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Abstract

This study studies a smooth-transition (ST) type of cointegration. The proposed

ST cointegration allows for regime switching structure in a cointegrated system and

incorporates the linear cointegration developed by Engle and Granger (1987) and the

threshold cointegration studied by Balke and Fomby (1997). We developed F -type tests

to examine linear cointegration against ST cointegration in a class of vector ST coin-

tegrating regression models. The null asymptotic distributions of the tests are derived

when stationary transition variables are involved. Finite-sample distributions and the

small-sample performances of these tests are studied using Monte Carlo simulations. Our

F -type tests have better power when the system contains ST cointegration than when

the system is linearly cointegrated. The testing procedure in this study is applied to

purchasing power parity (PPP) data as an example, where we observe that there is no

linear cointegration, but an ST cointegration exists in the system.

Keywords: nonlinear cointegration; threshold cointegration; smooth transition; F

test.

1 . INTRODUCTION

Cointegration analysis in a vector nonstationary time series has received consider-

able attention over the last two decades since Engle and Granger (1987) developed

linear cointegration. It has been successfully applied to analyzing economic sys-

tems in linear frameworks when individual economic variables are tied together by
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some long-run equilibrium relation. Examples of such applications can be found

in Baillie and Selover (1987) and Corbae and Ouliaris (1988) for analyzing pur-

chasing power parity data, in Kremers (1989) for studying a system of GNP and

debt, and in Clarida (1994) for investigating imports.

Moreover, many empirical studies of economic systems indicate that most time

series data display nonlinear features. In practice, economic data usually display

dramatic fluctuations and obvious changes in regimes. Those regime shifts are

important for the inference of econometric phenomena (see, e.g., Teräsvirta 1994).

As such, the development of cointegration in nonlinear frameworks is necessary.

The long-run equilibrium in nonlinear frameworks is represented by a nonlinear

combination of the nonstationary variables. Two schemes primarily developed for

nonlinear cointegration are threshold cointegration and smooth-transition (ST)

cointegration. Granger and Teräsvirta (1993) and Granger (1995) extended linear

cointegration in Engle and Granger (1987) to nonlinear frameworks. Balke and

Fomby (1997) used a two-step approach to examine threshold cointegration. Park

and Phillips (1999, 2001) and Chang et al. (2001) studied parameter estimation in

nonlinear cointegrating regressions. Hansen and Seo (2002) tested threshold effects

in a two-regime vector error-correction model. Furthermore, Choi and Saikkonen

(2004) investigated Lagrange Multiplier (LM) tests to examine linearity in an ST

cointegrating regression as discussed in Saikkonen and Choi (2004). There are

fruitful applications of nonlinear cointegration in the literature.

In this study, we first propose a definition of ST cointegration that allows for

regime switching structure in a cointegrated system. Our definition is flexible in

that it covers a wide range of nonlinear cointegration. Moreover, it nests the linear

cointegration developed by Engle and Granger (1987) and the threshold cointe-

gration developed by Balke and Fomby (1997). The main purpose of this study

is to test linear cointegration against ST cointegration in dependent time series

by applying ST cointegrating regression models and F -type tests. We include

two ST cointegrating regression models. In one of the models, regressors are I(1)

processes whose first-order differences have zero means and regression does not
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include a constant term. In the other model, regressors are I(1) processes whose

first-order differences have nonzero means and regression includes both a constant

term and a time trend. The models in this study are similar to the cointegrating

regression in Saikkonen and Choi (2004), but we include stationary variables as

transition variables rather than I(1) variables. For example, the transition vari-

ables could be past values of the first-order differences of the I(1) regressors or

certain stationary exogenous variables. This is an important complement of this

class of models, because there is no reason to exclude the possibility of the tran-

sition variables given by certain stationary variables. In addition, Saikkonen and

Choi (2004) only considered the current value of the nonstationary regressors as the

transition variables, but lagged values of the differences of the levels or the levels

are meaningful when they appear as the transition variables. When choosing non-

stationary transition variables, the LM tests in Saikkonen and Choi (2004) have

standard asymptotic distributions, whereas our F -type tests have nonstandard

distributions when the transition variables are replaced by stationary variables.

This has important implications for empirical work. It is crucial to distinguish

between the cases with stationary and nonstationary transition variables so that

the correct test can be used.

In practice, an additional step of testing unit roots is necessary before detect-

ing ST cointegration to fulfill the assumption in the definition of cointegration

that the time series individually is an I(1) process. The unit root tests used for

nonlinear cointegration should not be the standard unit root tests, because the

possible nonlinearity of each time series may misinform the results of the standard

unit root tests. When the individual time series are global stationary time series

with nonlinearity, incorrect non-rejection of a unit root in the standard unit root

tests could occur. In this study, we test the null of a unit root against nonlinear

stationary process denoted by the LSTAR model rather than against a linear sta-

tionary process. After linear cointegration is rejected, a diagnosis step needs to be

performed, in case cointegration does not exist at all. The stationary assumption

of the residuals should hold for the existence of cointegration. In an empirical
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study involving PPP data (United States-Italy), nonlinear cointegration relation

in the system that does not contain linear cointegration is reported.

The outline of the remainder of the manuscript is as follows: Section 2 presents

the definition of ST cointegration and the properties of ST function; Section 3

discusses two ST cointegrating regression models. Section 4 develops F -type tests

for testing linear cointegration against ST cointegration. Section 5 details the

asymptotic distributions of the F -type tests. Section 6 provides finite-sample

simulation studies. Section 7 applies our approach to an empirical PPP dataset.

The conclusion is presented in Section 8. The proofs are detailed in Appendix A

and the simulations of nonstandard unit root tests are provided in Appendix B.

2 . DEFINITION OF SMOOTH-TRANSITION COINTEGRATION

In this section, we begin by introducing a definition of ST cointegration that nests

the linear cointegration proposed by Engle and Granger (1987) and the threshold

cointegration by Balke and Fomby (1997).

First, we describe two processes, I(0) and I(1). A time series yt is said to

be integrated of order 1, denoted by I(1), if its first difference, ∆yt, is I(0), in

which I(0) is a strictly stationary process with a long-run variance that is finite

and positive (see Hayashi 2000, pages 558-560 for additional details).

Let yt = (y1t, y2t, ..., ynt)
′ be an (n × 1) vector time series in which each of

the series taken individually is I(1). As defined in Engle and Granger (1987),

if there is a nonzero constant vector α, such that α′yt ∼ I(0), we say that the

vector yt contains linear cointegration, and the vector α is referred to as the linear

cointegrating vector.

However, many empirical studies suggest that the cointegrating vector α could

not be constant. For example, it can depend on time t or be a vector of random

variables. Threshold cointegration is a special case in which linear cointegration

is applicable inside a given regime, but requires different cointegration in other

regimes (see Balke and Fomby 1997). Our ST cointegration approach nests both

linear and threshold cointegration. It is defined such that the cointegration vector
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is time-varying or a vector of random variables.

Definition. Let yt = (y1t, y2t, ..., ynt)
′ be an (n × 1) vector time series in which

each of the series is I(1), i.e., yit ∼ I(1) for each i = 1, 2, ..., n. The vector time

series yt is said to contain ST cointegration if there is an (n× 1) time-varying or

random vector αt = (α1t, α2t, ..., αnt)
′ such that the nonlinear combination of the

series yt is I(0). That is,

α′
tyt ∼ I(0). (2.1)

In the vector αt, αit is assumed to be αit = αiGi (st; γ, c) for each i = 1, 2, ..., n,

in which Gi (st; γ, c) for each i is an ST function such that

G (st; γ, c) =

(
1 + exp

{
−γ ·

k∏
j=1

(sjt − cj)

})−1

, γ > 0 (2.2)

where γ is a slope parameter, cj are location parameters, and sjt are time-varying

or random transition variables.

For a different index i, st, γ and c in Gi (st; γ, c) are possibly different. We

omit the index i for st, γ and c here for simplification of notation. Consider a

simple smooth-transition function when k = 1 in (2.2):

G (st; γ, c) = (1 + exp{−γ(st − c)})−1 , γ > 0. (2.3)

G(st; γ, c) in (2.3) is a non-decreasing nonlinear function of st with the restriction

γ > 0. The slope parameter γ measures the speed of transition over time from one

regime to another, and the location parameter c gives the point in time in which

the transition is symmetric around. G(st; γ, c) in (2.3) is reduced to the constant

0.5 when γ equals zero, but jumps sharply from one regime (G(st; γ, c) = 0) to

another regime (G(st; γ, c) = 1) when γ goes to infinity. When γ is between those

two extreme cases, G(st; γ, c) is a smoothly increasing function of st bounded

between 0 and 1. The plot of G(st; γ, c) in Figure 1 as a function of st, given γ

and c, graphically illustrates the above properties of G(st; γ, c), in which st is a
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Figure 1: Smooth transition function G(st; γ, c) of st, in which st is a standard normal random
variable; γ = 0.01, 0.1, 1, 2, 50, c = 1 in panel (a), and c = 0.5 in panel (b).
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Figure 2: Panel (a) presents three I(1) time series (solid, dotted, and dashed); panel (b)
depicts their nonlinear combination (stationary); and panel (c) depicts their linear combination
(nonstationary).

standard normal random variable, with c = 1 in panel (a), and c = 0.5 in panel

(b). In each panel, we compare G(st; γ, c) by varying γ from 0.01 to 50.
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Engle and Granger (1987) mentioned that the notion of cointegration can be

extended to a vector of series with first-order difference, ∆yt that, has nonzero

mean. In that case, the I(1) system yt contains both stochastic trends and deter-

ministic trends. If the cointegrating vector defined above eliminates the stochastic

trends but not necessarily the deterministic trends, the combination of a nonsta-

tionary system yt is then trend-stationary rather than I(0) in (2.1). This case has

been discussed in the linear framework in Hayashi (2000, pages 629-631) and is

referred to as stochastic cointegration. The two cointegrating regression models

in the following section are designed for the two cases.

Panel (a) in Figure 2 illustrates a numerical example of the ST cointegration

defined in (2.1), in which yit (i = 1, 2, 3) are generated from the following system:

y1t = α2ty2t + α3ty3t + ε1t

y2t = y2,t−1 + ε2t

y3t = y3,t−1 + ε3t,

(2.4)

in which α2t = 0.8 (1 + exp{−3(st − 0.8)})−1, α3t = (1 + exp{−(st − 1)})−1, the

error term εt = (ε1t, ε2t, ε3t)
′ is a vector n.i.d. sequence, and st is here simulated

from the standard normal distribution. Panel (b) presents their stationary non-

linear combination, whereas their linear combination in panel (c) is not stationary

(the test for linear cointegration is achieved by the Phillips-Ouliaris Zρ test in

Phillips 1987).

3 . SMOOTH-TRANSITION COINTEGRATING REGRESSION MODELS

Let an (n× 1) vector time series yt = (y1t, y2t, ..., ynt)
′ be nonlinearly cointegrated

according to the definition of ST cointegration in Section 2. We propose two vector

ST cointegrating regression models as follows:

y1t = α′
ty2t + ut (3.1a)

y2t = y2,t−1 + vt, (3.1b)
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and

y1t = a1 + δt+α′
ty2t + ut (3.2a)

y2t = a2 + y2,t−1 + vt, (3.2b)

in which y2t = (y2t, y3t, ..., ynt)
′, vt is an (n − 1) vector stationary process, each

αit in αt is defined in (2.1), a2 is an (n − 1) × 1 constant vector, a1 and δ are

scalar parameters, the error term (ut,v
′
t)

′ is serially correlated, and ut and vt are

allowed to be correlated.

The two models (3.1a)-(3.1b) and (3.2a)-(3.2b) that contain the defined ST

cointegration have triangular representations. The triangular representation, in-

troduced by Phillips (1991), is useful for describing the dynamic structures in a

system. In particular, the triangular representation is applied to model the coin-

tegration relation with fewer parameters in a reduced form of vector autoregres-

sions. See Phillips (1991) for more discussions of the triangular representation. In

(3.1a), the regression model has no constant term, and the regressor y2t in (3.1b)

is a vector I(1) process whose first-order difference has a zero mean. Furthermore,

we consider the case in (3.2a) that the regression model includes both a constant

term and a time trend, and the regressor y2t in (3.2b) is a vector I(1) process

whose first-order difference has a nonzero mean.

Considering the properties of G(st; γ, c) in (2.3), we discover that the nonlinear

cointegrating regression in (3.1a)-(3.1b) or (3.2a)-(3.2b) has the following prop-

erties: (a) it is reduced to a linear cointegrating regression when all γ in αt are

equal to zero. (b) It becomes a model containing threshold cointegration when

at least one γ in αt goes to infinity. (c) It allows for regime-switching structures

when all γ in αt are finite and larger than zero, which is proposed as the general

form of ST cointegrating regression models in this study.
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4 . TESTING PROCEDURE

In this section, we develop F -type tests to examine linear cointegration against

nonlinear cointegration in the proposed ST cointegrating regression models (3.1a)-

(3.1b) and (3.2a)-(3.2b) in Section 3.

However, in practice, an additional step of testing unit roots is necessary before

detecting ST cointegration as introduced. This is due to the assumption in the

definition of cointegration that the time series individually is an I(1) process. The

standard unit root tests are not robust to the possible nonlinearity in the series,

because the possible nonlinearity may mislead the results of the standard unit root

tests. When individual time series are stationary time series with nonlinearity,

incorrect non-rejection of a unit root in the standard unit root tests could occur.

In this study, we test the null of a unit root against the nonlinear stationary

process denoted by the LSTAR model rather than against a linear stationary

process. Finite-sample distributions of the test are provided by simulations for the

application, but the asymptotic ones are available upon request to save space by

concentrating on the testing for nonlinear cointegration. After linear cointegration

is rejected, another diagnosis step needs to be performed, in case cointegration

does not exist at all. The KPSS test by Kwiatkowski et al. (1992) can be used to

examine the stationary assumption of the residuals.

The hypothesis is introduced by imposing the following parameter restrictions:

H0 : γ = 0 against H1 : γ > 0, (4.1)

in which γ is an (n− 1)× 1 vector with each element γi as the slope parameter in

(2.3). As pointed out by Luukkonen et al. (1988), the restriction of γ = 0 leads to

the identification problem that the parameter c in (2.3) is not identified under the

null of γ = 0. Therefore, we replace G(st; γ, c) with its first-order Taylor expansion

around γ = 0 as its linear approximation (ignoring the remainder) if G(st; γ, c)

has satisfied Assumption 1 below.
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Assumption 1. The function G(st; γ, c) in (2.3) and its derivatives are contin-

uous in an open interval (−ε, ε) for ε > 0. G(st; γ, c) is at least fourth-order

differentiable in a neighbourhood of γ = 0, and G(st; γ, c) is bounded for all st.

The corresponding auxiliary regressions of (3.1a) and (3.2a) are given in (4.2)

and (4.3), respectively, by substituting the first-order expansion for G(st; γ, c):

y1t = β′xt + u∗
t , (4.2)

and

y1t = a1 + δt+ β′xt + u∗
t , (4.3)

where β = (β2
′,β3

′)
′ and xt = (y′

2t, (sty2t)
′)′. β2 and β3 are (n−1)×1 parameter

vectors with each element β2i = αi/2− ciαiγi/4 and β3i = αiγi/4 (i = 2, 3, ..., n).

st is an (n− 1)× (n− 1) diagonal matrix with diagonal elements that are sit (i =

2, 3, ..., n). In this study, we consider the stationary process as sit in Gi(st; γ, c),

for example, the lagged first difference of a regressor, ∆yi,t−d, or an exogenous

variable zit. Under the null of γ = 0, the error term u∗
t is equivalent to ut in (3.1a)

and (3.2a). In the auxiliary regressions in (4.2) and (4.3), the hypothesis of (4.1)

is then rewritten to be

H0 : β3 = 0 against H1 : β3 ̸= 0. (4.4)

The estimators of the parameters in (4.2) or (4.3), which minimize the sum

of the squared residuals, are consistent when the I(1) regressor y2t is not cointe-

grated, as shown in Phillips and Durlauf (1986), Stock (1987), and Hansen (1992a).

Thus, the simultaneity bias is not a problem in large samples, even though the

error term u∗
t and the I(1) regressors are correlated. In finite samples, however,

the bias of the estimators can be very large. For that reason, we provide a more

efficient estimator by correcting (4.2) and (4.3) by adding leads and lags of ∆y2t
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(see Dickey and Fuller 1979) as follows:

y1t = β′xt +

p∑
s=−p

ζ ′
s∆y2,t−s + ũt = β′xt + ζ ′v∗

t + ũt = θ′x̃t + ũt (4.5)

and

y1t = a1 + δt+ β′xt + ζ ′v∗
t + ũt (4.6)

in which x̃t = (v∗′
t ,x

′
t)

′, θ = (ζ ′,β′)′, ζ = (ζ ′
p, ζ

′
p−1, ..., ζ

′
1, ζ

′
0, ζ

′
−1, ..., ζ

′
−p)

′, v∗
t =

(∆y′
2,t−p,∆y′

2,t−p+1, ...,∆y′
2,t−1,∆y′

2t,∆y′
2,t+1, ...,∆y′

2,t+p−1,∆y′
2,t+p)

′. After abstract-

ing v∗
t from u∗

t , ũt is now uncorrelated with vτ for all t and τ .

In contrast to y2t in (4.2), the first-order difference of y2t in (4.3) is not zero.

Thus, y2t in (4.3) is asymptotically equivalent to a time trend. That makes the

regressors in (4.3) collinear in a large sample because a time trend is already

included as a separate variable. Note that

y2t = a2 + y2,t−1 + vt = y20 + a2t+ ξ2,t−1 + vt,

where ξ2t = ξ2,t−1 + vt = y2t − a2t is an (n − 1) vector random walk without

drift and y20 is a zero (n − 1) vector. Describing the limiting distribution of

the estimates therefore further requires a rotation of a detrending transformation.

Under the null, (4.6) can be transformed as

y1t = a1 + δ∗t+ β′
2ξ2t + β′

3stξ2t + ζ ′v∗
t + u∗

t = θ∗′x̃∗
t + ũt (4.7)

in which δ∗ = δ + β′
2a2, x̃∗

t = (v∗′
t , ξ

′
2t, (stξ2t)

′, t, 1)′ and θ∗ = (ζ ′,β′
2,β

′
3, δ

∗, a1)
′,

and the error term in (4.6) and (4.7) are identical under the null. We now consider

the auxillary regression models (4.5) and (4.7). The null hypotheses (4.4) are

updated in (4.8) and (4.9), respectively, for (4.5) and (4.7), such that

H0 : R̃θ = r (4.8)
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and

H0 : R̃
∗θ∗ = r (4.9)

where R̃ =
(
0(n−1)×(2p+2)×(n−1), I(n−1)

)
, R̃∗ =

(
0(n−1)×(2p+2)×(n−1), I(n−1),0(n−1)×2

)
,

r = 0n−1.

To test linear cointegration against ST cointegration in (3.1a)-(3.1b) under the null

of (4.1), an F -type statistic is calculated as

F̃T =
(
R̃Υ̃T

(
θ̂T − θ0

))′{
s̃2T R̃Υ̃T

(∑
x̃tx̃

′
t

)−1
Υ̃T R̃

′m

}−1

R̃Υ̃T

(
θ̂T − θ0

)
.

(4.10)

Similarly, to test the linear cointegration against ST cointegration in (3.2a)-(3.2b) under

the null of (4.1), an F -type statistic is calculated as

F̃ ∗
T =

(
R̃∗Υ̃

∗
T

(
θ̂
∗
T − θ∗

0

))′{
s̃∗2T R̃∗Υ̃

∗
T

(∑
x̃∗
t x̃

∗′
t

)−1
Υ̃

∗
T R̃

∗′m

}−1

R̃∗Υ̃
∗
T

(
θ̂
∗
T − θ∗

0

)
.

(4.11)

In (4.10) and (4.11), Υ̃T an Υ̃
∗
T are (2p+4)×(n−1)×(2p+4)×(n−1) diagonal matrices

of convergence rates, R̃ and R̃∗ are ((n − 1) × (2p + 4) × (n − 1)) matrices restricted

under the null hypothesis (4.8) and (4.9), θ̂T and θ̂
∗
T are the consistent estimator of the

true parameter θ0 and θ∗
0 under the null, s̃2T and s̃∗2T are consistent estimators of Λ2

1,

respectively, and m is the number of restrictions under the null (4.8) and (4.9) which is

(n− 1) here.

5 . TESTS OF LINEAR COINTEGRATION

In this section, we derive the null asymptotic distributions of the F -type tests in (4.10)-

(4.11) to test linear cointegration against nonlinear cointegration in two ST cointegrating

regressions (4.5) and (4.7). First, the following assumptions are required for considering

these tests.

Assumption 2. The time series yt presented in (3.1a)-(3.1b) and (3.2a)-(3.2b) are

linear I(1). Assume y2t has the form

y2t = a2 + y2,t−1 + vt, t = 1, 2, ..., T (5.1)

in which the initial values of y2t, y20, are equal to zero, a2 = 0 in (3.1b) and a2 ̸= 0 in

(3.2b), and vt is a zero-mean vector stationary process allowing for serial correlations.
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Assumption 3. The parameter space for (4.5) and (4.6) is a compact subset of Euclidean

space.

Assumption 4. Let ut be an (n× 1) vector ut = (ũt,v
′
t)
′ such that

ut =

∞∑
s=0

Ψsεt−s,

in which {s ·Ψs}∗s=0 is absolutely summable; that is,
∑∞

s=0 s ·
∣∣∣ψ(s)

ij

∣∣∣ <∞ for each i, j =

1,2,...,n for the row i, column j element of Ψs, ψ
(s)
ij . {εt} is an i.i.d. sequence with mean

zero, variance PP′, and finite fourth-order moments. Ψ(1)P is nonsingular. Assume

that ũt is uncorrelated with vτ for all t and τ . Then, P and Ψ(L) can have block-diagonal

forms,

P
(n×n)

=

 σ1 0′

0 P22
(n−1)×(n−1)

 and Ψ(L)
(n×n)

=

 Ψ11(L) 0′

0 Ψ22(L)
(n−1)×(n−1)

 ,

such that

Λ
(n×n)

= Ψ(1) ·P =

 Λ1 0′

0 Λ2
(n−1)×(n−1)


is also block-diagonal, in which Λ1 = σ1 ·Ψ11(1) and Λ2 = Ψ22(1) ·P22.

The assumption that ũt is uncorrelated with vτ for all t and τ in Assumption 4 is

not desired for the errors in (4.2) and (4.3) but in (4.5) and (4.6) after the correlations

between u∗t and y2t are eliminated.

We next derive the asymptotic distributions of the two F -type statistics, F̃T and F̃ ∗
T ,

formulated in (4.10)-(4.11).

Let an (n× 1) vector W(r) = (W1(r),W2(r), ...,Wn(r))
′ be n-dimensional standard

Brownian motion and be partitioned as W(r) = (W1(r),W2(r))
′, in which Wi(r) are

independent processes for i = 1, 2, ..., n and r ∈ [0, 1].

If the transition variables are specified, then the asymptotic distribution of the F -

type statistic F̃T in (4.10) can be formulated in terms of standard Brownian motion

Wi(r) as in the following Theorem 1.
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Theorem 1. Let θ̂T be the OLS estimator of the parameter θ in (4.5). θ0 is the true

parameter in (4.5) under the null (4.8). Assume that Assumptions 1-4 hold. Assume

further that the transition variables in st in (4.5) are stationary processes. We then have

the following results:

(a) Under the null hypothesis (4.8), the asymptotic distribution of the estimator θ̂T

satisfies

Υ̃T

(
θ̂T − θ0

)
L→ Q̃−1h̃, (5.2)

in which

Υ̃T =

 T 1/2I(2p+1) 0

0′ T I(2n−2)

 , Q̃ =


Q̃11 0 0

0′ Q̃22 0

0′ 0 Q̃33

 , h̃ =


h̃1

h̃2

h̃3

 ,

whereas matrix Q̃ and vector h̃ are stochastic processes expressed in terms of standard

Brownian motion as follows:

1) Q̃11 = E(v∗
tv

∗′
t );

2) Q̃22 = Λ2

{∫ 1
0 [W2 (r)] [W2 (r)]

′dr
}
Λ′

2;

3) The (i−1, j−1)th element of Q̃33 is E(sitsjt){Q̃22}i−1,j−1, in which {Q̃22}i−1,j−1

is the (i− 1, j − 1)th element of Q̃22, (i,j=2,3,...,n);

4) h̃1 = N (0,Σ) in which Σ =
∑∞

s=−∞E(ũtũt−sv
∗
tv

∗′
t−s);

5) h̃2 = Λ1Λ2

{∫ 1
0 W2 (r) dW1 (r)

}
;

6) The (i−1)th element of h̃3 is the (i−1)th diagonal element of Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 ,

in which Λ∗
4 are defined in Lemma 2 (b),

whereas Λ1 and Λ2 in 2), 4), 5) above are defined in Assumption 4.

(b) Consider the F -type statistic F̃T defined in (4.10). Under Assumptions 1-4, the

asymptotic distribution of the F̃T statistic has a form

F̃T
L→ h̃′

3Q̃
′−1
33 h̃3/(mΛ2

1), (5.3)

in which Q̃33 and h̃3 are given in (a) above.
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Proof of Theorem 1. See Appendix A.

Note that the asymptotic distribution of the F -type statistic in (4.10) is expressed

in terms of standard Brownian motion. The F̃T statistic does not have a standard

asymptotic distribution because the vector h̃3 contained in vector h̃ in Theorem 1

are non-Gaussian processes. Taking a simple case as an example, we observe that∫ 1
0 Wi(r)dWj(r) +

∫ 1
0 Wj(r)dWi(r) = Wi(1)Wj(1) when i ̸= j, in which Wi(1)Wj(1)

has a so-called “product-normal distribution†” and
∫ 1
0 Wi(r)dWi(r) = 1

2{[Wi(1)]
2 − 1}

when i = j, which follows a Chi-squared distribution. Obviously,
∫ 1
0 Wi(r)dWj(r) indi-

cates a non-Gaussian process. Similarly, in multivariate cases, Λ∗ ∫ 1
0 W∗(r)dW∗′(r)Λ∗′

in Lemma 2 (b) follows a combination of Chi-square and product-normal distributions.

Then Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 in Lemma 2 (b) has a combination of product-normal

distributions. Therefore, each element in vector h̃3, which is the diagonal element of

matrix Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 , is a non-Gaussian process. As such, the standard re-

sults in Choi and Saikkonen (2004) cannot apply when we consider stationary transition

variables rather than I(1) transition variables in the cointegrating regression (4.5).

Now, consider (4.7) and (3.2b). The asymptotic results for the statistic in (4.11) are

given in the following Theorem 2.

Theorem 2. Let θ̂
∗
T be the OLS estimator of the parameter θ∗ in (4.6). θ∗

0 is the

true parameter in (4.6) under the null (4.9). When the Assumptions 1-4 hold and the

transition variables in st in (4.6) are assumed to be stationary processes, the following

results (a) and (b) are established:

(a) Under the null hypothesis (4.9), the limiting distribution of the estimator θ̂
∗
T

satisfies,

Υ̃
∗
T

(
θ̂
∗
T − θ∗

0

)
L→ Q̃∗−1h̃∗, (5.4)

in which

Υ̃
∗
T =


T 1/2I(2p+1)×(n−1) 0 0 0

0′ T I(2n−2) 0 0

0′ 0′ T 3/2 0

0′ 0′ 0′ T 1/2

 ,

†If X1 and X2 are two independent standard normal random variables, then the product
Z = X1X2 follows the product-normal distribution with density function fZ(z) = π−1K0(|z|),
in which K0 is the modified Bessel function of the second kind. See Weisstein (n.d.).
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Q̃∗ =



Q̃∗
11 Q̃∗

12 Q̃∗
13 Q̃∗

14 Q̃∗
15

Q̃∗
21 Q̃∗

22 Q̃∗
23 Q̃∗

24 Q̃∗
25

Q̃∗
31 Q̃∗

32 Q̃∗
33 Q̃∗

34 Q̃∗
35

Q̃∗
41 Q̃∗

42 Q̃∗
43 Q̃∗

44 Q̃∗
45

Q̃∗
51 Q̃∗

52 Q̃∗
53 Q̃∗

54 Q̃∗
55


, h̃∗ =



h̃∗
1

h̃∗
2

h̃∗
3

h̃∗4

h̃∗5


whereas matrix Q̃∗ and vector h̃∗ are stochastic processes expressed in terms of standard

Brownian motion as follows:

1) Q̃∗
11 = E(v∗

tv
∗′
t ); Q̃∗

22 = Q̃22;

The (i− 1, j − 1)th element of Q̃∗
33 is E(sitsjt){Q̃22}i−1,j−1 (i,j=2,3,...,n);

3) Q̃∗
14 = E(v∗

t /2); Q̃∗
41 = Q̃∗′

14; Q̃
∗
15 = E(v∗

t ); Q̃∗
51 = Q̃∗′

15;

4) Q̃∗
21 =

(
Λ2

∫ 1
0 W2(r)dr

)
E(v∗′

t ); Q̃∗
12 = Q̃∗′

21;

5) Q̃∗
24 = Λ2 ·

∫ 1
0 rW2(r)dr; Q̃∗

42 = Q̃∗′
24;

6) Q̃∗
25 = Λ2 ·

∫ 1
0 W2(r)dr; Q̃∗

52 = Q̃∗′
25;

7) Q̃∗
31 =

(
E(v∗1tst)Λ2

∫ 1
0 W2(r)dr, ..., E(v∗(2p+1)(n−1),tst)Λ2

∫ 1
0 W2(r)dr

)
and Q̃∗

13 = Q̃∗′
31;

8) Q̃∗
32 = E(st)Λ2

∫ 1
0 W2(r)W

′
2(r)drΛ

′
2 and Q̃∗

23 = Q̃∗′
32 ;

9) Q̃∗
34 = E(st)Λ2

∫ 1
0 rW2(r)dr; Q̃∗

43 = Q̃∗′
34;

10) Q̃∗
35 = E(st)Λ2

∫ 1
0 W2(r)dr; Q̃∗

53 = Q̃∗′
35;

11) Q̃∗
44 = 1/3; Q̃∗

55 = 1; Q̃∗
45 = Q̃∗

54 = 1/2;

12) h̃1 = N (0,Σ) in which Σ =
∑∞

s=−∞E(ũtũt−sv
∗
tv

∗′
t−s); h̃∗

2 = h̃2; The (i − 1)th

element of h̃3 is the (i − 1)th diagonal element of Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 , in

which Λ∗
4 are defined in Lemma 2 (b);

14) h̃∗4 = Λ1 ·
{
W1 (1)−

∫ 1
0 W1 (r)dr

}
;

15) h̃∗5 = Λ1W1(1).
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(b) Consider the F -type statistic F̃ ∗
T defined in (4.11). Under Assumptions 1-4, the

asymptotic distribution of the F̃ ∗
T statistic has a form,

F̃ ∗
T

L→
(
R̃∗Q̃∗−1h̃∗

)′ {
Λ2
1 · R̃∗Q̃∗−1R̃∗m

}−1 (
R̃∗Q̃∗−1h̃∗

)
, (5.5)

in which Q̃∗ and h̃∗ are given in (a) above.

Proof of Theorem 2. See Appendix A.

The nuisance parameters in (5.3) and (5.5) need to be estimated in practice. For

example, from samples simulated from DGP1 in Section 6, E(sitsjt) in Q̃33 can be

estimated by the sample mean
∑T

t=1 sitsjt/T , and Λ2 in Q̃33 can be estimated as the

Cholesky factorization of
∑1

s=−1

(∑T
t=1 (∆y2t − â2)(∆y2t−s − â2))

′/T
)
. Similarly, we

can estimate other nuisance parameters.

6 . SIMULATION STUDY

This section exmines the finite-sample distributions and small-sample properties of the

F -type statistics in (4.10) and (4.11) using Monte Carlo experiments. All simulations

are designed for yt = (y1t, y2t, y3t)
′ and n = 3. Two options for the transition variable,

sit = ∆yi,t−1 and sit = zit, are considered in each experiment. A total of 100,000

replications were performed for each experiment.

6.1 Critical values of the F -type test

To assess the distribution approximation of the F -type statistic in (4.10), the data-

generating process (DGP1) is designed under the null hypothesis (4.8). The estimation

is achieved from (4.5). Then, the F -type statistic is derived from (4.10) for the finite

sample sizes T = 50, 100, 200, 500, starting from DGP1. The distribution of F is directly

calculated from (5.3) for the large sample size T = 1000 by approximating the Brownian

motion functions described in DGPBM below.
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(i) DGP1: Considering (4.5) under the null (4.8), DPG1 is given by

y1t = 0.4y2t + 0.6y3t + 0.18∆y2,t−1 + 0.21∆y3,t−1 + ũt

y2t = y2,t−1 + v1t

y3t = y3,t−1 + v2t,

t = 1, 2, ..., T , in which the error term ut = (ũt, v1t, v2t)
′ satisfies

ut = εt +Bεt−1,

where the (n×1) vector εt is an n.i.d process with zero mean and the covariance matrix


1 0 0

0 1 0.5

0 0.5 1

 ,

and B is a block-diagonal matrix


1 0 0

0 1 ω̃

0 ω̃ 1


with ω̃ = 0.2 and 0.8 in our simulations.

To assess the distribution approximation of the F -type statistic in (4.11), DGP2 is

designed under the null hypothesis (4.9). The estimation is achieved from (4.6). Then,

the F -type statistic is calculated as (4.11) for the finite sample sizes T = 50, 100, 200, 500,

starting from DGP2. The distribution of F is approximated based on model (4.7) for

the large sample size T = 1000.

(ii) DGP2: Considering model (4.6) under the null of (4.9), DPG2 is given by

y1t = 0.3 + 0.26t+ 0.4y2t + 0.6y3t + 0.18∆y2,t−1 + 0.21∆y3,t−1 + ũt

y2t = 0.11 + y2,t−1 + v1t

y3t = 0.19 + y3,t−1 + v2t

t = 1, 2, ..., T , where (ũt, v1t, v2t)
′ are assumed the same as in DGP1.
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Table 1: Critical values for the F -type test under the null (4.8), based on (4.5)
with sit = ∆yi,t−1

Probability that F -type test is greater than entry
sit ω̃ T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01

∆yi,t−1 0.2 50 0.01 0.04 0.08 0.16 3.71 4.96 6.23 7.95
0.2 100 0.02 0.04 0.08 0.16 3.56 4.67 5.85 7.34
0.2 200 0.01 0.04 0.08 0.16 3.49 4.57 5.67 7.15
0.2 500 0.01 0.04 0.08 0.16 3.44 4.49 5.53 6.91
0.2 1000 0.01 0.04 0.07 0.15 3.44 4.48 5.52 6.88
0.8 50 0.01 0.03 0.07 0.14 3.34 4.43 5.57 7.11
0.8 100 0.01 0.03 0.07 0.14 3.20 4.18 5.20 6.54
0.8 200 0.01 0.03 0.07 0.14 3.16 4.14 5.12 6.41
0.8 500 0.01 0.03 0.07 0.14 3.13 4.11 5.06 6.29
0.8 1000 0.01 0.03 0.07 0.14 3.09 4.03 4.98 6.20

The probability shown at the head of the column is the area in the right-hand tail.

Table 2: Critical values for the F -type test under the null (4.8), based on (4.5)
with sit = zit

Probability that F -type test is greater than entry
sit ω̃ T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01
zit 0.2 50 0.01 0.03 0.05 0.10 2.43 3.21 4.03 5.15

0.2 100 0.01 0.02 0.05 0.10 2.33 3.09 3.81 4.80
0.2 200 0.01 0.02 0.05 0.10 2.32 3.05 3.78 4.71
0.2 500 0.01 0.03 0.05 0.11 2.31 3.01 3.71 4.63
0.2 1000 0.01 0.02 0.05 0.10 2.32 3.01 3.70 4.59
0.8 50 0.01 0.03 0.05 0.11 2.42 3.21 4.06 5.20
0.8 100 0.01 0.02 0.05 0.10 2.35 3.10 3.87 4.92
0.8 200 0.01 0.03 0.05 0.11 2.33 3.05 3.79 4.76
0.8 500 0.01 0.02 0.05 0.10 2.32 3.01 3.74 4.68
0.8 1000 0.01 0.02 0.05 0.10 2.29 2.97 3.68 4.61

The probability shown at the head of the column is the area in the right-hand tail.
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Table 3: Critical values for the F -type test under the null (4.9), based on auxiliary
model (4.6) with sit = ∆yi,t−1

Probability that F type test is greater than entry
sit ω̃ T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01

∆yi,t−1 0.2 50 0.01 0.02 0.05 0.10 2.44 3.33 4.29 5.71
0.2 100 0.01 0.02 0.04 0.09 1.99 2.56 3.32 4.23
0.2 200 0.01 0.02 0.04 0.08 1.84 2.40 2.98 3.74
0.2 500 0.01 0.02 0.04 0.08 1.76 2.29 2.83 3.57
0.2 1000 0.01 0.02 0.04 0.08 1.74 2.28 2.81 3.50
0.8 50 0.01 0.02 0.04 0.08 2.14 2.93 3.80 4.98
0.8 100 0.01 0.02 0.04 0.08 1.79 2.38 2.98 3.82
0.8 200 0.01 0.02 0.04 0.07 1.66 2.18 2.72 3.46
0.8 500 0.01 0.02 0.04 0.07 1.60 2.08 2.57 3.21
0.8 1000 0.01 0.02 0.03 0.07 1.57 2.04 2.54 3.18

The probability shown at the head of the column is the area in the right-hand tail.

Table 4: Critical values for the F -type test under the null (4.9), based on auxiliary
model (4.6) with sit = zit

Probability that F type test is greater than entry
sit ω̃ T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01
zit 0.2 50 0.01 0.01 0.03 0.06 1.58 2.15 2.81 3.73

0.2 100 0.01 0.01 0.03 0.06 1.32 1.75 2.18 2.82
0.2 200 0.01 0.01 0.03 0.05 1.23 1.62 2.02 2.55
0.2 500 0.01 0.01 0.03 0.05 1.19 1.55 1.91 2.39
0.2 1000 0.00 0.01 0.03 0.05 1.16 1.50 1.84 2.30
0.8 50 0.01 0.01 0.03 0.06 1.56 2.15 2.76 3.67
0.8 100 0.01 0.01 0.03 0.06 1.31 1.74 2.19 2.78
0.8 200 0.01 0.01 0.03 0.05 1.23 1.62 2.02 2.56
0.8 500 0.01 0.01 0.03 0.05 1.18 1.54 1.91 2.41
0.8 1000 0.00 0.01 0.03 0.05 1.16 1.51 1.88 2.35

The probability shown at the head of the column is the area in the right-hand tail.



21 Smooth-transition cointegration

(iii) DGPBM : To calculate quantiles of the asymptotic distribution of the F -type

statistic in (5.3) and (5.5), we first approximate the Brownian motion functions by simu-

lating the partial sums of the normal random variables. For example,
∫ 1
0 W2(r)dW

∗′
2 (r)

in h̃3 is approximated as

T−1
T∑
t=1

xt−1e
′
t,

in which xt =
∑t

j=1 e
∗
j and both et and e∗t are independent, standard normal random

variables with E(ete
′
t) = E(e∗te

∗′
t ) = I. Furthermore,

∫ 1
0 [W2 (r)] [W2 (r)]

′dr in Q̃33 can

be approximated as

T−2
T∑
t=1

xt−1x
′
t−1.

Tables 1-4 report the distribution approximations of the F -type statistic F̃T in (4.10)

and (4.11) considering the two transition variables sit = ∆yi,t−1 and sit = zit for each

case, where zit are stationary exogenous variables.

6.2 A size study

In this subsection, the considered sample sizes in our small-sample experiments are T =

50, 100, 200. To examine the size properties of the F -type statistics, we generate data

under the null following DPG1 and DGP2 with ω̃ = 0.2 given in subsection 6.1.

The critical values used are the asymptotic version at sample size 1000 in Tables 1-4.

The empirical size estimates at the significance levels 10%, 5% and 1% are reported in

Table 5 for F̃T and reported in Table 6 for F̃ ∗
T .

The results in Tables 5-6 illustrate that there is not much of a size distortion, al-

though the tests are oversized when the sample size is small. The effect of size distortion

decreases when the sample size increases. When the sample size is greater than 200, the

approximation to the asymptotic distribution appears reasonable.
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Table 5: Empirical size estimates of the F -type test (4.10) at given significance levels
based on (4.5) with sit = ∆yi,t−1 and sit = zit

given significance levels given significance levels
sit T 10% 5% 1% sit T 10% 5% 1%

∆yi,t−1 50 0.118 0.065 0.017 zit 50 0.110 0.060 0.016
100 0.108 0.057 0.013 100 0.103 0.054 0.013
200 0.105 0.055 0.011 200 0.100 0.050 0.011

Table 6: Empirical size estimates of the F -type test (4.11) given significance levels based
on (4.6) with sit = ∆yi,t−1 and sit = zit

given significance levels given significance levels
sit T 10% 5% 1% sit T 10% 5% 1%

∆yi,t−1 50 0.180 0.114 0.044 zit 50 0.172 0.111 0.043
100 0.132 0.073 0.021 100 0.128 0.074 0.021
200 0.112 0.057 0.013 200 0.113 0.062 0.015
500 0.102 0.050 0.011 500 0.106 0.055 0.012

Table 7: Empirical power estimates of the F -type test at given significance levels based
on (4.5) with sit = ∆yi,t−1 and sit = zit

Model (4.5) with sit = ∆yi,t−1 Model (4.5) with sit = zit
given significance levels given significance levels

γ T 10% 5% 1% γ T 10% 5% 1%
0.01 50 0.103 0.051 0.010 0.01 50 0.104 0.053 0.011
0.01 100 0.107 0.055 0.011 0.01 100 0.114 0.059 0.013
0.01 200 0.128 0.069 0.016 0.01 200 0.161 0.093 0.025
0.1 50 0.245 0.155 0.054 0.1 50 0.401 0.296 0.141
0.1 100 0.585 0.478 0.284 0.1 100 0.778 0.703 0.547
0.1 200 0.946 0.914 0.819 0.1 200 0.980 0.968 0.928
0.5 50 0.938 0.902 0.800 0.5 50 0.985 0.974 0.939
0.5 100 1 0.999 0.998 0.5 100 1 1 1
0.5 200 1 1 1 0.5 200 1 1 1
1 50 0.992 0.985 0.956 1 50 1 0.999 0.996
1 100 1 1 1 1 100 1 1 1
1 200 1 1 1 1 200 1 1 1
5 50 0.956 0.927 0.838 5 50 1 1 1
5 100 0.999 0.997 0.990 5 100 1 1 1
5 200 1 1 1 5 200 1 1 1
10 50 0.930 0.887 0.764 10 50 1 1 0.999
10 100 0.997 0.994 0.979 10 100 1 1 1
10 200 1 1 1 10 200 1 1 1
50 50 0.902 0.844 0.688 50 50 1 1 0.999
50 100 0.994 0.987 0.960 50 100 1 1 1
50 200 1 1 0.999 50 200 1 1 1
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Table 8: Empirical power estimates of the F -type test at given significance levels based
on (4.6) with sit = ∆yi,t−1 and sit = zit

Model (4.6) with sit = ∆yi,t−1 Model (4.6) with sit = zit
given significance levels given significance levels

γ T 10% 5% 1% γ T 10% 5% 1%
0.01 50 0.182 0.116 0.046 0.01 50 0.177 0.114 0.044
0.01 100 0.145 0.081 0.025 0.01 100 0.154 0.092 0.029
0.01 200 0.187 0.112 0.037 0.01 200 0.236 0.156 0.061
0.1 50 0.421 0.327 0.192 0.1 50 0.524 0.438 0.293
0.1 100 0.767 0.694 0.547 0.1 100 0.843 0.790 0.678
0.1 200 0.985 0.974 0.943 0.1 200 0.989 0.983 0.963
0.5 50 0.970 0.954 0.911 0.5 50 0.989 0.982 0.962
0.5 100 1 1 0.999 0.5 100 1 1 1
0.5 200 1 1 1 0.5 200 1 1 1
1 50 0.996 0.993 0.983 1 50 0.999 0.999 0.997
1 100 1 1 1 1 100 1 1 1
1 200 1 1 1 1 200 1 1 1
5 50 0.984 0.977 0.959 5 50 0.998 0.998 0.998
5 100 0.999 0.999 0.998 5 100 1 1 1
5 200 1 1 1 5 200 1 1 1
10 50 0.978 0.968 0.943 10 50 0.997 0.997 0.997
10 100 0.999 0.999 0.997 10 100 1 1 1
10 200 1 1 1 10 200 1 1 1
50 50 0.971 0.958 0.923 50 50 0.996 0.996 0.996
50 100 0.999 0.998 0.995 50 100 1 1 1
50 200 1 1 1 50 200 1 1 1
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6.3 A power study

For the power studies of the F -type statistics in (4.10) and (4.11), we generate data

under the alternative by the system

y1t =
0.8

1 + exp(−γ(s2t − 0.5))
y2t +

1.2

1 + exp(−γ(s3t − 0.5))
y3t

+ 0.18∆y2,t−1 + 0.21∆y3,t−1 + ut

y2t =y2,t−1 + v1t

y3t =y3,t−1 + v2t

for the first case, and by

y1t =0.3 + 0.26t+
0.8

1 + exp(−γ(s2t − 0.5))
y2t +

1.2

1 + exp(−γ(s3t − 0.5))
y3t

+ 0.18∆y2,t−1 + 0.21∆y3,t−1 + ut

y2t =0.11 + y2,t−1 + v1t

y3t =0.19 + y3,t−1 + v2t

for the second case, in which (ut, v1t, v2t)
′ are generated as in DPG1 with ω̃ = 0.2 and

values of γ = 0.01, 0.1, 0.5, 1, 5, 10, or 50 for the comparisons. Simulation results

for the power studies are given in Tables 7-8. Our tests demonstrate good power. We

observed that the power of our tests increases reasonably as γ increases, however, when γ

is greater than 5, the power decreases slightly. This observation is not surprising because

it indicates another case known as threshold cointegration when γ is sufficient large (see

the properties of the function G(st; γ, c) in Section 2). When γ is very small, our tests

have low power because the model is nearly linear when γ is close to zero.

7 . EMPIRICAL APPLICATION OF PPP SYSTEM

PPP refers to the power purchasing parity theory in economics, which was developed

by Cassel (1918). PPP data are often used to study cointegration relation. Figure 3

presents normalized monthly PPP data from 1973:1 to 1989:10 (202 observations) of the

price level of United States (solid line) and the price level of Italy (dashed line) along

with the dollar-lira exchange rate (dot-dashed line), denoted by y1t, y2t and y3t. Natural
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Figure 3: PPP data: the price level of United States (solid line, blue) and Italy (dashed line,
green) and the dollar-lira exchange rate (dot-dashed line, red)

logs of the raw data were taken, multiplied by 100, and then normalized by subtracting

the initial value for 1973:l for ease of reading.

7.1 Testing for unit roots

According to our definition of ST cointegration, we first examine whether each of the

series in the system is individually I(1). Notice that if nonlinear structures exist in the

time series, the classical unit root tests may be invalid because of incorrect non-rejection

of a unit root by nonlinearity. This question was first posed by Perron (1990) and studied

by several others, e.g., He and Sandberg (2005). Therefore, we set up the null hypothesis

of a unit root against the alternative of a stable process in a nonlinear framework.

Consider a nonlinear model under the alternative hypothesis

yt = θ1 + θ2yt−1 + (θ3 + θ4yt−1)G(st : γ, c) + θ5t+ ut, (7.1)

with an auxiliary regression given in (7.2) for the parameter identification problem with

restriction γ = 0 under the null

yt = θ∗1 + θ∗2yt−1 + θ∗3styt−1 + θ∗4st + θ∗5t+ u∗t . (7.2)
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However, when considering st = yt−1, the alternative model (7.2) should be updated to

yt = θ∗1 + θ̃∗2yt−1 + θ∗3styt−1 + θ∗5t+ u∗t . (7.3)

The test for unit roots here is derived by imposing the null hypothesis Ho : θ∗2 = 1 and

the following joint null hypothesis:

Ho : θ
∗
2 = 1, θ∗3 = 0, θ∗4 = 0, θ∗5 = 0 (7.4)

in (7.2), or by imposing the null Ho : θ̃
∗
2 = 1 and the joint null hypothesis

Ho : θ̃
∗
2 = 1, θ∗3 = 0, θ∗5 = 0 (7.5)

in (7.3).

We calculate the Dickey-Fuller-type t statistic for testing the null of θ∗2 = 1 or

θ̃∗2 = 1 and the F statistic for the joint null (7.4) or (7.5). We include twelve lags∑12
p=1 δp∆yt−p in the regression (7.2) for estimation to correct serial correlations. The

critical values of those two statistics are not standard and are obtained by simulations

that are summarized in Tables 11-14 in Appendix B.

Data yit cannot reject the null of a unit root in either the linear or nonlinear frame-

work, and first-order differenced data ∆yit reject the null of a unit root, as displayed in

Table 9. Therefore, it is possible to state that each time series is a unit root process.

7.2 Cointegration Analysis

The study of linear cointegration for the same data set has been performed by Hamilton

(1994, Chapter 19). Given the cointegrating vector (1,−1,−1)′, the augmented Dickey-

Fuller (ADF) t test is −2.04, which is larger than the 5% critical value of −2.88. The

ADF F test is 2.19, which is less than the 5% critical value of 4.66. Alternatively, when

considering an estimated cointegrating vector, the Phillips-Ouliaris Zρ test of whether

ût is stationary is −7.54, which is larger than the 5% critical value of −27.1. By the

Phillips-Perron Zρ and Zt tests, Hamilton (1994, Chapter 19) concludes that there is no

linear cointegration relation in the system of the PPP data.

Following the testing procedure in Section 4, the results of testing linear cointegration
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Table 9: The unit root tests.
DF statistics critical values

framework time series st t F t F

linear y1t - -1.9547 2.4129 -3.43 6.34
y2t - -0.1320 4.2500 -3.43 6.34
y3t - -1.5844 1.4897 -3.43 6.34

nonlinear y1t ∆y1t−1 -1.8059 1.6189 -3.43 4.77
y1t−1 -0.4415 3.5068 -3.73 5.64

y2t ∆y2t−1 -0.4336 2.9254 -3.43 4.77
y2t−1 0.2838 3.3264 -3.73 5.64

y3t ∆y3t−1 -1.5082 1.4250 -3.43 4.77
y3t−1 0.2281 1.2047 -3.73 5.64

linear ∆y1t - -4.9350 12.179 -3.43 6.34
∆y2t - -4.5360 10.508 -3.43 6.34
∆y3t - -8.0722 32.613 -3.43 6.34

Table 10: mF̃ ∗
T tests

s2t ∆y2,t−1 ∆y3,t−1 ∆y2,t−1 ∆y3,t−1

s3t ∆y3,t−1 ∆y2,t−1 ∆y2,t−1 ∆y3,t−1

mF̃ ∗
T 12.12 5.25 16.93 2.04

s2t ∆y2,t−1 ∆y3,t−1 ∆y1,t−1 ∆y1,t−1

s3t ∆y1,t−1 ∆y1,t−1 ∆y2,t−1 ∆y3,t−1

mF̃ ∗
T 16.04 6.71 9.88 6.55

*Critical value at 5% significance level is 2.40.
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against ST cointegration are presented in Table 10. The null of linear cointegration is

significantly rejected, and we observe ST cointegration in the PPP system. The test of

nonlinearity is also used to specify the model whereby the one that presents the most

nonlinear relation in the system is chosen. Table 10 gives an example. Among the choices

in Table 10, the transition variables s2t = ∆y2,t−1 and s3t = ∆y2,t−1 are most optimal

because they contribute to the most significant rejection of the null. An estimated

cointegrating vector is suggested as follows, and the linear and nonlinear combination of

the PPP system is depicted in Figure 4.

ŷ1t =− 1.07
(0.330)

− 0.05
(0.011)

t+ 0.59
(0.013)

y2t + 0.06
(0.009)

y3t

+ 0.05
(0.008)

y2t

(
1 + exp{− 3.88

(0.927)
(∆y2,t−1 − 0.84

(0.051)
)/σ̂∆y2,t−1}

)−1

+ 0.06
(0.012)

y3t

(
1 + exp{− 5.69

(1.714)
(∆y2,t−1 − 0.83

(0.052)
)/σ̂∆y2,t−1}

)−1

+ 0.48
(0.114)

∆y2,t+1 + 0.43
(0.116)

∆y2,t+2 + 0.41
(0.113)

∆y2,t+3 + 0.51
(0.108)

∆y2,t+4

− 0.79
(0.152)

∆y2,t−1 − 0.07
(0.023)

∆y3,t+1 − 0.16
(0.024)

∆y3t − 0.14
(0.024)

∆y3,t−1

− 0.16
(0.025)

∆y3,t−2 − 0.14
(0.024)

∆y3,t−3 − 0.13
(0.024)

∆y3,t−4,

(7.6)

in which σ̂∆y2,t−1 = 0.643.

8 . CONCLUDING REMARKS

This study proposes a definition of nonlinear cointegration in the sense that nonsta-

tionary variables are tied within a nonlinear combination. The definition is given when

the nonlinear combination is restricted as a ST combination for ease of illustrating the

models and the testing procedure in this study, but it is straightforward to apply our ap-

proach to other combinations or extend it to a general form. Our definition further nests

two popular schemes of primarily developed cointegration, Engle and Granger’s linear

cointegration and Balke and Fomby’s threshold cointegration, as two special cases. The

proposed two cointegrating regression models cover both situations when the first-order

differences of individual series have either zero means or nonzero means. Current models

of nonlinear cointegration are extended by considering stationary (instead of nonstation-

ary) transition variables. A main result and important message of this paper is that this
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Figure 4: Linear combination of the PPP system, with given cointegrating vector (1,−1,−1)′

(solid, black) and with estimated cointegrating vector (dashed, blue); Nonlinear combination
(dotted, red).

leads to a nonstandard testing situation and previously derived tests for the nonstation-

ary case are not valid with stationary transition variables. Our F -type tests perform

quite well when the sample size is small. They have a higher power when the slope

parameter gamma is large (more nonlinearity in the true model) than when gamma is

small (less nonlinearity in the true model). However, when gamma is large enough, the

power slightly decreases because the true model represents a threshold cointegration.

In the application to monthly PPP data from 1973:1 to 1989:10 (202 observations)

of the price levels of United States and Italy along with the dollar-lira exchange rate,

linear cointegration relation is not likely to exist. This outcome can be puzzling, because

apart from transportation costs, the lack of the relative price having long-run equilibrium

contradicts the economic PPP theory. However, the observed nonlinear cointegration re-

lation explains the reason. The PPP theory just expresses in a more complicated way

that individual components are tied together represented by nonlinear combinations

rather than linear combinations. This data has been studied for cointegration analysis

in Hamilton (1994), which corroborated that linear cointegration has not been found.

Applying our procedure further, a ST cointegration is then observed. This is quite rea-

sonable and truely exciting. However, the increased difficulty with correctly specifying,

estimating and interpreting the richer model remains an issue.
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APPENDIX

A . Proofs of Theorems

The following Lemma 1 is an extending of Proposition 18.1 in Hamilton (1994) and

Lemma 2 is an application of Hansen (1992b). Let an (n×1) vector W(r) = (W1(r),W
′
2(r))

′

denote n-dimensional standard Brownian motion, in which a set of n independent pro-

cesses, denoted by W1(r), W2(r),..., Wn(r), are collected.
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Lemma 1. Consider the time series yt = (y1t,y2t)
′ and ut = (ũt,v

′
t)
′ in (4.5) and

(3.2b). Under Assumptions 1-4, the following results are established from Hamilton

(1994):

(a) T−2
T∑
t=1

y2,t−1y
′
2,t−1

L→Λ2

{∫ 1
0 [W2 (r)] [W2 (r)]

′dr
}
Λ′

2;

(b) T−1
T∑
t=1

y2,t−1ũt
L→Λ1Λ2

{∫ 1
0 [W2 (r)] dW1 (r)

}
,

T−1
T∑
t=1

y2,t−1v
′
t
L→Λ2

{∫ 1
0 [W2 (r)] dW2 (r)

}
Λ′

2 +
∞∑
s=1

E(vt−sv
′
t);

(c) T−1/2
T∑
t=1

ũt
L→Λ1 ·W1 (1),

T−1/2
T∑
t=1

vt
L→Λ2 ·W2 (1);

(d) T−3/2
T∑
t=1

tũt
L→Λ1 ·

{
W1 (1)−

∫ 1
0 W1 (r)dr

}
,

T−3/2
T∑
t=1

tvt
L→Λ2 ·

{
W2 (1)−

∫ 1
0 W2 (r)dr

}
;

(e) T−3/2
T∑
t=1

y2,t−1
L→Λ2 ·

∫ 1
0 W2(r)dr;

(f) T−5/2
T∑
t=1

ty2,t−1
L→Λ2 ·

∫ 1
0 rW2(r)dr;

(g) T−3
T∑
t=1

ty2,t−1y
′
2,t−1

L→Λ2

{∫ 1
0 r [W2 (r)] [W2 (r)]

′dr
}
Λ′

2;

(h) T−(ν+1)
T∑
t=1

tν
p→ 1/(ν + 1) for ν ≥ 0;

(i) T−1
T∑
t=1

utu
′
t−s

p→E(utu
′
t−s) for s ≥ 0 ,

in which the definitions of Λ1 and Λ2 can be found in Assumption 4.

Lemma 2. Consider the time series yt = (y1t,y2t)
′ and ut = (ũt,v

′
t)
′ in (4.5) and

(3.2b). Assume sit and sjt (i, j = 2, 3, ..., n) are zero-mean stationary processes. Under

Assumptions 1-4, applying the results in Hansen (1992b) yields:

(a) The (i− 1, j − 1)th element of matrix T−2
T∑
t=1

sty2t(sty2t)
′,

T−2
T∑
t=1

sitsjtyi,t−1yj,t−1
L→E(sitsjt){D}i−1,j−1, in which {D}i−1,j−1 is the

(i− 1, j − 1)th element of matrix D = Λ2

{∫ 1
0 [W2 (r)] [W2 (r)]

′dr
}
Λ′

2;
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(b) T−1
T∑
t=1

y2t−1e
∗′
t

L→Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 , in which e∗t = (ũts2t, ũts3t, ..., ũtsnt)

′

and Λ∗
4 is defined in the proof of Lemma 2 (b);

(c)
T∑
t=1

y2t−1y
′
2t−1s

′
t = Op(T

3/2).

Proof of Lemma 2. (a) Lemma 1 (a) gives T−2
∑T

t=1 yi,t−1yj,t−1
L→{D}i−1,j−1, in

which {D}i−1,j−1 is the (i− 1, j − 1)th element of

D = Λ2

{∫ 1

0
[W2 (r)] [W2 (r)]

′dr

}
Λ′

2.

Theorem 3.3 in Hansen (1992b) implies that

sup

∣∣∣∣∣ 1T
T∑
t=1

(yi,t−1yj,t−1) (sitsjt − E(sitsjt))

∣∣∣∣∣ p→ 0 , ∀i, j = 2, . . . , n,

from which T−2
∑T

t=1 (yi,t−1yj,t−1) (sitsjt − E(sitsjt))
p→ 0. It follows that

T−2
T∑
t=1

sitsjtyi,t−1yj,t−1

= T−2
T∑
t=1

(sitsjt − E(sitsjt)) yi,t−1yj,t−1 + T−2
T∑
t=1

E(sitsjt)yi,t−1yj,t−1

L→E(sitsjt){D}i−1,j−1.

(b) Let e∗t = (ũts2t, ũts3t, ..., ũtsnt)
′. We set Vt = Vt−1 + e∗t and Ut = y2,t−1 and

define U∗
t = (U′

t,V
′
t)
′ and ẽ∗t = (v′

t−1, e
∗′
t−1)

′. It follows from Theorem 4.1 in

Hansen (1992b) that

T−1
T∑
t=1

U∗
t ẽ

∗′
t+1

L→Λ∗
∫ 1

0
W∗(r)dW∗′(r)Λ∗′ +Σ1

in which Σ1 =
∑∞

s=1E(ẽ∗t−sẽ
∗′
t ) and W∗(r) =

(
W

′
2(r),W

∗′
2 (r)

)′
. W∗

2(r) denotes

(n− 1)-dimensional standard Brownian motion. Similar to Λ, Λ∗ is defined as

Λ∗ =

 Λ2 0′

0 Λ∗
4


because ũtsit is uncorrelated with vjτ for all τ and t for each i, j = 2, 3, ..., n as
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E(ũtsitvjτ ) = 0, where Λ∗
4Λ

∗′
4 =

∑∞
s=−∞E(e∗te

∗′
t−s). Hence,

T−1
T∑
t=1

y2t−1e
∗′
t = T−1

T∑
t=1

(
In−1 0

)
U∗

t ẽ
∗′
t

 0

In−1


L→Λ2

∫ 1

0
W2(r)dW

∗′
2 (r)Λ

∗′
4 +Σ∗

1

p→Λ2

∫ 1

0
W2(r)dW

∗′
2 (r)Λ

∗′
4

where Σ∗
1 =

∑∞
s=1E(e∗t−sv

′
t) = 0.

(c) It follows from Theorem 4.2 in Hansen (1992b) that

T− 3
2

T∑
t=1

y2t−1 ⊗ y2t−1v
′
t

L→
∫ 1

0
B⊗BdB′ +Σ2 ⊗

∫ 1

0
B+

∫ 1

0
B⊗Σ2

in which B = LW2(r) denotes (n− 1)-dimensional Brownian motion with covari-

ance matrix (T − 1)−1E
(∑T−1

t=1 vt
∑T−1

t=1 v′
t

)
p→LL′ as T →∞,

T−1
∑T

i=1

∑∞
j=i+1E

(
vi−1v

′
j−1

)
p→Σ2 as T →∞, and the symbol "⊗" denotes

Kronecker product of two matrices.

Proof of Theorem 1. (a) Consider (4.5) with stationary transition variables sit (i =

2, 3, ..., n). The deviation of the OLS estimate θ̂T from the true value θ0 under the null

(4.8) is given by

θ̂T − θ0 =

 ζ̂T − ζ0

β̂T − β0

 = A−1B, (A.1)

in which

A =


∑

v∗
tv

∗′
t

∑
v∗
ty

′
2t

∑
v∗
t (sty2t)

′∑
y2tv

∗′
t

∑
y2ty

′
2t

∑
y2ty

′
2ts

′
t∑

sty2tv
∗′
t

∑
sty2ty

′
2t

∑
sty2t(sty2t)

′

 and B =


∑

v∗
t ũt∑

y2tũt∑
sty2tũt

 .

Define the scaling matrix in this case as

Υ̃T =

 T 1/2I(2p+1) 0

0′ T I(2n−2)

 .
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Premultiplying (A.1) by Υ̃T results in

Υ̃T

(
θ̂T − θ0

)
=
(
Υ̃

−1
T AΥ̃

−1
T

)−1 (
Υ̃

−1
T B

)
. (A.2)

When Assumptions 1-4 hold, consider the first factor in the right-hand side of (A.2),

Υ̃
−1
T AΥ̃

−1
T = Q̃T =


T−1

∑
v∗
tv

∗′
t T−3/2

∑
v∗
ty

′
2t T−3/2

∑
v∗
t (sty2t)

′

T−3/2
∑

y2tv
∗′
t T−2

∑
y2ty

′
2t T−2

∑
y2ty

′
2ts

′
t

T−3/2
∑

sty2tv
∗′
t T−2

∑
sty2ty

′
2t T−2

∑
sty2t(sty2t)

′

 .

We show that Q̃T
L→ Q̃ holds where Q̃ is defined in (5.2). This is because that:

1) T−1
∑T

t=1 v
∗
tv

∗′
t

p→ Q̃11 by the law of large numbers (LLN) (see Hamilton 1994,

p.191);

2) T−2
∑T

t=1 y2ty
′
2t

L→ Q̃22 holds because

T∑
t=1

y2ty
′
2t =

T∑
t=1

y2,t−1y
′
2,t−1 +

T∑
t=1

y2,t−1v
′
t +

T∑
t=1

vty
′
2,t−1 +

T∑
t=1

vtv
′
t,

in which T−2
∑T

t=1 y2,t−1y
′
2,t−1

L→Λ2

{∫ 1
0 [W2 (r)] [W2 (r)]

′dr
}
Λ′

2 from Lemma 1

(a),
∑T

t=1 y2,t−1v
′
t = Op(T ) from Lemma 1 (b), and

∑T
t=1 vtv

′
t = Op(T ) by the

LLN;

3) T−2
∑T

t=1 sty2t(sty2t)
′ L→ Q̃33 holds because

T∑
t=1

sty2t(sty2t)
′ =

T∑
t=1

sty2,t−1(sty2,t−1)
′ +

T∑
t=1

sty2,t−1(stvt)
′ +

T∑
t=1

stvt(sty2,t−1)
′

+
T∑
t=1

stvt(stvt)
′,

in which
∑T

t=1 stvt(stvt)
′ = Op(T ) by the LLN,

∑T
t=1 sty2,t−1(stvt)

′ = Op(T )

from Lemma 2 (b), the (i − 1, j − 1)th element of T−2
∑T

t=1 sty2,t−1(sty2,t−1)
′,

T−2
∑T

t=1 sitsjtyi,t−1yj,t−1
L→E(sitsjt){Q̃22}i−1,j−1 from Lemma 2 (a);

4) T−3/2
∑T

t=1 y2tv
∗′
t

p→0 because
∑T

t=1 y2tv
∗′
t =

∑T
t=1 y2t−1v

∗′
t +
∑T

t=1 vtv
∗′
t = Op(T )

by Lemma 1 (b) and the LLN; Similarly, it follows from Lemma 2 (b)-(c) and the
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LLN that T−3/2
∑T

t=1 sty2tv
∗′
t

p→0 and T−2
∑T

t=1 sty2ty
′
2t

p→0.

From continuous mapping theorem, it follows that

(
Υ̃

−1
T AΥ̃

−1
T

)−1
= Q̃−1

T

L→ Q̃−1. (A.3)

Next, consider the second factor in the right-hand side of (A.2),

Υ̃
−1
T B =


T−1/2

∑
v∗
t ũt

T−1
∑

y2tũt

T−1
∑

sty2tũt

 .

We show that

Υ̃
−1
T B

L→ h̃, (A.4)

in which h̃ is defined in (5.2). This can be seen in the following:

5) T−1/2
∑T

t=1 v
∗
t ũt

L→ h̃1 from Lemma 1 (c);

6) T−1
∑T

t=1 y2tũt
L→ h̃2 because

T−1
T∑
t=1

y2tũt = T−1
T∑
t=1

y2,t−1ũt + T−1
T∑
t=1

vtũt,

in which T−1
∑T

t=1 y2,t−1ũt
L→Λ1Λ2

{∫ 1
0 [W2 (r)] dW1 (r)

}
from Lemma 1 (b) and

T−1
∑T

t=1 vtũt
p→E(vtũt) = 0;

7) T−1
T∑
t=1

sty2tũt
L→ h̃3 because

T−1
T∑
t=1

sty2tũt = T−1
T∑
t=1

ũtsty2t−1 + T−1
T∑
t=1

ũtstvt,

in which T−1
∑T

t=1 ũtsty2t−1
L→ h̃3 from Lemma 2 (b), whereas the (i−1)th element

of the (n − 1) vector h̃3, denoted by {h̃3}i−1, is the (i − 1)th diagonal element

of the (n − 1) × (n − 1) matrix Λ2

∫ 1
0 W2(r)dW

∗′
2 (r)Λ

∗′
4 in Lemma 2 (b), and

T−1
∑T

t=1 ũtstvt
p→E(ũtvt−dvt) = 0.
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Substituting (A.3) through (A.4) into (A.2) gives

Υ̃T

(
θ̂T − θ0

)
L→ Q̃−1h̃. (A.5)

(b) Substituting (A.5) and (A.3) into (4.10) results in

F̃T
L→
(
R̃Q̃−1h̃

)′ {
E(ũ2t ) · R̃Q̃−1R̃m

}−1 (
R̃Q̃−1h̃

)
= (Q̃−1

33 h̃3)
′Q̃33(Q̃

−1
33 h̃3)/(mΛ2

1)

= h̃′
3Q̃

′−1
33 h̃3/(mΛ2

1).

Proof of Theorem 2. (a) Consider (4.6) with stationary transition variables sit (i =

2, 3, ..., n). The deviation of the OLS estimate θ̂∗
T from the true value θ∗

0 under the null

(4.9) is given by

θ̂∗
T − θ∗

0 =



ζ̂T − ζ0

β̂2T − β20

β̂3T − β30

δ̂∗T − δ∗0

â1T − a10


= A−1B, (A.6)

in which

A =



∑
v∗
tv

∗′
t

∑
v∗
t ξ

′
2t

∑
v∗
t (stξ2t)

′ ∑
tv∗

t

∑
v∗
t∑

ξ2tv
∗′
t

∑
ξ2tξ

′
2t

∑
ξ2t(stξ2t)

′ ∑
tξ2t

∑
ξ2t∑

stξ2tv
∗′
t

∑
stξ2tξ

′
2t

∑
stξ2t(stξ2t)

′ ∑
tstξ2t

∑
stξ2t∑

tv∗′
t

∑
tξ′2t

∑
t(stξ2t)

′ ∑
t2

∑
t∑

v∗′
t

∑
ξ′2t

∑
(stξ2t)

′ ∑
t

∑
1



and B =
(∑

v∗′
t ũt,

∑
ξ′2tũt,

∑
(stξ2t)

′ũt,
∑
tũt,

∑
ũt

)′
. In this case, define the scaling

matrix as

Υ̃
∗
T =


T 1/2I(2p+1)×(n−1) 0 0 0

0′ T I(2n−2) 0 0

0′ 0′ T 3/2 0

0′ 0′ 0′ T 1/2

 .
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Premultiplying (A.6) by Υ̃
∗
T gives

Υ̃
∗
T

(
θ̂∗
T − θ∗

0

)
= (Υ̃

∗−1
T AΥ̃

∗−1
T )−1(Υ̃

∗−1
T B). (A.7)

When Assumptions 1-4 hold, consider the first factor in the right-hand side of (A.7),

Υ̃
∗−1
T AΥ̃

∗−1
T = Q̃∗

T =

T−1
∑

v∗
tv

∗′
t T−3/2

∑
v∗
t ξ

′
2t T−3/2

∑
v∗
t (stξ2t)

′ T−2
∑
tv∗

t T−1
∑

v∗
t

T−3/2
∑

ξ2tv
∗′
t T−2

∑
ξ2tξ

′
2t T−2

∑
ξ2t(stξ2t)

′ T−5/2
∑
tξ2t T−3/2

∑
ξ2t

T−3/2
∑

stξ2tv
∗′
t T−2

∑
stξ2tξ

′
2t T−2

∑
stξ2t(stξ2t)

′ T−5/2
∑
tstξ2t T−3/2

∑
stξ2t

T−2
∑
tv∗′

t T−5/2
∑
tξ′2t T−5/2

∑
t(stξ2t)

′ T−3
∑
t2 T−2

∑
t

T−1
∑

v∗′
t T−3/2

∑
ξ′2t T−3/2

∑
(stξ2t)

′ T−2
∑
t 1



It is shown that Q̃∗
T

p→ Q̃∗, in which Q̃∗ is defined in (5.4), as follows:

1) It is easy to see from Theorem 1 that Q̃∗
22 = Q̃22, and Q̃∗

11 and Q̃∗
33 have same

formula of Q̃33 and Q̃11 but depend on different v∗
t and st from Theorem 1;

3) By the LLN for martingale difference sequence, T−2
∑T

t=1 tv
∗
t

p→ Q̃∗
14 and T−1

∑T
t=1 v

∗
t

L→ Q̃∗
15;

Q̃∗
41 = Q̃∗′

14; Q̃∗
51 = Q̃∗′

15;

4) T−3/2
∑T

t=1 ξ2tv
∗′
t

L→ Q̃∗
21 because

T−3/2
T∑
t=1

ξ2tv
∗′
t = T−3/2

T∑
t=1

ξ2t−1v
∗′
t + T−3/2

T∑
t=1

vtv
∗′
t

L→T−3/2
T∑
t=1

ξ2t−1E(v∗′
t )

L→
(
Λ2

∫ 1

0
W2(r)dr

)
E(v∗′

t )

since Lemma 1 (b) and
∑T

t=1 vtv
∗′
t = Op(T ); Q̃∗

12 = Q̃∗′
21;

5) T−5/2
∑T

t=1 tξ2t
L→ Q̃∗

24, because

T−5/2
T∑
t=1

tξ2t = T−5/2
T∑
t=1

tξ2t−1 + T−5/2
T∑
t=1

tvt,

in which T−5/2
∑T

t=1 tξ2t−1
L→Λ2 ·

∫ 1
0 rW2(r)dr from Lemma 1 (f) and

∑T
t=1 tvt =

Op(T
3/2) from Lemma 1 (d); Q̃∗

42 = Q̃∗′
24;
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6) T−3/2
∑T

t=1 ξ2t
L→ Q̃∗

25, because

T−3/2
T∑
t=1

ξ2t = T−3/2
T∑
t=1

ξ2t−1 + T−3/2
T∑
t=1

vt,

in which T−3/2
∑T

t=1 ξ2t−1
L→Λ2 ·

∫ 1
0 W2(r)dr from Lemma 1 (e) and

∑T
t=1 vt =

Op(T
1/2) from Lemma 1 (c); Q̃∗

52 = Q̃∗′
25;

7) T−3/2
∑T

t=1 stξ2tv
∗′
t

L→ Q̃∗
31, because

T−3/2
T∑
t=1

stξ2tv
∗′
t = T−3/2

T∑
t=1

stξ2t−1v
∗′
t + T−3/2

T∑
t=1

stvtv
∗′
t

in which
∑T

t=1 stvtv
∗′
t = Op(T ) and the jth column of the first item would be

T−3/2
T∑
t=1

v∗jtstξ2t−1
L→T−3/2

T∑
t=1

E(v∗jtst)ξ2t−1
L→E(v∗jtst)Q̃

∗
25;

Q̃∗
13 = Q̃∗′

31;

8) T−2
∑T

t=1 stξ2tξ
′
2t

L→ Q̃∗
32, because

T−2
T∑
t=1

stξ2tξ
′
2t =T

−2
T∑
t=1

stξ2t−1ξ
′
2t−1 + T−2

T∑
t=1

stξ2t−1v
′
t + T−2

T∑
t=1

stvtξ
′
2t−1

+ T−2
T∑
t=1

stvtv
′
t

in which
∑T

t=1 stξ2tv
′
t = Op(T

3/2),
∑T

t=1 stvtv
′
t = Op(T ),

∑T
t=1 tstvt = Op(T

2),

and

T−2
T∑
t=1

stξ2t−1ξ
′
2t−1

L→E(st)T
−2

T∑
t=1

ξ2t−1ξ
′
2t−1

L→E(st)Λ2·
∫ 1

0
W2(r)W

′
2(r)dr·Λ′

2

since Lemma 2 (c); Q̃∗
23 = Q̃∗′

32;

9) T−5/2
∑T

t=1 tstξ2t
L→ Q̃∗

34, because

T−5/2
T∑
t=1

tstξ2t = T−5/2
T∑
t=1

tstξ2t−1 + T−5/2
T∑
t=1

tstvt
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in which T−5/2
∑T

t=1 tstξ2t−1
L→E(st)Λ2

∫ 1
0 rW2(r)dr and

∑T
t=1 tstvt = Op(T

2);

Q̃∗
43 = Q̃∗′

34;

10) T−3/2
∑T

t=1 stξ2t
L→ Q̃∗

35, because

T−3/2
T∑
t=1

stξ2t =T
−3/2

T∑
t=1

stξ2t−1 + T−3/2
T∑
t=1

stvt

in which T−3/2
∑T

t=1 stξ2t
L→E(st)Λ2

∫ 1
0 W2(r)dr,

∑T
t=1 stvt = Op(T ); Q̃∗

53 =

Q̃∗′
35;

11) T−3
∑T

t=1 t
2 p→ Q̃∗

44 and T−2
∑T

t=1 t
p→ Q̃∗

45 = Q̃∗
54 from Lemma 1 (h); 1 = Q̃∗

55.

It follows that

(
Υ̃

∗−1
T AΥ̃

∗−1
T

)−1
= Q̃∗−1

T

L→ Q̃∗−1 (A.8)

by continuous mapping theorem. Next, consider the second factor in the right-hand side

of (A.7),

Υ̃
∗−1
T B =



T−1/2
∑

v∗
t ũt

T−1
∑

ξ2tũt

T−1
∑

stξ2tũt

T−3/2
∑
tũt

T−1/2
∑
ũt


We show that

Υ̃
∗−1
T B

L→ h̃∗, (A.9)

in which h̃∗ is defined in (5.4). This can be seen in the following:

12) h̃∗
2 = h̃2, and h̃∗

1 and h̃∗
3 have same formula to h̃1 and h̃3 in Theorem 1 but depend

on different v∗
t and st;

14) T−3/2
∑
tũt

L→ h̃∗5 from Lemma 1 (d);

15) T−1/2
∑
ũt

L→ h̃∗6 from Lemma 1 (c).

Substituting (A.8) and (A.9) into (A.7) results in

Υ̃
∗
T

(
θ̂∗
T − θ∗

0

)
L→ Q̃∗−1h̃∗. (A.10)
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(b) Substituting (A.10) and (A.8) into (4.11) results in

F̃T
L→
(
R̃∗Q̃∗−1h̃∗

)′ {
Λ2
1 · R̃∗Q̃∗−1R̃∗m

}−1 (
R̃∗Q̃∗−1h̃∗

)
.

B . Simulation of unit root tests

The Monto Carlo experiments in this section study the finite-sample distributions of

the nonstandard Dickey-Fuller-type t and F tests illustrated in the testing procedure

in Section 7.1. The unit root tests in a nonlinear framework are not standard. Under

the null of unit root in a STAR model, the simulation is based on the following data-

generating process:

yt = 0.5 + yt−1 + vt

in which vt ∼ n.i.d(0, 1) with desired sample sizes T = 50, 100, 200, 500, 1000. The

estimation is based on the auxiliary regression (7.2) with st = yt−1 or (7.3) with st =

∆yt−1, and then the nonstandard Dickey-Fuller-type t and F tests in Section 7.1 are

carried out. Each time, T +500 observations are generated and the first 500 observations

are discarded for minimizing the initial effects. The number of the replications of each

experiment is 100,000. The finite-sample distributions of the tests are given in Table

11-14.

Table 11: Critical values for the Dickey-Fuller-type t test with st = ∆yt−1.
Probability that t-type test is less than entry

st T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
∆yt−1 50 -4.17 -3.80 -3.51 -3.18 -1.18 -0.84 -0.53 -0.16

100 -4.04 -3.72 -3.45 -3.15 -1.22 -0.89 -0.60 -0.24
200 -4.00 -3.70 -3.43 -3.13 -1.23 -0.92 -0.63 -0.28
500 -3.99 -3.67 -3.42 -3.14 -1.24 -0.94 -0.66 -0.31
1000 -3.96 -3.67 -3.41 -3.13 -1.24 -0.94 -0.66 -0.31

The probability shown at the head of the column is the area in the left-hand tail.
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Table 12: Critical values for the Dickey-Fuller-type t test with st = yt−1.
Probability that t-type test is less than entry

st T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
yt−1 50 -4.18 -3.81 -3.49 -3.12 -0.05 0.53 1.02 1.53

100 -4.26 -3.91 -3.62 -3.29 -0.61 -0.04 0.46 1.04
200 -4.31 -4.00 -3.73 -3.43 -1.15 -0.65 -0.18 0.36
500 -4.36 -4.05 -3.80 -3.51 -1.54 -1.16 -0.78 -0.34
1000 -4.35 -4.06 -3.82 -3.53 -1.66 -1.34 -1.01 -0.61

The probability shown at the head of the column is the area in the left-hand tail.

Table 13: Critical values for the Dickey-Fuller-type F test with st = ∆yt−1.
Probability that F -type test is greater than entry

st T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01
∆yt−1 50 0.65 0.79 0.93 1.13 4.39 5.07 5.87 6.90

100 0.64 0.78 0.93 1.14 4.13 4.84 5.54 6.45
200 0.63 0.78 0.93 1.14 4.06 4.77 5.45 6.29
500 0.63 0.77 0.93 1.13 4.06 4.72 5.36 6.17
1000 0.62 0.77 0.93 1.14 4.03 4.68 5.30 6.09

The probability shown at the head of the column is the area in the right-hand tail.

Table 14: Critical values for the Dickey-Fuller-type F test with st = yt−1.
Probability that F -type test is greater than entry

st T 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01
yt−1 50 0.86 1.04 1.22 1.46 4.93 5.76 6.61 7.77

100 0.92 1.11 1.29 1.54 4.91 5.67 6.44 7.43
200 0.96 1.15 1.34 1.59 4.91 5.64 6.34 7.28
500 0.97 1.16 1.35 1.61 4.93 5.65 6.33 7.22
1000 0.98 1.17 1.37 1.62 4.94 5.67 6.34 7.19

The probability shown at the head of the column is the area in the right-hand tail.
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