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Abstract

This paper studies a special class of vector smooth-transition autoregressive (VSTAR)

models, which contains common nonlinear features (CNFs). We proposed a triangular

representation for these models and developed a procedure for testing CNFs in a VSTAR

model. We first test a unit root against a stationary STAR process for each individual

time series and subsequently examine whether CNFs exist in the system with the La-

grange Multiplier (LM) test if unit root is rejected in the first step. The LM test has

a standard Chi-square asymptotic distribution. The critical values of our unit root tests

and finite-sample properties of the F form of our LM test are studied by Monte Carlo

simulations. We illustrate how to test and model CNFs using the monthly growth of

consumption and income data for the United States (1985:1 to 2011:11).

Keywords: Common features, Lagrange Multiplier test, Vector STAR models.

1 . Introduction

A family of STAR models has been comprehensively studied for modeling non-

linear structures, such as data breaks and regime switching, in time series data

since Teräsvirta (1994) introduced many theoretical issues and applications for

the STAR models. The extensions of the univariate STAR models have been de-

veloped for exploring the nonlinearity of time series data. Escribano (1987) and
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Granger and Swanson (1996) introduced smooth-transition error-correction model

for nonlinear adjustment. Johansen (1995) incorporated the smooth-transition

mechanism into an error-correction model. Moreover, van Dijk and Franses (1999)

contributed that multiple-regime STAR models could accommodate more than two

regimes, which could not be performed with the STAR models in Teräsvirta (1994).

Lin and Teräsvirta (1994) and He and Sandberg (2006) studied time-varying STAR

models which allow for structural instability. He et al. (2009) discussed parameter

constancy in a VSTAR model.

This paper studies a special class of VSTAR models to allow for CNFs. A

group of time series is said to have CNFs if each of the time series is nonlinear,

but their combination does not contain nonlinearity. Modeling vector nonlinear

time series can be improved by imposing CNFs. The previous studies of common

features are mostly related to the generalized method of moments estimations

and canonical correlation in a parametric framework. For example see, Engle and

Kozicki (1993) and Anderson and Vahid (1998). Engle and Kozicki (1993) pro-

vided a general method for detecting common features, similar to those used in

cointegration by Engle and Granger (1987). The idea is straightforward when ap-

plied to common nonlinear features, but estimation and testing procedures must

be developed for nonlinear models. Anderson and Vahid (1998) approached com-

mon nonlinearities in a similar method in multivariate nonlinear models. Their

test of common nonlinearity is applicable to different nonlinear models, but their

test replies on a polynomial approximation of the testing regression in which the

nonlinear regressors come from the approximation of the corresponding individual

testing regressions for nonlinearity. The possibility of some of the variables having

common nonlinearity follows when the null of linearity is rejected in each variable.

However, the approximation under the null of linearity is later used for testing com-

mon nonlinearity when the null is rejected. Consequently, the transition function

suggested in Anderson and Vahid (1998) does not behave as a third degree polyno-

mial expansion of the transition function when each series is nonlinear. Therefore,

the proposed approximation for testing CNFs is not the approximation under the
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condition that each series is nonlinear, although it is an approximation for testing

the linearity of each series. Using an approximately specified model under both

the null and the alternative hypotheses for testing common nonlinearity makes it

difficult to interpret the test. However, their test seems promising for determining

the number of CNFs. Further, as their procedure is based on using several stages

to conclude how many nonlinear factors are present, the empirical size and power

of each stage were not reported because authors think the interpretation is very

difficult. Their work motivated this paper to seek another method to examine

CNFs. It begins with the simplest case of n − 1 common nonlinearities with one

linearly independent linear combination. Although the issue of how to determine

the number of common nonlinearities is definitely worthy of consideration, this

paper is the first step for developing another possible test for CNFs.

In this paper, studying one combination for CNFs, we propose an LM test to

investigate CNFs in a VSTAR model based on a triangular representation of the

VSTAR model containing CNFs. This avoids approximating the transition func-

tion with a Taylor expansion and nonlinear estimation is necessary. In the triangu-

lar representation, CNFs are tested in a VSTAR model to determine whether the

population residual in the regression of CNF relations is linear. This is related to

the LM test for the adequacy of a nonlinear specification against the alternative of

additional STAR nonlinearity in Eitrheim and Teräsvirta (1996), in which several

tests for misspecification were derived, following Godfrey (1988). However, the

object of the testing for remaining nonlinearity in this paper is a combination of

several series where the relation is unknown. We derive the asymptotic distribu-

tion of the test and examine its small sample properties in a simulation study. A

convenient method for performing the LM test in the VSTAR models with CNFs

is given in detail.

The empirical application in this paper concerns the monthly growth of the

consumption expenditures and disposable income of the United States, dating

from 1985:1 until 2011:11. The permanent-income hypothesis and the study in

Campbell and Mankiw (1990) imply that consumption and income are linearly
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Figure 1: The ST function (2.3) with cj = 1 (j = 1, ..., k) for both k = 2 in panel (a) and
k = 3 in panel (b) and sjt ∼ N(0, 1).

cointegrated in the levels (see Engle and Granger; 1987, for more discussions).

However, are there any other common features in those two dynamic time series?

Removing the possibility of cointegration by looking at the growth, we investigate

whether there are CNFs between consumption and income when each variable

presents nonlinearity.

The remaining paper is outlined as follows. Section 2 studies VSTAR models.

Section 3 discusses CNFs in a VSTAR model. The procedure for testing CNFs is

provided in Section 4. The asymptotic distribution of our LM test is derived in

Section 5. Simulation studies are presented in Section 6. An empirical application

is illustrated in Section 7. and conclusions can be found in Section 8.

2 . Vector Smooth-transition Autoregressive Models

Consider a vector smooth-transition autoregressive model of order p (VSTAR(p)),

yt = µ+

p∑
k=1

Φkyt−k +

(
µ̃+

p∑
k=1

Γkyt−k

)
G (st; γ, c) + vt (2.1)

where yt = (y1t, y2t, ..., ynt)
′ = (y1t,y

′
2t)

′ denotes an (n × 1) vector time series, µ

and µ̃ are two (n×1) constant vectors, Φk and Γk are (n×n) coefficient matrices,

G (st; γ, c) is a smooth-transition (ST) function, and the (n × 1) vector vt is the
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Figure 2: The ST function (2.3) with cj = {−1, 2} in panel (a) (k = 2) and cj = {−1, 0, 2} in
panel (b) (k = 3) and sjt ∼ N(0, 1).

error term, independent and identically distributed. The process yt defined in

(2.1) is stationary and ergodic (see Assumption 2 in Section 5). When n = 1,

(2.1) is a simple univariate STAR(p) model, such that

yt = µ+

p∑
k=1

Φkyt−k +

(
µ̃+

p∑
k=1

Γkyt−k

)
G (st; γ, c) + vt (2.2)

where µ, µ̃, Φk and Γk are scaler parameters.

In this paper, we only consider logistic VSTAR models with the ST function

G (st; γ, c) defined as follows,

G (st; γ, c) =

(
1 + exp

{
−γ

k∏
j=1

(sjt − cj)

})−1

, γ > 0, (2.3)

where γ is a slope parameter, cj are location parameters and sjt are transition

variables. We assume sjt = yit−d (d ≤ p), where d is called the delay parameter.

The ST function G (st; γ, c) is a bounded function on [0, 1] and at least fourth-

order differentiable with respect to γ in a neighborhood of γ = 0. Given any value

of G (st; γ, c) between zero and one, all the roots of
∣∣In −∑p

k=1 (Φk + ΓkG)zk
∣∣ = 0

lie outside the unit circle.

Figure 1-2 and Figure 5-8 depict the featured statistical properties of (2.3)
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(Figure 5-8 are in Appendix). When k = 1, (2.3) is a non-decreasing nonlinear

function. When k > 1, (2.3) is flexibly changeable depending on the different tran-

sition variables st and location parameters c. For example, Figure 1 illustrates

(2.3) with k > 1 and cj that are the same for different j (j = 1, ..., k); Figure 2

illustrates (2.3) with k > 1 and cj that are different for different j. Due to the

statistical properties of the ST function (2.3), (2.1) not only captures the data

break, dynamic structure or nonlinear shift in a vector of time series well but also

nests the mostly applied vector linear autoregressions and threshold autoregres-

sions. When γ = 0, (2.1) is reduced to a vector autoregression. When γ goes to

infinity, (2.1) becomes a vector threshold autoregression.

3 . Common Nonlinear Features in Vector STAR Models

Introduced by Engle and Kozicki (1993), the common features are some that

features are present in each of several variables, and a linear combination of those

variables has no such features. These common features are used for analyzing data

properties in linear frameworks. The cointegrated system by Engle and Granger

(1987) is a particular case that contains common stochastic trends.

In this paper, we consider a group of nonlinear time series yt as defined in

(2.1) and investigate whether there are CNFs in yt. An (n × 1) nonlinear vector

yt is said to contain CNFs if each of the series yit is nonlinear and there is a

nonzero vector α such that α′yt is linear. The vector α can be extended to an

n× (n− r) matrix whose rows are linearly independent indicating that there exist

n− r different relations of CNFs (r CNFs). However, this paper only considers a

simple n× 1 vector α.

Suppose yt contains CNFs. Then, we can find a nonzero (n× 1) vector α such

that the nonlinearity vanishes in the linear combination α′yt. Now, multiplying

both sides of (2.1) by the vector α results in

α′yt = α
′µ+

p∑
k=1

α′Φkyt−k +

(
α′µ̃+

p∑
k=1

α′Γkyt−k

)
G (st; γ, c) +α

′vt (3.1)
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Figure 3: Two nonlinear time series (solid, dashed) with CNFs in panel (a); their linear
combination in panel (b).

where yt, Φk, Γk, µ, µ̃ and vt are the same as defined in (2.1) and G (st; γ, c) as

in (2.3). The existence of CNFs in yt implies that α′µ̃ = 0′ and α′Γk = 0′ for all

k. Therefore, the linear combination (3.1) is equal to

α′yt = α
′µ+

p∑
k=1

α′Φkyt−k +α
′vt. (3.2)

This simple consideration is mostly practicable in such applications, and it is a

reasonable first step for determining the number of CNFs.

Consider the following numerical example, a bivariate STAR(1) model with a

CNF (µ = 0, µ̃ = 0, n = 2, t = 1, 2, ..., 200):

 y1t

y2t

 =

 0.03 0.05

0.02 0.1

 y1t−1

y2t−1


+

 2

1

 (0.12y1t−1 + 0.07y2t−1)G (st; γ, c) +

 v1t

v2t

 ,

where G (st; γ, c) = (1 + exp {−2(y2t−1 − 1)})−1 and (v1t, v2t)
′ is generated from

a (2 × 1) vector n.i.d(0, 1) sequence. In the example, two processes, y1t and y2t,

share a nonlinear structure expressed as (0.12y1t−1 + 0.07y2t−1)G (st; γ, c), which
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denotes a CNF in this bivariate STAR(1) model. Figure 3 depicts the two nonlin-

ear time series that have a CNF in panel (a) and their linear combination in panel

(b).

4 . Testing Procedure

We propose a procedure that consists of two steps for testing CNFs in the VSTAR

model in (2.1). The first step is to test the null of a unit root process against

a stationary STAR process for the individual time series. If the null is rejected

which indicates that each of the series is nonlinear, the second step will examine

whether there are CNFs between those series. However, testing a unit root is not

a necessary first step before testing CNFs. When there is no reason to suspect a

unit root, starting with testing linearity against nonlinearity is more realistic; we

refer to Luukkonen et al. (1988) for the possibility. This paper starts from a non-

standard unit root test for the emphasis of the likely misleading in the standard

one because of nonlinearity.

4.1 Testing a unit root against a stationary STAR process

In the first step of the testing procedure, our non-standard unit root test is built

up in a nonlinear framework (2.2). The reason for not using the standard unit

root tests is that nonlinear structures bias the classical unit root tests towards

non-rejection (see Perron; 1990).

Take an STAR model (2.2) with p = 1 for convenience of discussion,

yt = µ+ ϕ1yt−1 + (µ̃+ Γ1yt−1)G (st; γ, c) + vt. (4.1)

Under the null hypothesis, yt is a unit root process. Therefore, the linearity

restriction, γ = 0, is imposed under the null. However, the restriction γ = 0

causes a parameter identification problem (see Luukkonen et al.; 1988, for details).

The solution is that we replace G (st; γ, c) with its first-order Taylor expansion

round γ = 0 as a linear approximation. An auxiliary regression is then given



9 CNFs in VSTAR Models

in (4.2) after ignoring the remainder in the Taylor expansion of G (st; γ, , c) and

reparameterization,

yt = µ∗ + ϕ∗
1yt−1 + ϕ∗

2styt−1 + ϕ∗
3st + v∗t , (4.2)

where v∗t is assumed i.i.d and st is usually taken as yt−1 or ∆yt−1. Consequently,

the null hypothesis for testing unit root in (4.1) is launched by

H0 : µ
∗ = 0, ϕ∗

1 = 1, ϕ∗
2 = 0, ϕ∗

3 = 0. (4.3)

In particular, if st is specified as yt−1 in (4.2), then (4.2) will be updated to

yt = µ∗ + ϕ̃∗
1yt−1 + ϕ∗

2y
2
t−1 + v∗t (4.4)

and correspondingly (4.3) will be updated to

H0 : µ
∗ = 0, ϕ̃∗

1 = 1, ϕ∗
2 = 0. (4.5)

We further consider (4.2) along with the null hypothesis of ϕ∗
1 = 1 and (4.4) with

ϕ̃∗
1 = 1.

Although there are discussions of testing the unit root against nonlinear dy-

namic models in the literature (for example, He and Sandberg (2006) and Kapetan-

ios and Shin (2006)), there are no distribution theory and critical values available

for our cases. Table 1-2 in Section 6.1 provide the critical values for our non-

standard Dickey-Fuller F -type and t-type tests for the empirical application in

this paper. However, the distribution theory underlying the critical values is not

reported here to concentrate on the primary aim, the test for CNFs.

4.2 Testing CNFs

In the second step of the testing procedure, testing CNFs in yt in (2.1) when the

null of a unit root is rejected in the first step, we propose a triangular representa-
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tion of a system containing CNFs.

As described in Section 3, we can find a nonzero vector α such that α′yt is

linear formulated in (3.2) when CNFs exist. We normalize one of the nonzero

elements in α to unity and partition α as (1,−α∗′)′. We then partition yt as

(y1t,y
′
2t)

′ and vt as (v1t,v′
2t)

′, correspondingly. Model (3.2) is therefore equivalent

to

y1t = µ1 +α
∗′y2t +

p∑
k=1

ϕ′
1kyt−k + ut (4.6)

where µ1 = α
′µ, ϕ′

1k = α
′Φk, and ut = α

′vt = v1t −α∗′v2t.

Let yt = (y1t,y
′
2t)

′ in (2.1) contain CNFs. It is straightforward to propose a

triangular representation from (4.6) for the system yt, such that

y1t = µ1 +α
∗′y2t +

p∑
k=1

ϕ′
1kyt−k + ut

y2t = µ2 +

p∑
k=1

Φ2kyt−k +

(
µ̃2 +

p∑
k=1

Γ2kyt−k

)
G (st; γ, c) + v2t (4.7)

where the first equation is (4.6) containing the CNF relation in the system of yt

and the second equation is the last n − 1 lines in (2.1) where Φ2k = (0, In−1)Φk

and Γ2k = (0, In−1)Γk are (n− 1)× n matrices.

When a system yt contains CNFs, the population residual ut in (4.6) does not

appear nonlinear. Otherwise, ut is a nonlinear process. Thus, our test for CNFs

in yt is constructed by the hypothesis

H0 : ut is linear

Ha : ut is nonlinear
(4.8)

in (4.6)-(4.7).

In this section, we consider the following triangular representation with p = 1
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for notation simplification,

y1t = µ1 +α
∗′y2t + ϕ

′
11yt−1 + ut (4.9a)

y2t = µ2 +Φ21yt−1 + (µ̃2 + Γ21yt−1)G (st; γ, c) + v2t (4.9b)

where ϕ11 is an (n × 1) vector, µ2 and µ̃2 are (n − 1) × 1 vectors, and Φ21 and

Γ21 are (n− 1)× n matrices. We illustrate an LM test for testing CNFs based on

(4.9a)-(4.9b).

In principle, there are different ways to test (4.8). To test the linearity of ut,

we consider the population residual ut in (4.9a), which has the form:

ut = β∗
0 + β∗

1ut−1 + β∗
2u

2
t−1 + et (4.10)

under the alternative hypothesis, as an example. et is independently and iden-

tically distributed. When a general VSTAR model with p > 1 is necessary, the

order of the autoregression in (4.10) needs to increase because the null that ut is

linear can be rejected by reason of that the error process contains relatively few

lags.

To derive the LM test, we follow a procedure in Godfrey (1988, pages 114-

115) that is used to test a statistical property for the population residual. The

technique is to substitute (4.10) for the population residual ut in (4.9a) and write

ut−1 in terms of ut−1 = y1t−1 − µ1 − α∗′y2t−1 − ϕ′
11yt−2. Then, (4.9a) takes the

form of:

y1t =µ1 +α
∗′y2t + ϕ

′
11yt−1 + β∗

0 + β∗
1

(
y1t−1 − µ1 −α∗′y2t−1 − ϕ′

11yt−2

)
+ β∗

2

(
y1t−1 − µ1 −α∗′y2t−1 − ϕ′

11yt−2

)2
+ et. (4.11)



CNFs in VSTAR Models 12

Reorganizing the parameters in (4.11) yields:

y1t = µ∗
1 +α

∗′y2t + ϕ
∗′
11yt−1 + ϕ

∗′
12yt−2 + β∗

2 (α
′yt−1 − ϕ′

11yt−2)
2
+ et

= µ∗
1 +α

∗′y2t + ϕ
∗′
11yt−1 + ϕ

∗′
12yt−2 + θ

′wt + et (4.12)

where wt and θ are ((2n2 + n)× 1) vectors, such that

wt =(y1t−1y1t−1, ..., y1t−1ynt−1, y2t−1y2t−1, ..., y2t−1ynt−1, ..., ynt−1ynt−1;

y1t−2y1t−2, ..., y1t−2ynt−2, y2t−2y2t−2, ...y2t−2ynt−2, ..., ynt−2ynt−2;

y1t−1y1t−2, ..., y1t−1ynt−2, y2t−1y1t−2, ..., y2t−1ynt−2, ..., ynt−1y1t−2, ..., ynt−1y1t−2)
′

and

θ =(θ111, ..., θ11n, θ122, ..., θ12n, ..., θ1nn; θ211, ..., θ21n, θ222, ..., θ22n, ..., θ2nn;

θ311, ..., θ31n, θ321, ..., θ32n, ..., θ3n1, ..., θ3nn)
′.

Thus, the null hypothesis in (4.8) is rewritten to be

H0 : θ = 0. (4.13)

However, y2t in model (4.12) are endogenous regressors that are correlated with

et. One way to correct the correlations between y2t and et is to add the leads and

lags of v2t = y2t−µ2−Φ21yt−1− (µ̃2 + Γ21yt−1)G (st; γ, c), which was suggested

in the literature by Saikkonen (1991) and Stock and Waston (1993). Specifically,

we can define:

et =
l∑

s=−l

δ′sv2t−s + ẽt (4.14)

where {ẽt} is an i.i.d sequence with mean zero, variance σ2, and ẽt is uncorrelated

with v2t−s for s = −l,−l + 1, ..., l. When the model is correctly specified, it is

true that l = 0 is enough to correct the correlations between y2t and et because vt

is not serailly correlated. However, additionally including leads and lags is more
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robust in the case where the model is not easy to specify exactly. Although the

order p can be moderately large, this solution does not require a large number of

observations, depending on l, because l is not necessarily far away from zero. In

the case where the model is not specified correctly and p is not small, a small l

would not cause many difficulties because serial correlation usually shows up at

short lags.

Thereafter, (4.12) can be rewritten as:

y1t =µ∗
1 +α

∗′y2t + ϕ
∗′
11yt−1 + ϕ

∗′
12yt−2 + θ

′wt +
l∑

s=−l

δ′sv2t−s + ẽt

=µ̃+ θ′wt + δ
′
1y2t+l +

max(2,l+1)∑
s=−l+1

δ′2syt−s

+
l∑

s=−l

δ′3syt−1−sG (st−s; γ, c) +
l∑

s=−l

δ4sG (st−s; γ, c) + ẽt (4.15)

where ẽt is uncorrelated with all regressors in (4.15), µ̃ and δ4s are scaler param-

eters, δ1 is an (n − 1) × 1 vector parameter, and δ2s and δ3s are (n × 1) vector

parameters. For notation simplification, we rewrite (4.15) as:

y1t = θ
′wt + f(yt−s;ψ) + ẽt (4.16)

by defining

f(yt−s;ψ) =µ̃+ δ′1y2t+l +

max(2,l+1)∑
s=−l+1

δ′2syt−s

+
l∑

s=−l

δ′3syt−1−sG (st−s; γ, c) +
l∑

s=−l

δ4sG (st−s; γ, c),

where ψ = (µ̃, δ′1, δ
′
2,−l+1, ..., δ

′
2,max(2,l+1), δ

′
3,−l, ..., δ

′
3,l, δ4,−l, ..., δ4,l, γ, c

′)′.

Assume the necessary starting values y−p,y−p+1, ...,y−1,y0 are fixed. Given a

realization of yt, t = 1, 2, ..., T , the conditional nonlinear least square estimators
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of (θ′,ψ′)′ are carried out by solving the problem of minimizing:

L(θ,ψ) =
T∑
t=1

(y1t − θ′wt − f (yt−s;ψ))
2 (4.17)

with respect to (θ′,ψ′)′. The first-order partial derivatives of function L are

∂L
∂θ

=
T∑
t=1

2 (y1t − θ′wt − f(yt−s;ψ))wt, (4.18a)

∂L
∂ψ

=
T∑
t=1

2
(
y1t − θ

′
wt − f(yt−s;ψ)

) ∂f (yt−s;ψ)

∂ψ
. (4.18b)

Under the null of θ = 0 in (4.13), (4.18a) and (4.18b) are reduced to

∂L
∂θ

∣∣∣∣
H0

=
T∑
t=1

2z1twt (4.19a)

∂L
∂ψ

∣∣∣∣
H0

=
T∑
t=1

2z1tz2t (4.19b)

where z1t = y1t − f(yt−s;ψ) and z2t = ∂f(yt−s;ψ)/∂ψ. Given the consistent

nonlinear least square estimators ψ̂ of the true parameter ψ, (4.19a) and (4.19b)

are calculated by
∑T

t=1 2ẑ1twt and
∑T

t=1 2ẑ1tẑ2t where ẑ1t = y1t − f(yt−s; ψ̂) and

ẑ2t = ∂f(yt−s; ψ̂)/∂ψ. Our LM statistic for testing CNFs in (4.16) under the null

(4.13) is calculated by the following formula:

σ̂−2

(
T∑
t=1

ẑ1twt

) T∑
t=1

wtw
′
t −

T∑
t=1

wtẑ
′
2t

(
T∑
t=1

ẑ2tẑ
′
2t

)−1 T∑
t=1

ẑ2tw
′
t

−1(
T∑
t=1

ẑ1tw
′
t

)
(4.20)

where σ̂2 =
∑T

t=1 ẑ
2
1t/T is a consistent estimator of σ2 and ẑ1t and ẑ2t are defined

when the form of transition function G (st; γ, c) in (4.16) is specified. Taking

G (st; γ, c) =
(
1 + e−γ(st−c)

)−1 as an example, ẑ1t is easily obtained and we further
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have

∂G (st; γ̂, ĉ)

∂γ
= ĝγ(t) =

(
1 + e−γ̂(st−ĉ)

)−2
(st − ĉ) e−γ̂(st−ĉ), (4.21a)

∂G (st; γ̂, ĉ)

∂c
= ĝc(t) = −γ̂

(
1 + e−γ̂(st−ĉ)

)−2
e−γ̂(st−ĉ). (4.21b)

It follows that the estimated vector ẑ2t in this case is

ẑ2t = ∂f(yt−s; ψ̂)/∂ψ =(1,y′
2t+l,y

′
t−max(2,l+1), ...,y

′
t+l−1,

y′
t−1−lG (st−l; γ̂, ĉ) , ...,y

′
t−1+lG (st+l; γ̂, ĉ) ,

G (st−l; γ̂, ĉ) , ..., G (st+l; γ̂, ĉ) ,

l∑
s=−l

(
δ̂
′
3syt−1−s + δ̂4s

)
ĝγ(t− s),

l∑
s=−l

(
δ̂
′
3syt−1−s + δ̂4s

)
ĝc(t− s))′. (4.22)

An F form of our LM test is recommended in practice in (4.23) because its

empirical size is usually close to the nominal one, and the power is good when the

sample size is small. Usually, the F form is preferable to LM statistics in small

sample in the literature, for example, Eitrheim and Teräsvirta (1996) and Brännäs

et al. (1998). The F form of our LM test can be performed as follows:

(i) Estimate the parameter ψ in model (4.16) by nonlinear least square estima-

tion under the assumption of θ = 0 and compute the residual sum of squares

SSR0 =
∑T

t=1 ẑ
2
1t;

(ii) Regress ẑ1t on wt and ẑ2t and compute the residual sum of squares SSR;

(iii) Calculate the test statistic

FLM =
(SSR0 − SSR)/(2n2 + n)

SSR/(T − 2n2 − n− k)
(4.23)

where k is the dimension of vector ẑ2t.
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When T goes to infinity, (2n2 + n)FLM has the same asymptotic distribution as

the LM statistic.

5 . Asymptotic distribution of the LM test

In this section, the asymptotic distribution of our LM test in (4.20) is derived

under the null of CNFs. The following assumptions are required.

Assumption 1. In (4.16), {ẽt} is an i.i.d sequence with mean zero and variance

σ2, and ẽt is uncorrelated with all leads and lags of εt.

Assumption 2. yt in (2.1) is an (n× 1) vector stationary process in that

(1) Given any value of the transition function G between zero and one,∣∣∣∣∣In −
p∑

k=1

(Φk + ΓkG)zk

∣∣∣∣∣ ̸= 0 if |z| ≤ 1;

(2) The second-order moments of yt depend on t defined by

E (yty
′
t) =

 E (y1ty1t) E (y1ty
′
2t)

E (y2ty
′
1t) E (y2ty

′
2t)

 = Ωt =

 Λ11t Λ12t

Λ21t Λ22t


which is a positive definite matrix with

1

T

T∑
t=1

Ωt→Ω =

 Λ11 Λ12

Λ21 Λ22


as T →∞, in which Ω is a positive definite matrix;

(3) T−1
∑T

t=1 yty
′
t

p→Ω as T →∞.

(4) The process yt is ergodic for the fourth-order moments.

Given G (st; γ, c) in (2.3), θ′wt+f(yt−s;ψ) is continuously differentiable twice

with respect to (θ′,ψ′)′ in some neighborhood of (0′,ψ′
0)

′ under the null. As-

sumption 2 implies the regularity conditions in Klimko and Nelson (1978, page
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634) holds. Hence, the nonlinear least square estimator of (θ′,ψ′)′ in (4.16) is

consistent according to Theorem 3.1 in Klimko and Nelson (1978). Under As-

sumptions 1-2, the asymptotic distribution of

T−1/2

(
T∑
t=1

z1tz
′
2t,

T∑
t=1

z1tw
′
t

)′

is normality as shown in Lemma in Appendix A. It follows that our LM test in

(4.20) has an asymptotic Chi-square distribution with (2n2+n) degrees of freedom

as T →∞. See Theorem in Appendix A.

6 . Simulation

6.1 Critical values of non-standard unit root tests

The Monte Carlo experiments in this subsection study the finite-sample distri-

butions of the non-standard Dickey-Fuller F -type and t-type tests illustrated in

Section 4.1. The unit root tests in a nonlinear framework are not standard. Under

the null of unit root in an STAR model, the simulation is based on the following

data-generating process (DGP ):

yt = yt−1 + vt

where vt ∼ n.i.d(0, 1) with desired sample sizes T = 50, 100, 200, 500, 1000. The

estimation is based on an auxiliary regression (4.2) with st = ∆yt−1 or (4.4) with

st = yt−1 and then we perform the Dickey-Fuller F -type and t-type tests in Section

4.1. In each experiment, T + 500 observations were generated and the first 500

observations were discarded to minimize the initial effects. 100,000 replications

were performed for each experiment. The finite-sample distributions of the tests

are given in Table 1 when st = ∆yt−1 and Table 2 when st = yt−1.
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6.2 Finite-sample properties of the FLM test

The Monto Carlo experiments in this subsection study the finite-sample properties

of the F form of our LM test in Section 4.2. The simulations are designed for n =

2, as there are two variables in the system yt for our application in consumption

and income data. The desired sample sizes are T = 100, 200, 500, 1000. We

discarded the first 500 out of T + 500 observations to minimize the initial effects

from the simulated time series data in each experiment as we did in Section 6.1,

and each experiment was performed 10,000 times.

The size study is based on the DGP under the null hypothesis of existing CNFs

such that:

 y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 2

1

0.05 +
(

0.12 −0.18
) y1t−1

y2t−1

G (st; γ, c) +

 v1t

v2t



where G (st; γ, c) = (1 + exp {−5(y2t−1 − 0.5)})−1 and (v1t, v2t)
′ are simulated

from n.i.d(0,Σ) with

Σ =

 1 0.5

0.5 1

 .

The estimation of the parameter ψ is from (4.16) under the null of θ = 0. In this

case, f(yt−s;ψ) has a form

f(yt−s;ψ) = µ̃+ δ1y2t + δ
′
21yt−1 + δ

′
22yt−2 + (δ′30yt−1 + δ40)G (st; γ, c) .

To calculate our FLM statistic, wt is given in detail such that:

wt =(y21t−1, y1t−1y2t−1, y
2
2t−1, y

2
1t−2, y1t−2y2t−2, y

2
2t−2, y1t−1y1t−2, y1t−1y2t−2,

y2t−1y1t−2, y2t−1y2t−2)
′.

The DGP under the alternative for the power study follows a VSTAR model
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Table 1: Critical values for our Dickey-Fuller F -type and t-type tests under the null
(4.3) with st = ∆yt−1.

Probability that F is greater than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

∆yt−1 50 0.2791 0.3616 0.4517 0.5865 2.7163 3.2606 3.8141 4.5300
100 0.2870 0.3734 0.4691 0.6006 2.6671 3.1710 3.6714 4.3042
200 0.2895 0.3794 0.4736 0.6106 2.6423 3.1243 3.5941 4.2172
500 0.2902 0.3755 0.4732 0.6077 2.6139 3.0910 3.5613 4.1128
1000 0.2893 0.3806 0.4774 0.6142 2.6284 3.1001 3.5578 4.1509

The probability shown at the head of the column is the area in the right-hand tail.

Probability that t is less than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

∆yt−1 50 -3.5351 -3.1853 -2.8986 -2.5813 -0.3758 -0.0057 0.3228 0.7151
100 -3.4738 -3.1449 -2.8786 -2.5716 -0.4096 -0.0491 0.2749 0.6591
200 -3.4593 -3.1346 -2.8736 -2.5685 -0.4244 -0.0562 0.2595 0.6399
500 -3.4273 -3.1274 -2.8660 -2.5707 -0.4381 -0.0718 0.2564 0.6242
1000 -3.4251 -3.1117 -2.8523 -2.5593 -0.4425 -0.0778 0.2507 0.6198

The probability shown at the head of the column is the area in the left-hand tail.

Table 2: Critical values for our Dickey-Fuller F -type and t-type tests under the null
(4.5) with st = yt−1.

Probability that F is greater than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

yt−1 50 0.2638 0.3437 0.4281 0.5606 3.0599 3.7372 4.4263 5.3806
100 0.2654 0.3467 0.4319 0.5619 2.9649 3.5937 4.2322 5.0352
200 0.2725 0.3500 0.4348 0.5639 2.9164 3.5180 4.1144 4.8323
500 0.2735 0.3511 0.4353 0.5639 2.9108 3.5004 4.0708 4.7926
1000 0.2704 0.3501 0.4343 0.5642 2.8923 3.4874 4.0520 4.7917

The probability shown at the head of the column is the area in the right-hand tail.

Probability that t is less than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

yt−1 50 -2.7063 -2.3056 -1.9857 -1.6188 0.8153 1.1617 1.4753 1.8644
100 -2.6606 -2.2822 -1.9621 -1.6027 0.7821 1.1224 1.4300 1.7939
200 -2.6591 -2.2723 -1.9623 -1.6025 0.7708 1.1163 1.4164 1.7675
500 -2.6414 -2.2629 -1.9461 -1.5908 0.7603 1.0917 1.3794 1.7126
1000 -2.6394 -2.2716 -1.9490 -1.5943 0.7502 1.0865 1.3687 1.7021

The probability shown at the head of the column is the area in the left-hand tail.
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Table 3: Empirical size and power of the FLM test.
T Size Size-adjusted Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.3536 0.2053 0.1179 0.0324 0.1394 0.0652 0.0272 0.0043
200 0.3471 0.2055 0.1202 0.0305 0.1411 0.0649 0.0292 0.0051
500 0.2896 0.1605 0.0892 0.0226 0.1743 0.0889 0.0428 0.0077
1000 0.2864 0.1556 0.0851 0.0189 0.2815 0.1698 0.1066 0.0368

Table 4: Empirical size and power of the FLM test.
T Size Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.3536 0.2053 0.1179 0.0324 0.2688 0.1458 0.0777 0.0161
200 0.3471 0.2055 0.1202 0.0305 0.2703 0.1469 0.0814 0.0180
500 0.2896 0.1605 0.0892 0.0226 0.2603 0.1394 0.0790 0.0179
1000 0.2864 0.1556 0.0851 0.0189 0.3618 0.2375 0.1506 0.0564

Table 5: Empirical size and power of the FLM test, DGP2.
T Size Size-adjusted Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.3536 0.2053 0.1179 0.0324 0.1878 0.0906 0.0427 0.0080
200 0.3471 0.2055 0.1202 0.0305 0.2133 0.1095 0.0566 0.0109
500 0.2896 0.1605 0.0892 0.0226 0.3936 0.2463 0.1445 0.0410
1000 0.2864 0.1556 0.0851 0.0189 0.5296 0.3628 0.2474 0.0976
2000 0.2940 0.1684 0.0906 0.0207 0.7520 0.6190 0.4910 0.2500
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(without CNFs) such that y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 0.1

−0.16

+

 0.24 −0.18

0.12 −0.36

 y1t−1

y2t−1

G (st; γ, c) +

 v1t

v2t


where similarly G (st; γ, c) = (1 + exp {−5(y2t−1 − 0.5)})−1 and (v1t, v2t)

′ are sim-

ulated from n.i.d(0,Σ). This method for performing our FLM test is similar to the

method in the previous size study. Further, another DGP for power experiments

is included, which is actually an extension of the VSTAR model with different

nonlinearity for each series, indicating that CNFs is not likely to occur in the

system. In the experiments, we set s∗t = y1t−1 and st = y2t−1. y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1

+

 0.1G (s∗t ; γ, c)

−0.16G (st; γ, c)


+

 0.24 −0.18

0.12 −0.36

 y1t−1G (s∗t ; γ, c)

y2t−1G (st; γ, c)

+

 v1t

v2t

 (6.1)

We compare the finite-sample distributions of our FLM test to the F -distribution

and present the estimated size and (size-adjusted) power in Tables 3-6. Our FLM

test is oversized, but the empirical size decreases as sample size increases. The

power is acceptable before size-corrected. The size-adjusted power increases as

the smaple size increases, although it is not better. This issue could be due to

the numerical problem; the residual vector may not be orthogonal to the gradient

matrix. In the simulations, it is difficult to make good nonlinear estimators for

each replication, when only one set of initial values for the parameters is used

across all replications, as is typical. Sometimes, the iterations cannot converge

with inappropriate initial values. However, when the system is less likely to have

CNFs, for example, in (6.1), the power is much better.

In the cointegration literature, Elliott et al. (2005) stated that unknown cointe-

gration vector produces the loss of power. Not imposing the cointegrating vector

in the testing procedure would make the test to lose power. With this idea in
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Table 6: Empirical size and power of the FLM test, DGP2.
T Size Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.3536 0.2053 0.1179 0.0324 0.3350 0.1932 0.1079 0.0266
200 0.3471 0.2055 0.1202 0.0305 0.3809 0.2208 0.1287 0.0345
500 0.2896 0.1605 0.0892 0.0226 0.5094 0.3401 0.2230 0.0781
1000 0.2864 0.1556 0.0851 0.0189 0.6372 0.4674 0.3304 0.1424
2000 0.2940 0.1684 0.0906 0.0207 0.8540 0.7140 0.6050 0.3440

Table 7: Empirical size and power of the FLM test when α is known.
T Size Size-adjusted Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.1830 0.0877 0.0423 0.0085 0.2998 0.1753 0.0994 0.0266
200 0.1954 0.0972 0.0473 0.0088 0.3968 0.2502 0.1581 0.0512
500 0.1986 0.1013 0.0492 0.0088 0.6716 0.5172 0.3986 0.2054
1000 0.1976 0.0991 0.0481 0.0092 0.9158 0.8410 0.7543 0.5340

mind, we further examine the finite-sample properties, assuming that the combi-

nation vector α for CNFs in our case is known. This makes model (4.16) simpler

because it is not required to correct the correlations between y2t and et. Therefore,

f(yt−s;ψ) has a linear form. In this specific experiment, f(yt−s;ψ) has the form

as follows (α∗ is known),

f(yt−s;ψ) = µ∗
1 + α∗y2t +

2∑
s=1

ϕ∗′
1syt−s.

The empirical size and (size-adjusted) power of this simple case in Tables 7-8 are

substantially better than the one in Tables 3-4.

7 . Application

7.1 Data

The data set, monthly personal consumption expenditures and personal dispos-

able income in United States dating from 1985:1 until 2011:11 (323 observations),
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Table 8: Empirical size and power of the FLM test when α is known.
T Size Power

given significant levels given significant levels
0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100

100 0.1830 0.0877 0.0423 0.0085 0.2791 0.1541 0.0886 0.0218
200 0.1954 0.0972 0.0473 0.0088 0.3752 0.2232 0.1274 0.0325
500 0.1986 0.1013 0.0492 0.0088 0.6485 0.4824 0.3482 0.1372
1000 0.1976 0.0991 0.0481 0.0092 0.0931 0.8131 0.6992 0.4250

is download from U.S. Bureau of Economic Analysis to analyze CNFs between

consumption and income. Both of them are seasonally adjusted at annual rates.

The natural logs of the raw data were taken and then multiplied by 100. Figure

4 presents the percentage growth (∆y1t and ∆y2t). We use the observations from

1985:l to 2006:l2 (264 observations) for modeling and save the remaining ones for

out-of-sample forecasting (future work).

The data in Figure 4 have obvious fluctuations in the late 1980s, the early

1990s and 2000s. A well-known credit crunch of U.S. savings and loans occurred

during 1980s and was a major factor that led to the U.S. recession of 1990-1991.

Another well-known financial crisis was the crash of the dot-com bubble in 2000-

2001. In late 2008 and 2009, the subprime mortgage crisis and the bursting of

other real estate bubbles around the world has led to recession in the U.S. and

a number of other countries, and there is a now-deflating United States housing

bubble. Moreover, the international financial crises, when many Latin American

countries defaulted on their debt in the early 1980s, may cause the large data

break in the middle of 1980s. The data behaviors suggest that a nonlinear model

could be a good consideration.

7.2 Testing procedure

Applying our procedure to consumption and income growth, our unit root tests in

Section 4.1 are imposed first. Table 9 presents the results of Dickey-Fuller t and

F statistics for those unit root tests. From Table 9, both ∆y1t and ∆y2t likely

perform as nonlinearly stabilized processes.
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Figure 4: Percentage change in personal consumption expenditures (upper) and disposable
income (lower), United States, billions of 2005 dollars, monthly, 1985:1-2011:11.

Table 9: The unit root tests.
DF statistics critical values

time series st t F t F

∆y1t ∆2y1t−1 -2.7476 4.3017 -2.87 3.12
∆y1t−1 -2.6744 4.8862 -1.96 3.52

∆y2t ∆2y2t−1 -5.7069 18.029 -2.87 3.12
∆y2t−1 -5.6537 17.810 -1.96 3.52
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In the following analysis, we are interested in whether ∆y1t and ∆y2t have CNFs

according to the testing procedure in Section 4.2. The test regression follows (4.16)

choosing p = 1 and l = 2. Based on the nonlinear least square estimation, the FLM

test statistic in (4.23) is calculated. FLM = 1.7526 and the critical value is 2.11.

The data lead to a non-rejection of the null of CNFs in our test. It is reasonable

to believe that there are CNFs in the system of consumption and income.

Table 10: Choose transition variable.
data test st

x1,t−1 x1,t−2 x1,t−3 x1,t−4 x1,t−5 x1,t−6

x1t t -2.6744 -2.7522 -3.1715 -2.3702 -2.4773 -2.5426
F 4.8862 3.7963 8.7313 5.9177 6.1487 3.8504

x2t t -4.6066 -5.3846 -4.5765 -5.0576 -4.7381 -5.2491
F 19.504 14.806 15.725 15.762 15.604 14.271

data test st
x1,t−7 x1,t−8 x1,t−9 x1,t−10 x1,t−11 x1,t−12

x1t t -3.1982 -2.5386 -2.4964 -2.0108 -3.4666 -2.9038
F 6.1462 3.7753 5.1453 6.4307 9.1321 6.0254

x2t t -5.2798 -4.2107 -5.3020 -5.3532 -5.3216 -4.4308
F 24.610 20.225 14.169 14.402 16.495 19.319

data test st
x2,t−1 x2,t−2 x2,t−3 x2,t−4 x2,t−5 x2,t−6

x1t t -2.8004 -2.5715 -2.6882 -2.7418 -2.8424 -2.6694
F 4.1458 4.2530 3.7920 3.9519 4.0765 4.1619

x2t t -5.6537 -5.6306 -5.2734 -5.3828 -5.1479 -5.4606
F 17.810 16.894 14.196 14.506 15.249 15.322

data test st
x2,t−7 x2,t−8 x2,t−9 x2,t−10 x2,t−11 x2,t−12

x1t t -2.8831 -2.7102 -2.6630 -2.4212 -2.5734 -2.7697
F 4.4869 3.7515 3.9776 4.8118 4.4453 3.9163

x2t t -5.6110 -4.5739 -5.0931 -5.4967 -5.2708 -5.4674
F 17.485 17.585 16.843 15.108 14.160 16.565

*Critical values of Dickey-Fuller t and F tests at 5% significance level are -1.96 and
3.92, respectively.

7.3 Modeling

Based on the conclusion above, we want to model the first-differenced data ∆y1t

and ∆y2t with a VSTAR model containing CNFs. Let xit = ∆yit denote the

percentage change in consumption (i = 1) and income (i = 2). Before we perform
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estimation of a VSTAR model containing CNFs, the model needs to be specified

by deciding how to choose the form of the ST function G(st; γ, c). We take the

simplest one with k = 1. Then, to specify the transition variable st in an ST-

type model, a technique in Teräsvirta (1994) can be applied by using the result

of testing for nonlinearity such that the model which most significantly presents

nonlinearity is the best choice. Following the principle, we found from testing

the unit root against nonlinearity in Table 10 that x1,t−d is better than x2,t−d

because st = x1,t−d contributes more to the nonlinearity of xit than st = x2,t−d.

Further, st = x1,t−7 is recognized as a good consideration. st = ∆xi,t−d is not

considered because ∆xi,t−d is not as meaningful when xit is stationary. (However,

it is reasonable to include it as an option for st under the null of the unit root in

the tests.)

The following estimated model is suggested: x̂1t

x̂2t

 =

 0.3682

0.3328

+

 −0.3778 0.0291

0.0087 −0.3228

 x1t−1

x2t−1


+

 −0.0378

−0.0545

 (0.0493 + 0.0100x1t−1 − 0.0850x2t−1)G(st; γ̂, ĉ)

where G(st; γ̂, ĉ) =
(
1 + exp

{
−47.5(x1t−7 − 0.98)/σ̂x1t−7

})−1 and σ̂x1t−7 = 0.5146.

The Ljung-Box test is considered to examine the autocorrelation of the residual

from the estimated model above. It is approximately distributed as Chi-square

with degrees of freedom n2(s− k) (see Ljung and Box; 1978; Hosking; 1980). For

our data, n = 2, k = 1, and s = 60 (s is reasonably taken as T/4 following the

literature, see for example Juselius (2007), Chapter 4.3.3), the degree of freedom

is 236. The null of no autocorrelation cannot be rejected, and the residuals do not

have serial correlation.
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8 . Conclusions

In this paper we propose a testing procedure to examine the existence of CNFs in

a VSTAR model. A triangular representation for performing our LM test in the

VSTAR model containing CNFs is developed. Using the triangular representation

avoids a regression approximation for testing CNFs, which has been involved in

the existing literature, although nonlinear estimation has to be used as a con-

sequence. Therefore, our test is easy to interpretate and the test properties are

easily examined. The test under the null of existing CNFs in a VSTAR model

has an asymptotic Chi-square distribution. As the model moves further from con-

taining CNFs or when the combination vector is known, the test performs better

in small samples. We illustrate our testing procedure by applying it to the U.S.

consumption and income data, and we observe that the growth of consumption

and income contain CNFs. Afterward, modeling and estimation are briefly dis-

cussed. To make this work more practicable, further development for more than

one combination of removing nonlinearty, considering a matrix instead of a vector

α, should be considered.
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APPENDIX

A . Proofs

The following Lemma is obtained from the central limit theorem (CLT) for se-

quences of mixing random variables. See details of CLT in White (2001, Theorem

5.20).

Lemma. Consider (4.16) under the null (4.13). Under Assumptions 1 and 2, the

first-order derivative of L,

T− 1
2

 ∑T
t=1 z1twt∑T
t=1 z1tz2t

 , (A.1)

has the multivariate normal distribution N(0, E(z21t)V) in which 1
T

∑T
t=1Vt

p→V

as T →∞ implied by Assumption 2, whereas

Vt =

 E(wtw
′
t) E(wtz

′
2t)

E(z2tw
′
t) E(z2tz

′
2t)

 ,

and Vt and V are positive definite matrices.

Theorem. Consider (4.16) and (4.9b) under the null of CNFs. When Assump-

tions 1-2 hold, our LM test in (4.20) has an asymptotic Chi-squared distribution

with (2n2 + n) degrees of freedom as T →∞.

Proof of Theorem. Consider (4.16) under the null (4.13). Under Assumption 2,

we have stated in Section 4.2 that the nonlinear least square estimator of (θ′,ψ′)′
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are consistent. Therefore, ẑ1t and ẑ2t are consistent estimators of z1t and z2t

respectively. Then we have

T− 1
2

 ∑T
t=1 ẑ1twt −

∑T
t=1 z1twt∑T

t=1 ẑ1tẑ2t −
∑T

t=1 z1tz2t

 p→0 (A.2)

as T →∞ by consistency. Thus,

T− 1
2

 ∑T
t=1 ẑ1twt∑T
t=1 ẑ1tẑ2t

 (A.3)

has the same asymptotic distribution with

T− 1
2

 ∑T
t=1 z1twt∑T
t=1 z1tz2t

 L→N(0, E(z21t)V) (A.4)

which is shown in Lemma. Then it follows from (A.4) that

(σ̂2V̂)−
1
2T− 1

2

 ∑T
t=1 ẑ1twt∑T
t=1 ẑ1tẑ2t

 L→N(0, I) (A.5)

as T →∞ in which σ̂2 =
∑T

t=1 ẑ
2
1t/T , I is the identity matrix, and

V̂ =

 ∑T
t=1wtw

′
t/T

∑T
t=1wtẑ

′
2t/T∑T

t=1 ẑ2tw
′
t/T

∑T
t=1 ẑ2tẑ

′
2t/T

 .

Let m1 = 2n2 + n denote the dimension of vector wt and m2 = k denote the

dimension of vector ẑ2t. The null hypothesis (4.13) could be rewritten as

H0 : R

 θ

ψ

 = 0 (A.6)
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in which R = (Im1 ,0). Then

R(σ̂2T V̂)−1/2

 ∑T
t=1 ẑ1twt∑T
t=1 ẑ1tẑ2t

 L→N(0,RIm1+m2R
′) ≡ N(0, Im1) (A.7)

as T →∞. Thus,

σ̂−2
( ∑T

t=1 ẑ1tw
′
t

∑T
t=1 ẑ1tẑ

′
2t

)
R′
(
R(T V̂)−1R′

)
R

 ∑T
t=1 ẑ1twt∑T
t=1 ẑ1tẑ2t


= σ̂−2

(
T∑
t=1

ẑ1twt

)(
R(T V̂)−1R′

)( T∑
t=1

ẑ1tw
′
t

)
L→χ2(m1)

(A.8)

as T →∞ in which

R(T V̂)−1R′ =

 T∑
t=1

wtw
′
t −

T∑
t=1

wtẑ
′
2t

(
T∑
t=1

ẑ2tẑ
′
2t

)−1 T∑
t=1

ẑ2tw
′
t

−1

.

B . Simulation of unit root tests (µ∗ = 0)

Similar to the simulation procedure in Section 6.1, we give the finite-sample distri-

butions of Dickey-Fuller F -type and t-type tests of another case in which µ∗ = 0

in (4.2) in Section 4.1. Test

H0 : yt = yt−1 + v∗t (B.1)

against

Haux
1 : yt = ϕ∗

1yt−1 + ϕ∗
2styt−1 + ϕ∗

3st + v∗t . (B.2)

when we consider st = ∆yt−1 (H0 : ϕ∗
1 = 1, ϕ∗

2 = 0, ϕ∗
3 = 0). However, when we

consider st = yt−1, we test

H0 : yt = yt−1 + v∗t (B.3)
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Table 11: Critical values for non-standard unit root tests under the null (B.1) with
st = ∆yt−1.

Probability that F is greater than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

∆yt−1 50 0.0415 0.0774 0.1258 0.2062 2.1703 2.7473 3.3246 4.1092
100 0.0421 0.0778 0.1267 0.2071 2.1378 2.6923 3.2481 3.9582
200 0.0417 0.0783 0.1260 0.2101 2.1343 2.6766 3.1867 3.8797
500 0.0426 0.0805 0.1297 0.2137 2.1549 2.6797 3.1830 3.8652
1000 0.0431 0.0803 0.1290 0.2140 2.1448 2.6846 3.2070 3.8666

The probability shown at the head of the column is the area in the right-hand tail.

Probability that t is less than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

∆yt−1 50 -2.6570 -2.2911 -1.9906 -1.6495 0.9819 1.3791 1.7118 2.1186
100 -2.6014 -2.2417 -1.9558 -1.6287 0.9705 1.3715 1.7049 2.1020
200 -2.5903 -2.2322 -1.9451 -1.6129 0.9589 1.3460 1.6789 2.0671
500 -2.5836 -2.2485 -1.9589 -1.6248 0.9555 1.3457 1.6796 2.0693
1000 -2.5545 -2.2183 -1.9306 -1.6091 0.9585 1.3506 1.6912 2.0912

The probability shown at the head of the column is the area in the left-hand tail.

Table 12: Critical values for non-standard unit root tests under the null (B.3) with
st = yt−1.

Probability that F is greater than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

yt−1 50 0.0589 0.1369 0.2450 0.4006 3.5804 4.4741 5.3629 6.5900
100 0.0610 0.1443 0.2510 0.4112 3.4751 4.3232 5.1667 6.2926
200 0.0601 0.1447 0.2550 0.4086 3.4880 4.3158 5.1192 6.2031
500 0.0623 0.1472 0.2563 0.4094 3.4468 4.2620 5.0649 6.0750
1000 0.0606 0.1456 0.2562 0.4137 3.4496 4.2618 5.0486 6.0007

The probability shown at the head of the column is the area in the right-hand tail.

Probability that t is less than entry
st T 99% 97.5% 95% 90% 10% 5% 2.5% 1%

yt−1 50 -2.3973 -2.0115 -1.6624 -1.2137 2.4042 2.7741 3.0839 3.4591
100 -2.3652 -2.0041 -1.6580 -1.2083 2.3872 2.7292 3.0361 3.3724
200 -2.3936 -2.0031 -1.6508 -1.2129 2.3871 2.7338 3.0213 3.3567
500 -2.3839 -1.9835 -1.6379 -1.2100 2.3811 2.7128 3.0059 3.3445
1000 -2.3833 -2.0029 -1.6512 -1.2085 2.3817 2.7167 3.0060 3.3290

The probability shown at the head of the column is the area in the left-hand tail.
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against

Haux
1 : yt = ϕ̃∗

1yt−1 + ϕ∗
2styt−1 + v∗t (B.4)

(H0 : ϕ̃
∗
1 = 1, ϕ∗

2 = 0). Then we consider (B.2) with the null hypothesis of ϕ∗
1 = 1

and (B.4) with ϕ̃∗
1 = 1. Critical values are in Table 11-12.
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Figure 5: Smooth-transition function G in s1t ∼ N(0, 1) in panel (a) and s2t ∼ N(0, 0.5) in
panel (b), when k = 2 with different both sjt and cj = {−1, 2}.
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