

the original series has estimated size that is far way from the nominal size 

(approx. 65% & 70%).  Notice also that the higher the value of   the smaller 

the degree of over-rejection.  
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On the other hand, our skewness is within the 95% confidence bounds and 

rejects the null hypothesis about the right proportion of time.  

For n=1000, 2000 & 3000 we notice that the GARCH dynamic increasing the 

over-rejection for the skewness test in the original series. In fact, the higher the 

number of the observations the higher the over-rejection. 

Again our proposed skewness test is very robust for the sample size. 

 

Figure 2: Size of the test; Models 3 and 4; n=500 Observations 

 

 

Finally, Figure 3 shows the results for Model 5 when the innovations are t-distributed 

with 14 df.  Dash line represents the skewness test for 1000, while the Dot for 2000 

and Dot-Dash for 3000 observations. The over-rejection is more than 80% larger than 

the estimated size, which is even higher than the one for the normal innovations.  

Once more the new test is robust and rejects about the right proportion of the time. . 
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Figure 3 Model 5 1000,2000 and 3000 Observations 

 
 

Let us consider now the power of the test. In Figures 4 and 5 the solid curves 

represent  the estimated power of the new test for n=500 (left part) and n=2000 

(right part). The Dot-Dash curves are for n=1000 (left part) and n=3000 (right 

part). For the original series tests we have respectively the Dash and Dot 

curves. 

Observe that the sample effect is significant. Indeed, the higher the sample 

size, the higher the power. The new test is so good that has higher power that 

the highest power at the 20% nominal level with n=3000 observations (Figure 

10, right hand side). 

For model 6 with balanced GARCH parameters, recall that tests based on the 

original series have size higher than 70%.  Here, it turns out that the power is 

almost less than the size! 
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Figure 4 Power of the Test; Model 6   

 

Figure 5: Power of the test; Model 7   

 

In summary the size results clearly show that the Skewness test of the original 

series over-rejects the null hypothesis and is affected by both the sample size 

and the parameters of the GARCH process. On the other hand the proposed 

test is very robust in all cases examined with estimated size very near to the 

nominal one. The power results of the tests are also very impressive indicating 

the appropriateness of the proposed test.  
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4. APPLICATION TO FINANCIAL DATA 

 

The Historical Prices in Fig. 6 & 7 are for the Swedish OMX and the German 

DAX index (source: http://finance.yahoo.com). In Fig. 8 & 9, we analyze the 

closing prices for BP and DELL. In each figure the 1st graph represents the 

original series and the 2nd the NoVaS transformed series. The solid curve is a 

standard normal variable that helps or comparative purposes. 

Figure 6a: OMX Index Stockholm (6 Jul 2004-29 Nov-2010) (1633 observations) 

 
   Figure 6b The cdf and pdf curve of the OMX series 

 

Figure 6b shows that the original series has positive skewness (0.16363007, p-

value=0.00694) but after the NoVaS transformation (min=-3.4131, 

max=3.0741) the skewness is negative (-0.20848564, p-value=0.00118).  

http://finance.yahoo.com/
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 Figure 7a DAX (GDAXI) German Index (1 Feb 1995-20 Dec 2006) 

 
 

Figure 7b The cdf and pdf curve of the DAX series 

 
 

Figure 7b for the DAX index shows that both the original and the NoVaS 

transformed series (min=-4.071, max=3.2305) have negative skewness 

(before=-0.16284, p-value =0.00027, after=-0.261, p-value=1.95547e-008). 
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Figure 8a DELL (1 Jan 1999-29 Nov 2010)  

 
 

Figure 8b  The cdf and pdf curve of the DELL series 

 
 

Figure 8b for the closing prices for DELL is a representative example 

of the NoVaS transformation. It shows that the negative skewness (-

0.16466246, p-value =0.000216) of the original series after the NoVaS 

transformation (min=-3.8369, max=3.467) becomes significant equal 

to zero (-0.066567912, p-value 0.53).  
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Figure 9a BP (1 Jan 2003-29 Nov 2010)  

 
 

Figure 9b  The cdf and pdf curve of the BP series 

 
 

Figure 9b for the closing prices of BP shows that neither the original series nor 

the transformed NoVaS series (min=-3.37, max=3.5) shows any significant 

skewness (original=-0). 
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5. CONCLUSIONS 

In this work we derived a skewness test for series that have ARCH/GARCH 

effect. A test, in a easy and comprehensive way, can distinguish between the 

causes for skewness, namely whether there is an ARCH/GARCH effect or the 

underline distribution is non-normal. The proposed test shows extremely good 

results in an extensive simulation study not only in terms of the size but also in 

terms of the power. The test has also been applied to a number of financial 

data with satisfactory results. This work provides the ground for investigating 

the complementary problem of the kurtosis which also can been used for 

similar purposes in financial return series.  
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APPENDIX 

we derive below parts of the proof of Lemma 1: 

I) The first moment of ,t aW  

First recall that for the Simple NoVaS 0   and consider the Simple  NoVaS  

with one lag, namely,  

                                     
2 2

, 1t a t tW a a      .                                                 (A.0) 

Recall that t  is variance stationary and  2

2 tm E  . Then the  mean is:  

  2 2

, 1 22t a t tE W E a a am  
     .  

For two lags the mean is  , 23t aE W am , while for three lags is   

 , 24t aE W am  and finally the general formula of the mean for  k lags is: 

   , 21t aE W k am                       (A.1) 

II) The second moment of ,t aW  

For the Simple NoVaS model with one lag, by squaring both sides of (A.0) 

and then taking expectations we have:      

         2 2 4 2 4 2 2 2

, 1 12t a t t t tE W a E a E a E E       .       

If t is 4-order stationary with   4

4 tm E   and  2

2 tm E  then we have: 
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         
22 2 2

, 4 22 2t aE W a m a m  . In a similar fashion we can show that for 

the Simple NoVaS model with two lags we have 

       
22 2 2

, 4 23 3 2t aE W a m a m  . Also for three lags we have 

       
22 2 2

, 4 24 6 2t aE W a m a m   and finally for the  k  lags:  

     
22 2 2

, 4 21 ( 1)t aE W k a m k k a m     .                (A.2)   

III) The third moment of ,t aW  

Following the same principle as in the case of the 2
nd

 moment, it is easy to 

show that, the general formula for  k lags for the third moment is: 

               3 2 4 2 2 2 2

,( ) 1 1 1t a t t t tE W a k E a k k E E a k E        .   (A.3)               

 Equation (A.3)  for 
1

1
a

k



 and with  4

4 tm E   and  2

2 tm E  becomes:    

 3 2

, 4 2 2( )t aE W am akm m   .                                (A.4) 

 

 


