
http://www.oru.se/Institutioner/Handelshogskolan-vid-Orebro-universitet/Forskning/Publikationer/Working-papers/
Örebro University School of Business
701 82 Örebro
SWEDEN

WORKING PAPER

8/2013

ISSN 1403-0586

FORECASTING WITH VECTOR NONLINEAR TIME
SERIES MODELS

DAO LI, CHANGLI HE
STATISTICS



Forecasting with Vector Nonlinear Time Series Models

Dao Li∗, Changli He†

First version: February 2012; Second version: October 2012,

This version: August 12, 2013

Abstract

In this study, vector nonlinear time series models are used for forecasting. Point

forecasts are numerically obtained via bootstrapping. Our procedure is illustrated by

two examples, each of which involves an application of macroeconomic data. Point

forecast evaluation concentrates on forecast equality and encompassing. From these two

applications, the forecasts from nonlinear models contribute useful information absent

in the forecasts from linear models.

Keywords: point forecast, forecast evaluation, nonlinearity.

1 . Introduction

One of the primary concerns in macroeconomic time series data evaluation is the

presence of nonlinearities. Because most existing linear time series models cannot

approximate the nonlinear behavior of macroeconomic data, richer models are

required. Modeling and forecasting using nonlinear models have been proposed

more frequently in recent literature. To date, neither nonlinear models nor linear

models can generally outperform after a large number of macroeconomic variables

have been studied. However, combining forecasts obtained from different models

has provided positive signs in several recent publications.

Point forecasts from a nonlinear parametric model usually do not have analytic

solutions when we consider multi-step ahead forecasts. A Monte Carlo simulation
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or bootstrapping method is usually applied in practice to approximate the inte-

grations for the conditional expectations. Teräsvirta (2006, Chapter 8) illustrates

a method to calculate the point forecasts from univariate nonlinear models, as-

suming that errors are independent. However, this paper addresses forecasting

from vector nonlinear parametric models, in which several issues can be extended

for empirical interest. For example, the correlations between variables should be

included when multivariate models are involved, or a modification in numerical

computation is necessary when serial correlations appear or endogenous variables

are present. Block bootstrap is used in simple multivariate models, while model-

based bootstrap is applied when serial correlations exist in the errors.

This study evaluates point forecasts, using two nonlinear models as examples.

Forecast equality and encompassing are evaluated by applying several tests, follow-

ing methods described in West (1996). The two examples are the nonlinear VAR

model for stationary data and the nonlinear cointegration model for nonstation-

ary data. An important empirical interest of nonstationary economic data is the

purchasing power parity (PPP) system. The stationarity of the real exchange rate

often fails in linear models. Imposing a nonlinear cointegration relation, this study

investigates whether a nonlinear cointegration relation contributes to forecasting

in the PPP system. For stationary systems, this study considers the growth of

consumption and income instead of the levels themselves, to concentrate on the

stationary nonlinear relation, thus cointegration is not possible.

The remainder of the paper is organized as follows. Section 2 describes the

forecasting procedure using vector nonlinear time series models, including the two

examples. Section 3 describes the accuracy measures used to evaluate the forecasts.

After presenting two data sets and the modeling pre-treatment in Section 4, the

forecasting results are presented in Section 5. The conclusions are presented in

Section 6.
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2 . Point Forecasts with Nonlinear Models

2.1 Univariate forecasting

Teräsvirta (2006, Chapter 8) establishes a general framework for forecasting using

a univariate nonlinear model. Assume a univariate time series yt modeled in a

nonlinear form as follows:

yt = g(xt−1) + et, (2.1)

where g(xt−1) is a nonlinear function of the regressors, xt−1, and the error term,

et ∼ i.i.d.(0, σ2). Let FT denote the information set available up to time T and

f y
T+h|T = E (yT+h |FT ) denote an h-step ahead point forecast of yt, given FT . We

summarize the procedure of forecasting from a univariate nonlinear model in the

following.

When h = 1, the forecast of yT+1, given FT , is analytically derived as follows:

f y
T+1|T = E (yT+1 |FT ) = E (g(xT ) + eT+1 |FT ) = g(xT ),

because E (eT+1 |FT ) = 0. However, when h ≥ 2, the forecast of yT+h, given

FT , must usually be obtained numerically. Suppose that xt is generated from

the previous information, xt−1, and the independent random errors, ηt, as xt =

g∗(xt−1) + ηt. For example, when h = 2, the two-step forecast, E (yT+2 |FT ), is

defined as follows:

f y
T+2|T =E (yT+2 |FT ) = E (g(xT+1) + eT+2 |FT ) = E (g(xT+1) |FT ) (2.2)

=E
(
g(g∗(xT ) + ηT+1) |FT

)
=

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(g∗(xT ) + ηT+1)dF (ηT+1), (2.3)

where F (ηT+1) is the joint cumulative function of the random variables in the

vector ηT+1. Because xT+1 in (2.2) is not known, given FT , the forecast of g(xT+1)

depends on the distribution of ηT+1. Consequently, it is necessary to approximate

the integration in (2.3) numerically. The usual approach is to perform simulations
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for ηT+1 by assuming a distribution of ηt or bootstrapping the residuals, η̂T , to

approximate the integrals in (2.3). As an example of the latter option, when the

two-step ahead forecast is undertaken, the integral is approximated as follows:

f̂
y(b)
T+2|T = Ê (yT+2 |FT ) =

1

N

N∑
j=1

(
g(g∗(xT ) + η̂

(j)
T+1)

)

where η̂(j)
T+1(j = 1, 2, ..., N) are independently drawn from the residuals η̂t (t =

1, 2, ..., T ) with replacement.

2.2 Multivariate forecasting

The forecasting procedure in Section 2.1 was developed for univariate nonlinear

models with independent errors. However, the correlations between elements of

the errors should also be considered when the forecasting procedure is extended

to multivariate models. Serially correlated errors or endogenous variables, which

can be important, should also be included. Thus, the forecasting procedure must

be extended further. We will use two examples to illustrate both these issues. To

be as general as possible, one of the examples is the forecast of stationary time

series and the other is the forecast of nonstationary time series.

Starting from stationary variables, the autoregressive model is a popular class

of time series models applied to dynamic structures. The nonlinear autoregressive

models interest many modelers or forecasters for stationary data when a pattern

of nonlinearity is likely. The following unrestricted and restricted vector smooth-

transition autoregressive (VSTAR) models, (2.4) and (2.6), belong to the class

from which we have the benefit of capturing nonlinear dynamics.

Suppose a class of vector nonlinear autoregressions is desired to forecast a group

of stationary time series. Let yt = (y1t, y2t, y3t, ..., ynt)
′ denote an (n × 1) vector

time series. In this example, the following vector smooth-transition autoregression
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(VSTAR) is considered:

yt = µ+

p∑
k=1

Φkyt−k +

(
µ̃+

p∑
k=1

Γkyt−k

)
G (st; γ, c) + vt. (2.4)

where µ, Φk, µ̃, Γk, γ and c are all parameters, and G(st; γ, c) is a logistic function

of the transition variables st and G(st; γ, c) = (1+exp{−γ
∏k

j=1 (sjt − cj)})−1. The

error term vt is independent and identically distributed. However, the n elements

in vt are correlated. Assume that the process yt is stationary and ergodic and that

fourth-order moments exist and are finite. When yt contains common nonlinear

features (CNFs), the combination of yt is reduced to a linear form, as follows:

α′yt = α
′µ+

p∑
k=1

α′Φkyt−k +α
′vt, (2.5)

where α′µ̃ = 0 and α′Γk = 0 for all k. Therefore, the restricted VSTAR model

can be rewritten as follows:

yt = µ+

p∑
k=1

Φkyt−k +α⊥

(
µ̃∗ +

p∑
k=1

β′
kyt−k

)
G (st; γ, c) + vt, (2.6)

where α⊥µ̃
∗ = µ̃ and α⊥β

′
k = Γk, where α⊥, βk and µ̃∗ are parameters. Mul-

tiplying both sides of (2.6) by a vector, α, results in (2.5) because there exists

a nonzero vector α satisfying α′α⊥ = 0 when yt contains CNFs. Without loss

of generality, we use the VSTAR model with order p = 1 for simplicity. Usually,

the transition variable st is set as the lagged values of yt, denoted by yt−d, where

the delay parameter, d, affects the forecasts at a different-step ahead. Because

yT+h−d |FT may or may not be knwon, depending on whether d is not less than

or less than h.

The one-step ahead forecast of yt, given FT , is detailed as follows:

fy
T+1|T = E (yT+1 |FT ) = E (µ+Φ1yT +α⊥ (µ̃∗ + β′

1yT )G (sT+1; γ, c) + vT+1 |FT )

= µ+Φ1yT +α⊥ (µ̃∗ + β′
1yT )E(G (sT+1; γ, c) |FT ),
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where E(G (sT+1; γ, c) |FT ) is unobserved when d = 0, while the expectation is

trivial when d > 0 and G (sT+1; γ, c) is observed. Similarly, the two-step ahead

forecast of yt is recursively derived as follows:

fy
T+2|T =E (yT+2 |FT )

=E (µ+Φ1yT+1 +α⊥ (µ̃∗ + β′
1yT+1)G (sT+2; γ, c) + vT+2 |FT )

=µ+Φ1µ+Φ1Φ1yT +Φ1α⊥ (µ̃∗ + β′
1yT )G (sT+1; γ, c)

+α⊥µ̃
∗E (G (sT+2; γ, c) |FT ) +α⊥β

′
1µE (G (sT+2; γ, c) |FT )

+α⊥β
′
1Φ1yTE (G (sT+2; γ, c) |FT ) +α⊥β

′
1E (vT+1G (sT+2; γ, c) |FT )

+α⊥β
′
1α⊥ (µ̃∗ + β′

1yT )G (sT+1; γ, c)E (G (sT+2; γ, c) |FT ) , (2.7)

where E (G (sT+2; γ, c) |FT ) and E (vT+1G (sT+2; γ, c) |FT ) need numerical ap-

proximations when d = 1. However, when d ≥ 2, fy
T+2|T is reduced to the

following:

fy
T+2|T =µ+Φ1µ+Φ1Φ1yT +Φ1α⊥ (µ̃∗ + β′

1yT )G (sT+1; γ, c)

+ (α⊥µ̃
∗ +α⊥β

′
1µ+α⊥β

′
1Φ1yT )G (sT+2; γ, c)

+α⊥β
′
1α⊥ (µ̃∗ + β′

1yT )G (sT+1; γ, c)G (sT+2; γ, c) ,

because G (sT+2; γ, c) is observed at time T when d ≥ 2.

Generally speaking, the h-step ahead forecast, fy
T+h|T , is obtained recursively

in the same way as for fy
T+2|T . When d ≥ h, fy

T+h|T has an analytic form; how-

ever, numerical approaches are required when d < h. When the approximations of

the conditional expectations, such as E (vT+1G (sT+2; γ, c) |FT ), are numerically

calculated via bootstrapping, individually drawing different elements from the cor-

responding residuals is not sufficient to capture the dependent structures between

the elements in vt. A simple modification of re-sampling for the dependence in vt

is then used to calculate fy
T+h|T .

A class of time series models, complementary to the class above, is used for

the vector unit root processes. The cointegrating regression models are a pop-
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ular choice for series that have long-run equilibrium. We therefore apply the

cointegrated processes from nonlinear cointegrating regression models to frecast-

ing. Beyond introducing the nonlinear cointegrating regressions, we also define

the nonlinear cointegration. Let yt = (y1t, y2t, ..., ynt)
′ be an (n × 1) vector time

series in which each of the series is nonstationary. The vector time series yt

is nonlinearly cointegrated if there is an (n × 1) time-varying or random vector

α∗
t = (α1t, α2t, ..., αnt)

′ such that the nonlinear combination of the series yt is sta-

tionary. A formal definition can be found in Li and He (2013b). We normalize

the cointegrating vector with a nonzero element to be unity and correspondingly

partition α∗
t as (1,α′

t)
′. The proposed nonlinear cointegrating regression model is

then defined in a partitioned form for yt = (y1t,y
′
2t)

′ as follows:

y1t = a1 + δt+α′
ty2t + ut (2.8a)

y2t = a2 + y2,t−1 + vt, (2.8b)

where each αit (i = 2, ..., n) in the random or time-varying parameter vector αt is

defined as αit = αiGi (st; γ, c) for each i, where G (st; γ, c) is the logistic function

of st, and a1, δ, a2 = (a2, ..., an)
′, γ and c are constant parameters. The error

terms (ut,v
′
t)

′ = (ut, v2t, ..., vnt)
′ are serially correlated. In this study, the logistic

functions G(st; γ, c) in (2.6) and (2.8a) are in the same form, but the transition

variables st are often chosen as yt−d in (2.6) and yt−d or ∆yt−d in (2.8a). In

this model, the delay parameter, d, in G(st; γ, c) also affects the forecasts at a

different-step ahead, similar to the previous VSTAR model. The proposed model

(2.8a)-(2.8b) is a triangular representation of cointegration. Although the trian-

gular representation is not necessarily the only option to model a cointegrated sys-

tem, some evidence leads to its appeal for forecasting (see Clements and Hendry;

1995). This is a good and important example where the endogenous variables

are present, and the assumption of serially correlated errors is reasonable. The

included endogenous variables introduce difficulties in the forecasting procedure

because they are unobserved at a certain time when the regression, y1t, is not ob-
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served. Therefore, the vector version of (2.1) should compensate for models such

as triangular cointegrating regressions by considering xt−j (j ≥ 0) rather than

j > 0. Moreover, serially correlated errors also cause some changes in the imple-

mented bootstrapping for the conditional expectations because of the correlation

structure in the residuals.

To forecast y1t in (2.8a), there is another correction that will be implemented

in the estimation strategy. Leads and lags of y2t are added in (2.8a) in order that

the least squares estimation is applicable. For that reason, we rewrite the error as

ut =
∑p

s=−p ζ
′
s∆y2,t−s + ũt and impose it on the model to estimate and forecast.

Then, the h-step ahead forecasts of y1t are generally derived as follows:

f y1
T+h|T =E

(
a1 + δ(T + h) +α′

T+hy2,T+h +

p∑
s=−p

ζ ′s∆y2,T+h−s + ũT+h |FT

)

=a1 + δ(T + h) + E(α′
T+h |FT )(a2h+ y2,T ) +

h∑
s=1

E
(
α′

T+hvT+s |FT

)
+

p∑
s=−p

ζ ′sE(∆y2,T+h−s |FT ) + E(ũT+h |FT ), (2.9)

from which the following four categorizations (a)-(d) are summarized accord-

ing to the values of h, p and d. For example,
∑p

s=−p ζ
′
sE(∆y2,T+h−s |FT ) =

(
∑p

s=−p ζ
′
s)a2+

∑p
s=−p ζ

′
sE(vT+h−s |FT ) if h > p, and

∑p
s=−p ζ

′
sE(∆y2,T+h−s |FT ) =

(
∑h−1

s=−p ζ
′
s)a2+

∑h−1
s=−p ζ

′
sE(vT+h−s |FT )+

∑p
s=h ζ

′
s∆y2,T+h−s if h ≤ p; αT+h is ob-

served if h is not larger than d, and vice versa.

(a) If h ≤ d ≤ p or h ≤ p ≤ d then:

f y1
T+h|T =a1 + δ(T + h) +α′

T+h

(
a2h+ y2,T +

h∑
s=1

E(vT+s |FT )

)

+

(
h−1∑
s=−p

ζ ′s

)
a2 +

h−1∑
s=−p

ζ ′sE(vT+h−s |FT ) +

p∑
s=h

ζ ′s∆y2,T+h−s + E(ũT+h |FT )
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(b) If d < h ≤ p then:

f y1
T+h|T =a1 + δ(T + h) + E

(
α′

T+h |FT

)
(a2h+ y2,T ) + E

(
α′

T+h

h∑
s=1

vT+s |FT

)

+

(
h−1∑
s=−p

ζ ′s

)
a2 +

h−1∑
s=−p

ζ ′sE(vT+h−s |FT ) +

p∑
s=h

ζ ′s∆y2,T+h−s + E(ũT+h |FT )

(c) If p < h ≤ d then:

f y1
T+h|T =a1 + δ(T + h) +α′

T+h

(
a2h+ y2,T +

h∑
s=1

E(vT+s |FT )

)

+

(
p∑

s=−p

ζ ′s

)
a2 +

p∑
s=−p

ζ ′sE(vT+h−s |FT ) + E(ũT+h |FT )

(d) If d ≤ p < h or p ≤ d < h then:

f y1
T+h|T =a1 + δ(T + h) + E

(
α′

T+h |FT

)
(a2h+ y2,T ) + E

(
α′

T+h

h∑
s=1

vT+s |FT

)

+

(
p∑

s=−p

ζ ′s

)
a2 +

p∑
s=−p

ζ ′sE(vT+h−s |FT ) + E(ũT+h |FT )

Forecasting y2t from (2.8b) is much simpler than forecasting y1t. The h-step ahead

forecast of y2t, conditional on FT , is given by the following:

fy2

T+h|T = E (y2,T+h |FT ) = a2h+ y2T +
h∑

s=1

E (vT+s |FT ), (2.10)

where E (vT+s |FT ) ̸= 0 in general because vt contains serial correlations.

The extension to multivariate nonlinear forecasting is of great interest because

of an existing requirement from, e.g., the two models illustrated above. Generally,

an analytical solution does not exist for any horizons, even for a one-step head

forecast. Assume that the following model represents a multivariate nonlinear

model:

yt = g(xt−j) + et,
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where et contains the contemporaneous and serial correlations and j ≥ 0. The

variables xt do not imply the exclusion of any variables in yt. The one-step ahead

forecast of yt, given FT , is generally defined as follows:

fy
T+1|T = E (yT+1 |FT ) = E (g(xT+1−j) + eT+1 |FT ) ̸= g(xT+1−j),

where et has nonzero serial correlations or j = 0. Therefore, an analytical solution

is not available, even when h = 1. Further, looking at the two-step ahead forecast,

the following is derived:

fy
T+2|T =E (yT+2 |FT ) = E (g(xT+2−j) + eT+2 |FT )

=


g(xT+2−j) + E (eT+2 |FT ) , j > 1

E
(
g(g∗(xT ) + ηT+1) + eT+2 |FT

)
, j = 1

E
(
g(g∗(g∗(xT + ηT+1)) + ηT+2) + eT+2 |FT

)
, j = 0.

The h-step ahead forecast of yt can then be generally obtained in the same way,

as follows:

fy
T+h|T =E (yT+h |FT ) = E (g(xT+h−j) + eT+h |FT )

=E
(
g(g∗(xT+h−j−1) + ηT+h−j) + eT+h |FT

)
= · · ·

=E
(
g(xT ;ηT+h−j, ...,ηT+1) + eT+h |FT

)
=

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
g(xT ;ηT+h−j, ...,ηT+1) + eT+h

]
dF (ηT+h−j, ...,ηT+1, eT+h)

in which F (ηT+h−j, ...,ηT+1, eT+h) is the joint distribution of dependent errors (we

do not specify different cases here by assuming h− j > 1 for longer horizons), and

for notation simplification, let g(xT ;ηT+h−j, ...,ηT+1) denote that the calculation

is based on the observation xt up to time T and the joint distribution of dependent

errors, ηT+1, ...,ηT+h−j. In this case, neither independently drawing nor block

bootstrapping is applicable because for example eT+h is conditional on eT , which

is correlated with eT+h. Fortunately, model-based bootstrapping is available and

necessary for this case.
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2.3 Bootstrap Approximations

Re-sampling a single observation at a time is commonly performed in bootstrap-

ping from independent data and is sufficient to calculate the forecasts in Section

2.1. In contrast to the ordinary bootstrap, block bootstrap is applicable to de-

pendent data by re-sampling blocks of consecutive observations to preserve the

dependence structure of the original observations. Related literature include Poli-

tis and Romano (1994) and Nordman (2009). In general, centering residuals before

bootstrapping can reduce the random bias in bootstrap approximations; in addi-

tion, the studentized residuals can be useful.

However, the expectation is conditional on the information up to time T , i.e.,

the bootstrapping for eT+h from êt (t = 1, 2, ..., T ) depens on eT and êT . In other

words, re-sampling blocks to preserve the dependent structure does not apply

when the re-sampling for eT+h depends on eT becaue eT+h and eT are correlated.

Another option for re-sampling dependent data is the model-based bootstrap.

Suppose the correlations in et can be expressed as a VMA(∞) representation,

et =
∑∞

j=0ψjεt−j, where εt and ετ (t ̸= τ) are uncorrelated. It is straightforward

to obtain the forecast E(eT+s |FT ) = E(
∑∞

j=0ψjεT+s−j |FT ) by applying the

model-based bootstrap of êt (t = 1, ..., T ). In practice, a truncated VMA(q) or

V AR(p) model for êt (t = 1, ..., T ) can be used.

In the following, we will present an example of re-sampling for the conditional

expectations in (2.7) using block bootstrap, and for (2.9)-(2.10) using model-based

bootstrap. In (2.7), the approximations of the conditional expectations can be

computed as follows:

Ê (vT+1G (sT+2; γ, c) |FT )

=


Ê (v1,T+1G (sT+2; γ, c) |FT )
...

Ê (vn,T+1G (sT+2; γ, c) |FT )

 =


1
N

N∑
j=1

v̂
(j)
1,T+1G

(
ŷ
(j)
T+2−d; γ, c

)
...

1
N

N∑
j=1

v̂
(j)
n,T+1G

(
ŷ
(j)
T+2−d; γ, c

)

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and

Ê (G (sT+2; γ, c) |FT ) =
1

N

N∑
j=1

G
(
ŷ
(j)
T+2−d; γ, c

)
,

where a simple block bootstrap is imposed with block size one. We first center

the raw residual v̂t (t = 1, 2, ..., T ) to limit the bias such that ṽt = v̂t − ¯̂vt.

Then, for each j, the vectors ṽ
(j)
T+1 are independently drawn with replacement

from ṽt including the correlations between the elements in vector vt. After that,

we calculate ṽ
(j)
T+1 +

¯̂vt as v̂
(j)
T+1. Thereafter, ŷ

(j)
i,T+1 are calculated from ŷ

(j)
T+1 =

µ+Φ1yT +α⊥ (µ̃+ β′
1yT )G(ŷ

(j)
T+1−d; γ, c) + v̂

(j)
T+1.

In (2.9)-(2.10), the conditional expectations are computed as follows:

Ê(ũT+h |FT ) =
1

N

N∑
j=1

ˆ̃u
(j)
T+h,

Ê(vT+s |FT ) =


1
N

N∑
j=1

v̂
(j)
2,T+s

...

1
N

N∑
j=1

v̂
(j)
n,T+s

 , s = 1, 2, ..., h,

Ê (αT+h |FT ) =


Ê (α2,T+h |FT )
...

Ê (αn,T+h |FT )

 =


1
N

N∑
j=1

α̂2,T+h

...

1
N

N∑
j=1

α̂n,T+h



=


1
N

N∑
j=1

α2G2(ŝ
(j)
2,T+h; γ2, c2)

...

1
N

N∑
j=1

αnGn(ŝ
(j)
n,T+h; γn, cn)

 ,

and

Ê
(
α′

T+hvT+s |FT

)
=

1

N

N∑
j=1

(
n∑

i=2

αiv̂
(j)
i,T+sGi(ŝ

(j)
i,T+h; γi, ci)

)
, s = 1, ..., h.

where ŝ
(j)
i,T+h = ai + v̂

(j)
i,T+h−d, when sit is set as ∆yit−d = ai + vit in the model.
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A VAR model is fitted for the residuals (ˆ̃ut, v̂
′
t)

′ (t = 1, 2, ..., T ), and then, this

estimated model produces its own residuals, ε̂t, which are assumed i.i.d. in the

VAR model. Using the recursive relation in the VAR model, the bootstrapping of

(ˆ̃ut, v̂
′
t)

′ is achieved via the estimated VAR model and the simple block bootstrap

for ε̂t.

3 . Forecast Evaluation

The evaluation of a point forecast primarily includes the adequacy of the model

and a comparison of two or more models. Measures to compare model quality

usually include ratios or differences of functions of forecast errors (known as fore-

cast equality) and a correlation between one model’s forecast error and the other

model’s forecast or a correlation between one model’s forecast error and the dif-

ference between two models’ forecast errors (both of the two forms are known

as forecast encompassing). Testing forecast equality was proposed by Granger

and Newbold (1977) and involves testing the equality between variances of two

normally distributed random variables in Morgan (1939). Then, it was further

developed and extended for many difference cases, covering multi-step ahead, non-

i.i.d., non-normal and nested models. Related literature include Meese and Rogoff

(1988), Mizrach (1995), West and Cho (1995) and a general context by Diebold

and Mariano (1995). Chong and Hendry (1986) and Harvey et al. (1997) proposed

testing the conditional efficiency of competitive forecasts (forecast encompassing)

in two different forms.

Let ŷit denote the forecast from model i (i = 1, 2) and let eit = yit− ŷit denote

the forecast error from model i. We compare two models, our nonlinear model

and a linear benchmark model for each example in Section 2.2. The dimension of

yit is small, no greater then three for our applications. The function of forecast

error used in forecast evaluation is usually called the loss function, which is com-

monly expressed as l(eit) = e′itKeit, where the weighting matrix, K, is a positive

definite symmetric square matrix. As usual, we set K = I. The measure we ap-

ply is a multivariate version of the root-mean-squared forecast errors (RMSFEs),
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√
E(e′iteit) =

√
trace(var(eit)) (see Christoffersen and Diebold; 1998).

The equality for forecast loss measures the relative perforemance of the two

forecasts. Testing forecast equality determines if the population mean of the loss-

differential series, E(l(eit)− l(ejt)), is zero. If the null of equal forecast accuracy

is rejected, then it would imply a better forecast. However, the preference of

a particular model in terms of forecast accuracy does not mean that the non-

preferred forecast does not contain any useful information absent in the preferred

forecast. Therefore, tests for forecast encompassing are developed to discover if

the non-preferred forecast can contribute more information. Testing for forecast

encompassing tests if the correlation between eit and eit − ejt is zero, or if the

correlation between eit and ŷjt is zero. If the null is not rejected, then the test

suggests that the forecast ŷit is conditionally efficient with respect to ŷjt, i.e., ŷit

is encompassing ŷjt. Otherwise, ŷjt can provide useful information absent in ŷit.

4 . Data and Modeling

The first data set in Figure 1 shows the monthly percentage growth of personal

consumption expenditures, z
(C)
t , and percentage growth of personal disposable

income, z
(I)
t , in the United States, from January 1985 to December 2011 (324

observations)∗. Both of them are seasonally adjusted at annual rates. We use the

observations from 1985:l to 2006:l2 (264 observations) for modeling and use the

remaining data for out-of-sample forecasting.

Modeling strategy begins with testing for nonlinearity, where testing linearity

against nonlinearity is one option. However, when we suspect a unit root, testing

the null of a linear unit root process against a stationary nonlinear process be-

comes another option. We refer to Luukkonen et al. (1988) for the possibility of

the former option and Li and He (2013a) for the later one. If the null of linearity

is rejected, then including CNFs becomes part of the study also. When nonlinear

structures appear in both series, z(C)
t and z

(I)
t , we apply the derived LM test in

Li and He (2013a) to examine the CNFs in the system. If the system is likely to

∗The data from 2009:1 to 2011:12 was revised in year 2012.
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Figure 1: Percentage change of personal consumption expenditures (upper) and disposable
income (lower), United States, billions of 2005 dollars, monthly, 1985:1-2011:12.
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Figure 2: The price level of the United States (solid line, blue) and Italy (dashed line, green)
and the dollar-lira exchange rate (dot-dashed line, red), monthly, 1973:1-2001:12.

have CNFs, then the system can be modeled by a VSTAR model with CNFs, using

(2.6). Model specification, i.e., choosing the nonlinear components of G(st, γ, c),

is achieved by testing for nonlinearity simultaneously, and we choose the one that

makes the series most significantly nonlinear. The estimation is numerically ob-

tained by minimizing the sum of squared residuals, subject to a reduced rank

restriction on the coefficient matrices (the algorithm is provided in Li; 2013). Li
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Table 1: The unit root tests.
DF statistics critical values

time series st t F t F

y1t ∆y1t−1 -0.8124 2.1339 -3.43 4.76
y1t−1 -0.5234 5.7210 -3.75 5.64

y2t ∆y2t−1 -0.7025 3.9011 -3.43 4.76
y2t−1 -0.1287 4.5767 -3.75 5.64

y3t ∆y3t−1 -1.8076 1.6904 -3.43 4.76
y3t−1 0.5478 1.8508 -3.75 5.64

and He (2013a) analysed this data set and using the modelling procedure outlined

above they adopted a VSTAR with CNFs. The same model specification will be

used here. Lag selection is additionally involved by AIC criterion ending up with

p = 3. Estimating the model on the data up 2006:12 yields: ẑ
(C)
t

ẑ
(I)
t

 =

 0.4502

0.3296

+

 −0.5596 −0.0028

−0.0379 −0.4703

 z
(C)
t−1

z
(I)
t−1


+

 −0.1788 0.1022

0.1518 −0.2219

 z
(C)
t−2

z
(I)
t−2

+

 −0.1328 0.0736

0.3031 −0.1673

 z
(C)
t−3

z
(I)
t−3


+

 −0.3411

−0.4651

 (0.3595− 0.5479z
(C)
t−1 − 0.3791z

(I)
t−1 − 0.1350z

(C)
t−2

+ 0.0413z
(I)
t−2 − 0.7514z

(C)
t−3 + 0.2033z

(I)
t−3)Ĝ(st; γ, c),

where:

Ĝ(st; γ, c) =
(
1 + exp

{
−7.58(z

(C)
t−7 − 0.30)/σ̂

z
(C)
t−7

})−1

and σ̂
z
(C)
t−7

= 0.5146. The Ljung-Box test is used for the diagnosis of residuals, and

the residuals are not likely to have correlations.

The second data set includes three monthly time series from 1973:1 to 2001:12

(348 observations), the price level of the United States, y1t, the price level of Italy,

y2t and the dollar-lira exchange rate, y3t. Natural logs of the raw data were taken

and multiplied by 100, and then normalized by subtracting the initial value for

1973:l in Figure 2. We use the observations from 1973:l to 1996:l2 for modeling

and use the remaining data for out-of-sample forecasting.

Building ST cointegrating regression models is initiated by testing for ST coin-



17 Forecasting

Table 2: Testing linear cointegration against nonlinear cointegration.
s2t ∆y2,t−1 ∆y2,t−1 ∆y2,t−1 ∆y2,t−1 ∆y2,t−1 ∆y2,t−1

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 14.10 14.03 14.83 21.81 14.70 14.52
s2t ∆y2,t−2 ∆y2,t−2 ∆y2,t−2 ∆y2,t−2 ∆y2,t−2 ∆y2,t−2

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 16.82 14.16 21.86 14.96 14.55 14.67
s2t ∆y3,t−1 ∆y3,t−1 ∆y3,t−1 ∆y3,t−1 ∆y3,t−1 ∆y3,t−1

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 0.79 0.59 14.17 14.74 1.85 0.63
s2t ∆y3,t−2 ∆y3,t−2 ∆y3,t−2 ∆y3,t−2 ∆y3,t−2 ∆y3,t−2

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 0.85 0.61 14.20 14.34 0.70 1.81
s2t ∆y1,t−1 ∆y1,t−1 ∆y1,t−1 ∆y1,t−1 ∆y1,t−1 ∆y1,t−1

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 0.49 0.07 16.02 14.45 0.06 0.06
s2t ∆y1,t−2 ∆y1,t−2 ∆y1,t−2 ∆y1,t−2 ∆y1,t−2 ∆y1,t−2

s3t ∆y1,t−1 ∆y1,t−2 ∆y2,t−1 ∆y2,t−2 ∆y3,t−1 ∆y3,t−2

statistics 0.26 0.41 15.76 16.50 0.23 0.22
Critical value at 5% significance level is 2.40. The bold face test is the most
significantly rejected.

tegration. First, we test for the unit root in an individual time series, yit, using

a nonlinear framework, see for example He and Sandberg (2006). If the null of

the unit root cannot be rejected, then the system is recognized as nonstationary.

Next we investigate the evidence of nonlinearity in the nonstationary system, yt,

by testing linear cointegration against ST cointegration, as proposed in Li and

He (2013b). If the null of linearity is rejected, then we specify the ST cointegrat-

ing regression models by choosing the nonlinear component in the ST function

G(st, γ, c) and also the variable for the regression variable, y1t. The principle is

that the specified model should give the most significant rejection in testing for ST

cointegration. The estimation of the specified model is based on nonlinear least

squares (NLS). Numerically, the NLS estimators are set by an iterative minimiza-

tion algorithm with initial parameter values chosen by grid search. Finally, we

diagnose the cointegration relation by additional tests of stationarity for residuals

such as the KPSS test, reported in Kwiatkowski et al. (1992), or a nonparametric
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method such as the rank test, used in Breitung (2001).

The null hypothesis that yit is nonstationary is not rejected by the unit root

tests, as shown in Table 1. It is therefore possible to state that each time series is

a unit root process. The results of testing for nonlinearity are presented in Table

2. The null of linearity is significantly rejected in the nonstationary system. The

test of nonlinearity is also used to specify the model, i.e., the one that presents

the most nonlinear relation in the system is chosen. Among the choices in Table

2, the transition variables s2t = ∆y2,t−2 and s3t = ∆y2,t−1 are most optimal in

the sense that they contribute the most to the rejection of the null. The linear

and nonlinear combination of the PPP system is depicted in Figure 3 and the

corresponding estimated cointegrating vector is suggested as follows:

ŷ1t =− 2.92
(0.379)

+ 0.10
(0.003)

t+ 0.46
(0.005)

y2t + 0.05
(0.004)

y3t

+ 0.04
(0.006)

y2t

(
1 + exp{− 1.78

(0.238)
(∆y2,t−2 − 1.15

(0.060)
)/σ̂∆y2,t−2}

)−1

− 0.02
(0.004)

y3t

(
1 + exp{− 2.74

(0.719)
(∆y2,t−1 − 1.09

(0.142)
)/σ̂∆y2,t−1}

)−1

+ 0.75
(0.119)

∆y2,t+1 + 0.65
(0.122)

∆y2,t+2 + 0.59
(0.123)

∆y2,t+3 + 1.01
(0.115)

∆y2,t+4 + 0.29
(0.117)

∆y2t

− 1.61
(0.207)

∆y2,t−2 + 0.33
(0.121)

∆y2,t−3 + 0.85
(0.110)

∆y2,t−4 − 0.12
(0.017)

∆y3,t+4 − 0.09
(0.018)

∆y3t

− 0.05
(0.020)

∆y3,t−1 − 0.10
(0.020)

∆y3,t−2 − 0.05
(0.020)

∆y3,t−3 − 0.07
(0.019)

∆y3,t−4,

where σ̂∆y2,t−1 = 0.585 and σ̂∆y2,t−2 = 0.582. When we apply the KPSS test to

diagnose residuals, the test cannot be rejected with a p-value equal to 0.1, which

indicates that the residuals are stationary.

5 . Results

For each data set, we forecast using the recursive scheme for 60 months at different

horizons h = 1, 3, 6, 12. We re-estimate the model each time an observation is

added, but we do not re-specify the model. Block bootstrap is applied to the

system of consumption and income including the correlations between the errors

of consumption and income. The model-based bootstrap is applied to the US-IT
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Figure 3: Panel (a): Linear combination with given cointegrating vector (1,−1,−1)′ (solid,
black), estimated cointegrating vector (dashed, blue), and nonlinear combination (dotted, red).
Panel (b): Magnification of estimated linear and nonlinear combinations in panel (a).

PPP system, allowing serial correlations in the errors.

The root-mean-squared forecast errors (RMSFEs) are reported in Table 3. The

numbers in parentheses are the ratios of the RMSFEs results to a linear bench-

mark model. We first compare our VSTAR model to VAR for consumption and

income as a system. Then, for consumption and income individually, we compare

our VSTAR model to the VAR model and to the AR model, respectively. US-IT

as a system is analyzed by comparing our ST-cointegration model and the non-

stationary autoregressive model with correlated errors to the random walk model.

Then, we further compare three series to their random walk models individually.

Tables 4, 5 and 6 contain results from the formal evaluation tests described in

Section 3 for equal forecast accuracy and forecast encompassing. The critical val-

ues used are the 95% quantiles of the Chi-square distribution with two and three

degrees of freedom (5.99 and 7.81) and standard normal distribution (±1.96). Ta-

ble 4 gives the results of testing if two forecasts are euqally well. If the null of

euqal accruracy is rejected, then the forecast with lower RMSFE will be preferred.

The results in Table 5 is intended to show if linear models can contribute useful

information absent from nonlinear models, and those in Table 6 if nonlinear mod-

els can contribute additional information. We apply those two forms of testing
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Table 3: Forecasting performance in terms of RMSFE.

Forecasts h = 1 h = 3 h = 6 h = 12

Consumption and Income from VSTAR 1.0100 0.9905 1.0087 1.0640
(ratio to VAR benchmark) (1.0097) (1.0092) (1.0044) (1.0018)
Consumption from VSTAR 0.4424 0.3775 0.4011 0.4186
(ratio to VAR benchmark) (0.9916) (1.0243) (0.9943) (0.9951)
(ratio to AR benchmark) (1.1171) (1.0821) (1.0477) (0.9775)

Income from VSTAR 0.9079 0.9158 0.9255 0.9782
(ratio to VAR benchmark) (1.0145) (1.0067) (1.0064) (1.0031)
(ratio to AR benchmark) (0.9787) (1.0279) (1.0023) (1.0069)

US-IT from ST-Cointegration 3.2421 5.5041 7.2004 10.9217
(ratio to RW benchmark) (1.3150) (1.1480) (1.2489) (1.4440)

US-IT from AR with correlated errors 2.9526 5.4061 7.1319 10.8216
(ratio to RW benchmark) (1.1976) (1.1276) (1.2370) (1.4308)

US price from ST-Cointegration 1.3658 1.1426 1.1996 1.8015
(ratio to RW benchmark) (3.9611) (1.3316) (0.7634) (0.6131)

US price from AR with correlated errors 0.2678 0.4861 0.6759 1.0338
(ratio to RW benchmark) (0.7766) (0.5665) (0.4302) (0.3518)

IT price from ST-Cointegration 0.1888 0.3882 0.6793 1.5364
(ratio to RW benchmark) (0.3151) (0.2181) (0.1909) (0.2162)

EX rate from ST-Cointegration 2.9343 5.3702 7.0672 10.6620
(ratio to RW benchmark) (1.2027) (1.1297) (1.2337) (1.4032)

forecast encompassing to our data; however, we skip the second form for PPP data

because it is not meaningful when the variables are not stationary.

For the system of consumption and income, the forecasts from the nonlinear

model and the linear model are similar. Further studies of the differences can be

made by formal tests. They are likely to conclude that equal forecast accuracy is

not rejected in most of cases, which indicates that the forecast accuracy between

nonlinear models and linear models is not particularly different. Both nonlinear

and linear models can contribute more information to combined forecasts.

For the US-IT system, the random walk model is not proven to be better.

Considering the price levels in the U.S. and in Italy from the ST cointegrating

regression model, the relative RMSFE reduces as the forecast horizon increases,

and most of them are less than one. That means that the cointegration relation

has a positive effect on long-run forecasts. However, equal forecast accuracy is not

likely to be rejected in the cases that the random walk model is better than coin-
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Table 4: Testing equal forecast accuracy.
Benchmark h = 1 h = 3 h = 6 h = 12

Consumption and income from VAR 0.0160 0.0564 0.0205 0.0096
Consumption and income from 2 AR 0.0786 0.0464 0.0904 0.0825

Consumption from VAR -1.1533 1.8907 -2.2437 -0.7463
Consumption from AR 1.5419 1.4570 1.4357 -1.0398

Income from VAR 1.0047 0.6877 2.5569 1.2350
Income from AR -0.7763 1.8261 0.5070 1.4477

US-IT (Coin) from RW 5.7672 0.0353 1.1915 7.1874
US-IT (AR) from RW 4.9268 7.8116 3.7136 16.139

US price (Coin) from RW 5.8654 2.2385 -5.5458 -2.3754
US price (AR) from RW -2.5747 -2.9279 -2.7657 -2.2935

IT price from RW -7.0350 -7.5316 -7.1108 -6.1657
Ex rate from RW 2.4021 1.4596 1.3747 1.2037

Table 5: Testing if nonlinear forecasts encompass linear forecasts.
Benchmark h = 1 h = 3 h = 6 h = 12

Form 1: correlation between eit and eit − ejt
Consumption and Income from VAR 0.0289 0.0668 0.0395 0.0034
Consumption and Income from 2 AR 0.1501 0.0759 0.0850 0.0827

Consumption from VAR -0.8940 1.9903 -2.2328 -0.7052
Consumption from AR 1.8262 1.7289 1.8017 0.3179

Income from VAR 1.4550 1.2397 3.5058 1.3206
Income from AR 1.4599 3.1715 1.2335 1.5315

Form 2: correlation between eit and ŷjt

Consumption and Income from VAR 0.3997 0.4404 0.1549 0.0816
Consumption and Income from 2 AR 0.3072 -0.4173 0.1561 0.0783

Consumption from VAR 1.6471 2.2365 1.8768 1.3772
Consumption from AR 2.6120 3.2417 2.2674 2.6228

Income from VAR 1.6575 2.4286 1.7936 1.3518
Income from AR 2.4548 5.0009 2.3056 2.5675

US-IT (Coin) from RW 0.8439 0.6147 0.0982 0.1808
US-IT (AR) from RW 0.3845 0.0875 1.2364 0.2765

US price (Coin) from RW 4.3949 4.2362 0.4988 0.4287
US price (AR) from RW 1.5396 0.1270 -0.1005 -0.2403

IT price from RW 0.9146 0.3874 0.1542 0.2026
Ex rate from RW 2.9899 1.5558 1.7102 1.4291
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Table 6: Testing if linear forecasts encompass nonlinear forecasts.
Benchmark h = 1 h = 3 h = 6 h = 12

Form 1: correlation between eit and eit − ejt
Consumption and Income from VAR 0.0616 0.0147 0.0780 0.0479
Consumption and Income from 2 AR 0.8156 -0.0031 -0.0233 0.0479

Consumption from VAR 1.3624 -1.7802 2.2594 0.7871
Consumption from AR -0.9958 -0.7375 -0.7280 2.1104

Income from VAR -0.0117 0.5815 -1.7441 -1.1528
Income from AR 2.3877 0.1817 0.5260 -1.3634

Form 2: correlation between eit and ŷjt

Consumption and Income from VAR 0.3875 0.2407 0.1395 0.0747
Consumption and Income from 2 AR 0.2680 0.0999 0.1340 0.0680

Consumption from VAR 1.8860 2.3242 1.8767 1.4022
Consumption from AR 1.6596 1.7732 1.5324 1.2005

Income from VAR 4.1575 3.6878 2.2239 2.4284
Income from AR 3.9855 3.7555 2.1299 2.3317

US-IT (Coin) from RW 12.292 26.562 27.277 5.9527
US-IT (AR) from RW 12.901 24.198 7.9872 10.881

US price (Coin) from RW -1.3298 -0.5041 6.3580 8.9636
US price (AR) from RW 4.8190 4.0639 3.9412 3.2593

IT price from RW 13.350 14.592 14.395 14.328
Ex rate from RW -12.706 -0.5793 -1.0278 -1.1647

tegrating regression and is likely to be rejected when the cointegrating regression

is better. Nonlinear forecasts mostly encompass linear ones, but the nonlinear

model is likely to contribute additional information to the combined forecasts.

6 . Conclusions

This study presents studies of point forecasting from multivariate nonlinear time

series models. Block bootstrap and model-based bootstrap are imposed for nu-

merical integrations. Testing for forecast equality and for encompassing is used for

evaluation. Two examples are illustrated; one is a stationary system of the growth

of consumption and income using VSTAR models with CNFs and the other one is

a nonstationary PPP system using the ST cointegrating regression model. Non-

linear models contribute additional information absent from linear models. It is

likely that combined forecasts will generally outperform both nonlinear and lin-

ear ones. However, how to construct combined forecasts for our cases remains as
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future work.
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