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Abstract

This paper investigates common nonlinear features (CNFs) in multivariate nonlinear

autoregressive models via testing the residuals. A Wald-type test is proposed, and it

is asymptotically Chi-square distributed. Simulation evidence is given to examine the

finite-sample properties of the proposed test and, furthermore, to provide a bootstrap

version of the test. In addition to the empirical size and power, a specification of the

reduced-rank matrix coefficient is studied to measure the departure from the null of

CNFs. As the model moves further from containing CNFs, the power of the test in-

creases substantially. Bootstrap critical values are used to improve the empirical size

and power, especially when the test has size distortions. To perform a bootstrap version

of the test, an algorithm is also provided for the estimation using nonlinear reduced-rank

regression (NRRR).

Keywords: Common features, Nonlinearity, Residual-based test, Bootstrap test,

Reduced-rank regression.

1 . INTRODUCTION

We study a special class of vector smooth-transition autoregressive (VSTAR) mod-

els that contain common nonlinear features (CNFs) and examine whether the non-

linearity is removed by taking a linear combination of a group of nonlinear time

series. Li and He (2013) has studied CNFs in VSTAR models via examining pop-

ulation residuals; therefore, the classical inference is valid. This paper studies

∗Dao Li, Department of Statistics, Örebro University School of Business, Örebro, Sweden.
The previous results have been presented at the 6th International Conference on CFE, Ovideo,
December 2012.



Residual-based test 2

CNFs in VSTAR models via examining the estimated residuals, concentrating on

the inferences based on the residuals. When a residual-based diagnostic is used,

one of the key factors in determining the asymptotic distribution of the test, which

is constructed from a set of the parameters on which we want to make inferences,

is substituting estimates for another set of the (nuisance) parameters. Therefore,

the inferential statistic is generally different from the statistic when the nuisance

parameters are known. One of the popular applications is the residual-based tests

for cointegration provided by Phillips and Ouliaris (1990). Residual-based infer-

ence in the cointegration case has been developed by applying one of the standard

unit root tests to the estimated residuals from the cointegrating regression model.

However, the asymptotic distributions of these statistics for testing the unit root

of the original time series are not applicable.

This paper intends to apply the residual-based inference to derive the limiting

distribution of the estimators of the parameters in the residual regression for test-

ing CNFs. Pierce (1982) provides a general and easily used result for the limiting

effect of substituting estimators for nuisance parameters. Related work includes

Randles (1982), Pierce and Schafer (1986) and Pagan (1986). Applications that

might use these results include, for example, goodness-of-fit tests and residual-

based testing. However, such results have been largely neglected until the 21st

century. Vella and Verbeek (1999) have studied two-step estimation using related

inferences for panel models and censored data. Fu et al. (2002) is one of these

applications in the catalog of goodness-of-fit tests. Pena and Slate (2006) provided

a procedure that only relies on the standardized residual vector to implement and

test global validation of the model assumptions.

The issue of CNFs is related to previous studies of common features e.g. Engle

and Kozicki (1993) and Anderson and Vahid (1998). Engle and Kozicki (1993)

provided a general procedure for detecting common features similar to those used

in cointegration by Engle and Granger (1987). This idea is straightforward to

apply to common nonlinear features, but estimation and testing procedures must

be developed for nonlinear models. Anderson and Vahid (1998) studied common
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nonlinearities in a similar way in multivariate nonlinear models. Our definition of

CNFs is based on the reduced-rank VSTAR model and is similar to the definition

of cointegration in cointegrated-VAR models, in Engle and Kozicki (1993). The

general case of more than one combination vectors is definitely worth considering

and this paper is a first step towards this goal by developing a test for CNFs whose

properties are straightforward to study.

Because the asymptotic distribution of a statistical test can provide a poor

approximation in finite samples. A second aim of this paper is to provide a boot-

strap version of our test for CNFs. The bootstrap critical values are obtained while

relying on the estimation of the VSTAR model with CNFs, which is a nonlinear

reduced-rank regression. Therefore, an algorithm extended from the solution for

linear reduced-rank regression in, for example, Anderson (1951) and Reinsel and

Velu (1998), is provided. Furthermore, in the VSTAR models with CNFs, the

reduced-rank matrix can be specified to allow for a parameter in the matrix to

measure how far the data departs from the null of CNFs. This departure is illus-

trated in the simulation experiments as well.

The remainder of this paper is organized as follows. Section 2 presents VS-

TAR models containing CNFs. Section 3 derives the limiting distribution of the

proposed Wald-type test for CNFs. Section 4 proposes a bootstrap version of the

test and an algorithm for NRRR. Section 5 illustrates the finite-sample properties

and the bootstrap critical values of the proposed test by simulation studies, and

Section 6 concludes. The proofs can be found in the Appendix.

2 . VSTAR MODELS AND CNFS

Consider an (n× 1) vector of observations yt = (y1t, y2t, ..., ynt)
′ = (y1t,y

′
2t)

′ gen-

erated from a vector nonlinear autoregression model

yt = µ+

p∑
k=1

Φkyt−k +

(
µ̃+

p∑
k=1

Γkyt−k

)
G (st; γ, c) + vt (2.1)
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in which vt ∼ i.i.d.N(0,Ω). Consider y−p,y−p+1, ...,y−1,y0 to be fixed. Assume

that the process yt is stationary and ergodic and that fourth-order moments ex-

ist and are finite. The ST function G (st; γ, c) is a bounded function on [0, 1]

and is at least fourth-order differentiable with respect to γ in a neighborhood of

γ = 0. Given any value of G (st; γ, c) between zero and one, all of the roots of∣∣In −∑p
k=1 (Φk + ΓkG)zk

∣∣ = 0 lie outside the unit circle.

CNFs in VSTAR models have been defined in Section 3 in Li and He (2013).

When there are CNFs in yt, we can find a nonzero vector α such that α′yt is

linear. When CNFs exist, the relation of CNFs among yt can be expressed by the

following equation:

y1t = µ1 +α∗′y2t +

p∑
k=1

ϕ′
1kyt−k + ut (2.2)

in which µ1, α∗ and ϕ1k are constant parameters, and ut ∼ i.i.d.N(0, σ2
v). In

this statement, there only exists one CNF vector α. (There are not any other

linearly independent vectors that remove the nonlinearity). Generally, the rank

of the n × (np + 1) matrix Γ∗ = (µ̃ Γ1 ... Γp) is required to be less than n for

the presence of CNFs. If the rank of Γ∗ equals n − 1, then the simplest case is

(2.2). We construct a transformation of model (2.1) that specifies the matrix Γ∗,

to study how the model departs from the null of CNFs. The specification might

be used for further study considering a matrix replacing the vector α. Let A and

B be defined as

A =

 Ir 0

A2 In−r

 ,B =

 B11 B12

0 B22

 ,

then

Γ∗ = AB =

 B11 B12

A2B11 A2B12 +B22

 , (2.3)

where A2 is an (n− r)× r matrix, B11 is an r× (np+ 1− n+ r) matrix with full

rank, B12 is an r × (n− r) matrix and B22 is an (n− r)× (n− r) matrix. When
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B22 = 0, Γ∗ has a reduced rank and can be specified as AB with A = (Ir,A
′
2)

′

and B = (B11,B12). When B22 ̸= 0, Γ∗ has a full rank n. This specification

allows for the parameters in B22 that measure the departure from CNFs. Similar

to Kleibergen and van Dijk (1994), such a specification is by no means unique;

however, every parameterization contains a parameter that reflects a departure

from CNFs.

Imposing a simple null hypothesis, r = n − 1, model (2.2) is reasonable for

testing if there exist CNFs in yt. In this triangular representation, the regressor

y2t is not orthogonal to the error term ṽt, and then we rewrite (2.2) as follows in

order that the nonlinear least square (NLS) estimation be applicable:

y1t = µ1 +α∗′y2t +

p∑
k=1

ϕ′
1kyt−k +

l∑
s=−l

δ′
sv2t−s + ut (2.4)

in which v2t = y2t−µ2−Φ∗
2yt−1− (µ̃2 + Γ∗

2yt−1)G (st; γ, c) when p = 1, and ut is

uncorrelated with v2t−s for s = −l,−l + 1, ..., l. In the correctly specified model,

l = 0 is only necessary to impose to correct the correlations between y2t and et

because vt is not serially correlated. However, a model with leads and lags is more

robust because the model is not easy to specify exactly. Although the order p can

be moderately large, this solution does not require a large number of observations,

because l is not necessary to be different from zero. In the case that the model is

not specified correctly and p is not small, a small l would not cause much trouble

because serial correlation usually shows up at short lags.

To be more general, we rewrite the VSTAR model (2.1) in matrix notation as

yt =Φ∗xt + Γ∗zt + vt = Φ∗xt +ABzt + vt (2.5)

in which Φ∗ = (µ Φ1 ... Φp), Γ∗ = (µ̃ Γ1 ... Γp) = AB, xt = (1,y′
t−1, ...,y

′
t−p)

′

and zt = xtG (st; γ, c), where A is an n× r matrix and B is a r× (np+1) matrix

(r ≤ n). When r = n, that Γ∗ is of full row rank indicates that yt is modeled in

a nonlinear VSTAR model, each of which presents nonlinearity, and yt does not
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have common nonlinearities. When r = 0, yt is modeled in a linear VAR model

in the sense that Γ∗ is a zero matrix (every linear combination of yt is linear).

When 0 < r < n, Γ∗ has reduced-rank r, and there are n− r linearly independent

combinations of yt that are linear; therefore, there are r CNFs. We multiply an

(n− r)× n matrix H = (−A2, In−r) and an r × n matrix (Ir,0) on both sides of

(2.5), respectively, and partition yt as (y′
2t,y

′
1t)

′, where y1t is an (n− r)×1 vector

and y2t is an r× 1 vector, a triangular representation of (2.5) with r CNFs, which

is given as follows:

y1t =A2y2t + Φ̃∗xt +HABzt + ut

y2t =Φ∗
2xt + Γ∗

2zt + v2t

(2.6)

in which Φ̃∗ = HΦ∗, HA = 0, ut = Hvt, Φ∗
2 = (0, Ir)Φ2, Γ∗

2 = (0, Ir)Γ2,

and v2t = (0, Ir)vt. Here, (2.6) is equivalent to (2.5) when there exist CNFs

(0 < r < n). AB has a general definition in (2.3) when r = n. The proposed

residual-based test in Section 3 can be used to test CNFs in (2.6) when the null

hypothesis is n − 1 CNFs or r = n − 1 (there is one linearly independent linear

combination) against the alternative of no CNFs or r = n.

3 . ASYMPTOTIC TEST

Davidson and Mackinnon (1993) illustrates many estimation issues of nonlinear

regression models. The results in Chapter 8 are applicable for (2.4), which states

that NLS estimation is equivalent to maximum likelihood (ML) estimation when

the error term is assumed to be normally and independently distributed with

constant variance (Chapter 8.10) and the ML estimator has three properties of

consistency (Theorem 8.2), asymptotic normality (Theorem 8.3) and asymptotic

efficiency (Chapter 8.8).

Let θ be the parameter vector that contains all of the parameters that appear

in (2.4). Suppose that the parametric model is asymptotically identified, and the

contributions {lt(θ)}∞t=1 satisfy the regularity conditions of the weak uniform law
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of large numbers. The following Proposition 1 is given by applying the results in

Davidson and Mackinnon (1993).

Proposition 1. Let θ̂T denote an NLS or ML estimator1 of the parameter θ

in (2.4) under the assumption that ut ∼ i.i.d.N(0, σ2
u). Under the conditions in

Theorem 8.2-8.3 in Davidson and Mackinnon (1993), θ̂T is consistent and asymp-

totically efficient, and
√
T (θ̂T−θ0) converges to a multivariate normal distribution

N(0,Σθ) as T →∞.

The assumption of an i.i.d distribution of the error term is suggested here

because it is assumed in a linear VAR model and univariate STAR model in the

literature. However, time series data could further require a model that has serially

correlated errors. Note that Davidson and Mackinnon (1993) also provides more

discussion about relaxing the assumption of having an independent and identical

distribution for the error term, which is useful to make the proposed method

widely applicable.

Suppose that ût denotes the residuals from (2.4). Consider a nonlinear regres-

sion for ût:

ût = β0 + β1ût−1 + β2û
2
t−1 + et = β′x̂t + et, (3.1)

in which β is a vector of parameters, x̂t = (1, ût−1, û
2
t−1)

′ is a vector of functions of

the parameters θ in (2.4), and the error term et is i.i.d.. In this case, the inference

based on the usual NLS estimation is generally invalid. However, it is natural to

have the following Proposition 2 when θ in (2.4) is known.

Proposition 2. When θ in (2.4) is known, the model for ut would be

ut = β∗
0 + β∗

1ut−1 + β∗
2u

2
t−1 + et = β∗′xt + e∗t , (3.2)

which is from (3.1), replacing the estimated parameters with known values. Let

β̂
∗
T denote an NLS estimator of β∗ in (3.2). Under the conditions stated before,

the Central Limit Theorem applies, and
√
T (β̂

∗
T −β∗

0) converges to a multivariate
1Refer to Cramér definition, MLEs of Type 2 in (8.12) in Davidson and Mackinnon (1993).
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normal distribution N(0,Σβ) as T →∞, where β∗
0 is the asymptotic mean of β̂

∗
T ,

which is zero.

Proposition 2 is quite straightforward under regularity conditions. Imposing

the relation between
√
T (β̂T −β0) as a function of θ̂T and

√
T (β̂

∗
T −β∗

0) by Tay-

lor expansion, the asymptotic inference of
√
T (β̂T − β0) can be obtained from

the joint distribution of
√
T (β̂

∗
T − β∗

0) and
√
T (θ̂T − θ0). Aside from a reminder,

√
T (β̂T − β0) equals a linear combination of

√
T (β̂

∗
T − β∗

0) and
√
T (θ̂T − θ0).

Pierce (1982) proposed a general approach for the asymptotic results of the statis-

tic, which involves substituting estimates for unknown parameters θ without the

ordinarily tedious calculations. To achieve this goal, asymptotic joint normality

of
√
T (β̂

∗
T − β∗

0) and
√
T (θ̂T − θ0) is required, and the fact that the asymptotic

marginal distributions of
√
T (β̂T − β0) and

√
T (θ̂T − θ0) are independent makes

the calculation of the asymptotic variance of
√
T (β̂T − β0) simpler using Pierce’s

idea because θ̂T is asymptotically efficent from Proposition 1. Moreover, the co-

variance between
√
T (β∗

T −β∗
0) and

√
T (θ̂T −θ0), which is often difficult to obtain,

is not necessary to know in the final result shown in Pierce (1982). However, we

can analytically give the covariance matrix of
√
T (β∗

T − β∗
0) and

√
T (θ̂T − θ0) in

their joint distribution. Details are in the following Proposition 3.

Proposition 3.
√
T (β̂

∗
T−β∗

0) and
√
T (θ̂T−θ0) are asymptotically jointly normally

distributed, N(0,Σ), in which

Σ =

 σ2
eΩ

−1
3 −Ω−1

3 Ω4H−1(θ0)

−H−1(θ0)Ω
′
4Ω

−1
3 −H−1(θ0)

 ,

where Ω3 = plim (
∑

xtx
′
t/T ) and Ω4 = plim

(∑
xt

∂ut

∂θ′ /T
)
.

Proof of Proposition 3. See Appendix A.

Theorem 1 below illustrates how to obtain the asymptotic distribution of β̂T

by applying the results in Pierce (1982) to residual-based inference. Note that the

techniques in Theorem 1 are applicable to different forms of the regression of ût
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besides the polynomial model (3.1). However, different forms affect the variance-

covariance matrix in (3.3).

Theorem 1. Consider (2.4) and (3.1). If the conditions in Proposition 1 hold,

then the NLS estimator of β in (3.1) when θ in (2.4) is estimated (denoted β̂T )

and satisfies
√
T (β̂T − β0)

L→N(0, σ2
eΩ

−1
3 +BH−1(θ0)B

′), (3.3)

in which H(θ0) is the limiting Hessian matrix, B = Ω−1
3 Ω4, Ω3 = plim (

∑
xtx

′
t/T )

and Ω4 = plim
(∑

xt
∂ut

∂θ′ /T
)
.

Proof of Theorem 1. See Appendix A.

The powerful aspect of the approach of Pierce’s paper is that it is quite general.

Propositions 1-3 are essentially regularity conditions, in which the only critical

aspect is that the estimator of the nuisance parameter θ is efficient, without which

the theory fails. The approach is general in not needing many specific conditions,

but it is limited to where everything is asymptotically normal.

To test whether the residual ût is linear or nonlinear, the null hypothesis is set

up as H0 : Rβ = 0, where R is the corresponding constraint in the null hypothesis.

From Theorem 1, it is straightforward to obtain the asymptotic distribution of

the estimator of the test statistic

TR(β̂T − β0){R(σ2
eΩ

−1
3 +BH−1(θ0)B

′)R′}−1(β̂T − β0)
′R′, (3.4)

which is an asymptotical Chi-square distribution. The number of degrees of free-

dom is the number of restrictions under the null. In practice, σ2
e and B can be

consistently estimated by σ̂2
e =

∑
û2
t/(T − 1−m) (m is the number of parameters

in (3.1)) and B̂ = Ω̂
−1

3 Ω̂4 with Ω̂3 =
∑

x̂tx̂
′
t/(T − 1) and Ω̂4 =

∑
x̂t

∂ût

∂θ′ /(T − 1),

which is stated at the end of the proof of Theorem 1.
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4 . BOOTSTRAP TEST

The bootstrap test of CNFs is a version of (3.4) that uses bootstrap critical values

instead of asymptotic critical values to improve finite-sample properties of the

test. The idea of the bootstrap test is to treat the estimated parameters as the

population values in the Monte Carlo experiments.

The bootstrap version of our test requires the estimated parameters in the

restricted VSTAR model. However, the VSTAR model containing CNFs is a type

of reduced-rank regression (RRR). The estimation of RRR is given by minimizing

the sum of squared residual subjects to a reduced-rank restriction on the coeffi-

cient matrices. The problem is not a simple least squares estimation. The solution

of linear RRR is related to canonical analysis and leads to the solution of a gen-

eralized eigenvalue problem, see, for example, Anderson (1951) and Reinsel and

Velu (1998). In our nonlinear case, we apply and extend the RRR algorithm by

imposing a grid search optimization of the slope and location parameters (γ, c).

Given (γ, c), the VSTAR model is reduced as a linear model, where the RRR al-

gorithm could be directly applied. Consider the following VSTAR(1) model with

a reduced-rank matrix coefficient as an example without loss of generality,

yt = µ+Φ1yt−1 + (µ̃+ Γ1yt−1)G (st; γ, c) + vt

= Φ∗xt + Γ∗zt + vt, (4.1)

where xt = (1,y′
t−1)

′, zt = xtG (st; γ, c), Φ∗ = (µ,Φ1), Γ∗ = (µ̃,Γ1), and Γ∗ =

AB has a reduced rank. Imposing the grid search of (γ, c), the RRR algorithm is

updated as follows:

(i) Given a set of (γ, c), calculate sample variance-covariance matrices

Σ̂yz.x = Σ̂yz − Σ̂yxΣ̂
−1

xx Σ̂xz,

Σ̂zz.x = Σ̂zz − Σ̂
′
xzΣ̂

−1

xx Σ̂xz,

where Σ̂yz = T−1
∑T

t=1 ytz
′
t, Σ̂xx = T−1

∑T
t=1 xtx

′
t, Σ̂xz = T−1

∑T
t=1 xtz

′
t, Σ̂zz =
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T−1
∑T

t=1 ztz
′
t. Then, regress yt on xt and zt to obtain the full-rank OLS residual

v̂t, and calculate Σ̂v = T−1
∑T

t=1 v̂tv̂
′
t.

(ii) Find the eigenvalues of the matrix Σ̂
−1/2

v Σ̂yz.xΣ̂
−1

zz.xΣ̂
′
yz.xΣ̂

−1/2

v with the

ordered eigenvalues λ̂1 > λ̂2 > · · · > λ̂n. The associated eigenvectors of the r

largest eigenvalues are denoted by ζ̂1, ζ̂2, ..., ζ̂r. Normalize those eigenvectors in

such a way that ζ̂
′
iζ̂i = 1 (i = 1, 2, ..., r).

(iii) Calculate the estimators of RRR, Â = Σ̂
1/2

v (ζ̂1, ..., ζ̂r),

B̂ = (ζ̂1, ..., ζ̂r)
′Σ̂

−1/2

v Σ̂yz.xΣ̂
−1

zz.x, Γ̂
∗
= ÂB̂, and Φ̂

∗
= (Σ̂yx − ÂB̂Σ̂zx)Σ̂

−1

xx .

(iv) Calculate the criterion

tr

{
Σ̂

−1/2

v

1

T

T∑
t=1

(
yt − Φ̂∗xt − ÂB̂zt

)(
yt − Φ̂∗xt − ÂB̂zt

)′
Σ̂

−1/2

v

}
. (4.2)

(v) For different (γ, c) in the grid search set, repeat (i)-(iv) above and compare

(4.2). Choose the value of (γ, c) that leads to the minimum value of (4.2) as the

estimators γ̂ and ĉ.

For each bootstrap replication, a simulated data set y1,y2, ...,yT is recursively

generated from (4.1) via the simulated error term v1,v2, ...,vT and is used to esti-

mate the parameters in the restricted VSTAR model and the covariance matrix of

vt by the algorithm above. The disturbance term v∗
t in the bootstrap step is ran-

domly drawn from the normal distribution with a zero mean, and the covariance

matrix is estimated from the sample covariance of the simulated vt (t = 1, ..., T ).

Then, a bootstrap data set is generated recursively from the estimated VSTAR

model, where the starting values yb
t−p,y

b
t−p+1, ...,y

b
t−1 are generated by randomly

drawn blocks of the simulated data y1,y2, ...,yT . More specifically, in each boot-

strap replication, we first generate a data set from (4.1), in which vt is randomly

drawn from N(0,Σv) with Σv given. We estimate model (4.1) by the proposed

algorithm and estimate Σv from the residuals. Then, the bootstrap data set is

generated from

yb
t = µ̂+ Φ̂1y

b
t−1 +

(
ˆ̃µ+ Γ̂1y

b
t−1

)
G
(
sbt ; γ̂, ĉ

)
+ v∗

t (4.3)
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in which v∗
t is randomly drawn from a bivariate normal distribution with a mean of

zero and the estimated covariance matrix is vt, Σ̂v. Our bootstrap test then can be

obtained by Monte Carlo experiments using bootstrap samples, and we construct

its quantiles as bootstrap critical values from the approximate distribution used

in the following simulation studies.

5 . FINITE-SAMPLE PROPERTIES

The Monte Carlo experiments in this subsection study the finite-sample properties

of the Wald test in (3.4) and the bootstrap critical values. The desired sample

sizes are T = 100, 200, 500, 1000, 2000. We discarded the first 500 out of T + 500

observations to minimize the initial effects from the simulated time series data in

each experiment, and each experiment was performed 10,000 times.

The data generation process (DGP) for this size study follows y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 2

1

0.05 +
(

0.12 −0.18
) y1t−1

y2t−1

G (st; γ, c) +

 v1t

v2t

 ,

(5.1)

t = 1, 2, ..., T , in which G (st; γ, c) = (1 + exp {−5(y2t−1 − 0.5)})−1, and (v1t, v2t)
′

are generated from a bivariate normal distribution with a mean of zero and a

covariance matrix  1 0.5

0.5 1

 .

In our experiments, different covariances and the F form of the test have been

examined as well, but both of them have not substantially changed the finite-

sample properties of the test. Therefore, the corresponding results are not present

here.

The ML estimation of parameter θ in (2.4) is achieved from

y1t = µ1 + αy2t + ϕ11y1t−1 + ϕ12y2t−1 + δv∗2t + ut
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where v∗2t = y2t − µ2 − ϕ21y1t−1 − ϕ22y2t−1 − (µ̃2 + Γ21y1t−1 + Γ22y2t−1)/(1 +

exp{−γ(y2t−1 − c)}), which is, after reparameterization, equivalent to

y1t =µ∗
1 + α∗y2t + ϕ∗

1y1t−1 + ϕ∗
2y2t−1

+ (µ̃∗
2 + Γ∗

21y1t−1 + Γ∗
22y2t−1)/(1 + exp{−γ(y2t−1 − c)}) + ut.

The residual ût is obtained from the estimated model above. Consider model

(3.1) of ût under the null of linearity. Because ut is assumed to not have serial

correlations, it is likely that ût−1 is exogenous to ût. Moreover, zero-mean is

assumed for ut as well. Thereafter, to study the empirical size, it is reasonable to

additionally exclude the constant term and the lagged regressor ût−1 from (3.1),

as follows:

ût = β2û
2
t−1 + et. (5.2)

In both cases, the null hypothesis is H0 : β2 = 0. (3.4) is then calculated with

∂ût

∂θ′ = −(1, y2t, y1t−1, y2t−1, Ĝ, y1t−1Ĝ, y2t−1Ĝ,

(ˆ̃µ∗
2 + Γ̂∗

21y1t−1 + Γ̂∗
22y2t−1)Ĝ(1− Ĝ)(y2t−1 − ĉ),

(ˆ̃µ∗
2 + Γ̂∗

21y1t−1 + Γ̂∗
22y2t−1)Ĝ(Ĝ− 1)γ̂)

and Ĝ = (1 + exp{−γ̂(y2t−1 − ĉ)})−1 in this case.

In Table 1, the empirical size of the test using model (3.1) and asymptotic

critical values is close to the nominal level, and the test using (5.2) has size distor-

tions, which results in under-size estimates. Afterward, bootstrap critical values

are imposed to improve the effective finite-sample size, especially when the test in

(5.2) has size distortions. The results clearly indicate that the bootstrap version of

our test is considerably more accurate than the asymptotic version when sample

size is small.
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To study the finite-sample power of our test, we consider two DGPs as follows, y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 0.1

−0.16

+

 0.24 −0.18

0.12 −0.36

 y1t−1

y2t−1

G (st; γ, c) +

 v1t

v2t


(5.3)

and y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 0.1G (s∗t ; γ, c)

−0.16G (st; γ, c)

+

 0.24 −0.18

0.12 −0.36

 y1t−1G (s∗t ; γ, c)

y2t−1G (st; γ, c)

+

 v1t

v2t


(5.4)

in which (5.4) is actually an extension of the VSTAR model with different non-

linearity for each series, which indicates that CNFs are not likely to occur in the

system regardless of whether the coefficient matrix has a reduced rank or not. In

the experiments, we set s∗t = y1t−1 and st = y2t−1.

Size-adjusted power using both asymptotic critical values and bootstrap critical

values are computed to eliminate the effects of possible size distortions. From

Table 2, the power of the bootstrap version of our test has considerably improved

compared to the asymptotic version, which has size distortions when sample size

is small. It is not surprising that the bootstrap test does not improve much when

the size estimate of our test is around the nominal level, but it still improves

when the sample size is small, such as T = 100. Overall, the power using DGP

(5.4) is better than the power using DGP (5.3). This indicates that our test has

increasing power while the CNFs have a decreasing possibility of existing. As

the model moves further from containing CNFs, the power of the test increases

substantially.

Last, we examine the rejection rate of our test by varying the values of the

parameters in B22. The DGP for this study, how the rejection rate changes to how

much departure the DGP is from the null, is designed along with the specification
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Table 1: Empirical size

Asymptotic critical values Bootstrap critical values
Models T given significant levels given significant levels

0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100
(3.1) 200 0.1957 0.0954 0.0471 0.0091 0.2128 0.1039 0.0547 0.0107

500 0.1956 0.0971 0.0481 0.0096 0.1981 0.0973 0.0500 0.0096
1000 0.1977 0.0989 0.0506 0.0083 0.1993 0.1042 0.0501 0.0104
2000 0.1929 0.0951 0.0507 0.0100 0.1982 0.0964 0.0508 0.0098

(5.2) 200 0.1095 0.0402 0.0145 0.0012 0.2106 0.1040 0.0543 0.0102
500 0.1126 0.0421 0.0155 0.0011 0.1974 0.0988 0.0503 0.0099
1000 0.1127 0.0450 0.0155 0.0009 0.1984 0.1045 0.0506 0.0098
2000 0.1099 0.0442 0.0163 0.0013 0.1980 0.0951 0.0500 0.0099

Table 2: Empirical power

Asymptotic critical values Bootstrap critical values
DGPs T given significant levels given significant levels

0.2000 0.1000 0.0500 0.0100 0.2000 0.1000 0.0500 0.0100
(3.1)

(5.3) 200 0.1955 0.1006 0.0489 0.0108 0.2126 0.1088 0.0555 0.0118
500 0.1941 0.0992 0.0508 0.0101 0.1976 0.0955 0.0519 0.0103
1000 0.2005 0.0990 0.0497 0.0081 0.1964 0.1051 0.0514 0.0105
2000 0.1926 0.0947 0.0505 0.0097 0.1986 0.0959 0.0505 0.0093

(5.4) 200 0.2853 0.1696 0.0987 0.0292 0.3047 0.1785 0.1105 0.0309
500 0.4143 0.2785 0.1825 0.0666 0.4172 0.2797 0.1857 0.0671
1000 0.6061 0.4655 0.3414 0.1531 0.5909 0.4539 0.3315 0.1522
2000 0.8357 0.7285 0.6144 0.3690 0.8386 0.7308 0.6145 0.3663

(5.2)
(5.3) 200 0.1955 0.1006 0.0489 0.0108 0.3082 0.1886 0.1208 0.0385

500 0.1941 0.0992 0.0508 0.0101 0.2981 0.1754 0.1116 0.0374
1000 0.2005 0.0990 0.0497 0.0081 0.2954 0.1841 0.1140 0.0362
2000 0.1926 0.0947 0.0505 0.0097 0.2940 0.1763 0.1058 0.0346

(5.4) 200 0.2853 0.1696 0.0987 0.0292 0.4096 0.2783 0.1964 0.0823
500 0.4143 0.2785 0.1825 0.0666 0.5245 0.3927 0.2988 0.1539
1000 0.6061 0.4655 0.3414 0.1531 0.6845 0.5744 0.4669 0.2816
2000 0.8357 0.7285 0.6144 0.3690 0.8859 0.8204 0.7438 0.5537
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Figure 1: Rejection rates to different B22, T = 100 and T = 1000.

of (2.3) as follows: y1t

y2t

 =

 0.4

0.2

+

 0.3 0.05

0.2 −0.1

 y1t−1

y2t−1


+

 0.1

0.05

+

 0.24 −0.36

0.12 −0.18 +B22

 y1t−1

y2t−1

G (st; γ, c) +

 v1t

v2t

 ,

A =

 1 0

0.5 1

 , and B =

 0.1 0.24 −0.36

0 0 B22

 .

In this experiment, we should be careful with the parameter settings from which

the generated series are stationary. The values of B22 above is given from −0.3 to

0.3 for the stationary condition. When B22 = 0, y1t and y2t have CNFs. We can

check, by this experiment, if the lack of power using the DGP in (5.3) depends on

the particular parameter values that have been chosen. Figure 1 shows that the

varying of B22 does not affect the lack of power.

6 . CONCLUSIONS

This paper investigates CNFs in VSTAR models via testing the hypothesis in the

residual regressions. The proposed Wald-type test has an asymptotic Chi-square

distribution. The method for constructing the inferential statistics to test CNFs
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can be naturally applied to other nonlinear models of residuals. As the model

departs further from containing CNFs, the power of the test increases substantially.

Imposing bootstrap critical values, for which an algorithm to estimate VSTAR

with a reduced-rank matrix coefficient (due to CNFs) is provided, also moderately

improves the finite-sample properties of the test. Our test will be applicable for

determining the number of CNFs after being further developed. In addition to the

empirical size and power, a specification of the reduced-rank matrix coefficient is

studied to measure the departure of the data from the null of CNFs. However,

when the test is lack of power in the experiments using the DGP in (5.3), the

varying of the particular parameter values does not affect the lack of power.
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APPENDIX

A . Proofs

Proof of Proposition 3. The estimates θ̂T and β̂
∗
T are calculated by

√
T (θ̂T − θ0) =

(
−T−1H(θ̄)

)−1 (
T−1/2g(θ0)

)
in which θ̄ is a convex comnibation of θ̂T and θ0, H(θ̄) is the Hessian matrix and

the gradient vector

g(θ0) =


∑T

t=1
∂lt(θ)
∂θ1

∣∣∣
θ=θ0...∑T

t=1
∂lt(θ)
∂θk

∣∣∣
θ=θ0


(suppose that θ is k-dimensional) and

√
T (β̂

∗
T − β∗

0) =
(
T−1

∑
xtx

′
t

)−1 (
T−1/2

∑
xtet

)
.

It follows that √
T (β̂

∗
T − β∗

0)
√
T (θ̂T − θ0)

 =

 T−1
∑

xtx
′
t 0

0 −T−1H(θ̄)

−1 T−1/2
∑

xtet

T−1/2g(θ0)


L→N(0,Σ)

in which

Σ = Ω−1
1 Ω2Ω

−1
1 =

 σ2
eΩ

−1
3 −Ω−1

3 Ω4H−1(θ0)

−H−1(θ0)Ω
′
4Ω

−1
3 −H−1(θ0)

 ,
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where H(θ0) is the limiting Hessian. Because

 T−1
∑

xtx
′
t 0

0 −T−1H(θ̄)

 p→Ω1 =

 Ω3 0

0 −H(θ0)


and

E



xtet
∂lt(θ)
∂θ1

∣∣∣
θ=θ0...

∂lt(θ)
∂θk

∣∣∣
θ=θ0





xtet
∂lt(θ)
∂θ1

∣∣∣
θ=θ0...

∂lt(θ)
∂θk

∣∣∣
θ=θ0



′

=

 σ2
eΩ3 Ω4t

Ω′
4t −Ht(θ0)

 p→Ω2,

where

Ω3 = plim
(
T−1

∑
xtx

′
t

)
and

Ω4t = E

(
etxt

∂lt (θ)

∂θ′

∣∣∣∣
θ=θ0

)

with (1/T )
∑T

t=1 Ω4t
p→Ω4 and (1/T )

∑T
t=1Ht(θ0)

p→H(θ0) as T →∞.

Proof of Theorem 1. It follows from Proposition 1-3 that three conditions in

Pierce (1982) are satisfied. Applying the result (1.3) in Pierce (1982), we obtain

√
T (β̂T − β0)

L→N(0, σ2
eΩ

−1
3 +BH−1(θ0)B

′),

in which B = limT →∞ E(∂(β̂
∗
T − β∗

0)/∂θ
′) = −Ω−1

3 Ω4.

To illustrate how to consistently estimate the covariance matrix in (3.3), we

notice that
√
T (β̂T − β0) =

(
1

T

∑
x̂tx̂

′
t

)−1(
1√
T

∑
x̂tet

)
and correspondingly

√
T (β̂

∗
T − β∗

0) =

(
1

T

∑
xtx

′
t

)−1(
1√
T

∑
xte

∗
t

)
,
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where we assume further that, as T →∞,

plim
(
1

T

∑
x̂tx̂

′
t

)
= plim

(
1

T

∑
xtx

′
t

)
= plim

(
1

T

∑
E(x̂tx̂

′
t)

)
= plim

(
1

T

∑
E(xtx

′
t)

)
= Ω3.

Under the null e∗t = ut. Denote bT as
∑

xtut/T .

E

(
∂bT

∂θ′

)
= E

(
1

T

∑(
∂xt

∂θ′ ut + xt
∂ut

∂θ′

))
= E

(
1

T

∑ ∂xt

∂θ′ ut

)
+ E

(
1

T

∑
xt
∂ut

∂θ′

)
= E

(
E

(
1

T

∑ ∂xt

∂θ′ ut

∣∣∣∣xt

))
+ E

(
1

T

∑
xt
∂ut

∂θ′

)
= E

(
1

T

∑
xt
∂ut

∂θ′

)
,

since E
(∑

∂xt

∂θ′ ut/T
∣∣xt

)
= 0. Thus,

B = Ω−1
3 E

(
1

T

∑
xt
∂ut

∂θ′

)

in which

ut =y1t − µ1 −α∗′y2t −
p∑

k=1

ϕ′
1kyt−k

−
l∑

s=−l

δ′
s(y2t−s − µ2 −Φ21y2t−1−s − (µ̃2 + Γ21y2t−1−s)G (st−s; γ, c))

=y1t + µ∗
1 +

p∑
k=1

ϕ∗′
1ky1t−k +

max{p,(l+1)}∑
s=−l

δ∗′
s y2t−s +

l∑
s=−l

(µ̃∗
2 + Γ∗

21y2t−1−s)G (st−s; γ, c)
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after reparameterized, and then

∂ut

∂θ′ =(1, y1t−1, ..., y1t−p,y2t−max{p,(l+1)}, ...,y2t+l,

G (st−l; γ, c) ,y2t−1−lG (st−l; γ, c) , gt−l(γ), gt−l(c),

...

G (st+l; γ, c) ,y2t−1+lG (st+l; γ, c) , gt+l(γ), gt+l(c))
′

where gt−s(γ) = (µ̃∗
2 + Γ∗

21y2t−1−s) (1+e−γ(st−s−c))−2(st−s−c)e−γ(st−s−c) and gt−s(c) =

(µ̃∗
2 + Γ∗

21y2t−1−s) (−γ)(1 + e−γ(st−s−c))−2e−γ(st−s−c).

B can be consistently estimated as

(
1

T

∑
x̂tx̂

′
t

)−1(
1

T

∑
x̂tẑt

)

by applying the law of large numbers for sequences of mixing random variables

(see White (2001, Theorem 3.47 and 3.49)), where ẑt equals to the vector ∂ut

∂θ′ with

all parameters replaced by their estimates.
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