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Abstract

The calibration approach is suggested in the literature for estimation
in sample surveys under non-response given access to suitable auxiliary
information. However, missing values in auxiliary information come up
as a thorny but realistic problem. This paper considers the consistency
of the calibration estimator suggested by Särndal & Lundström (2005)
for estimation under nonresponse, connected with how imputation of
auxiliary information based on different levels of register information
affects the calibration estimator. An illustration is given with results
from a small simulation study.
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1 Introduction

Non-response is undesirable but inevitable in surveys and techniques are re-
quired to promote the accuracy of estimation. There are several papers ad-
dressing the calibration technique for estimation in sample surveys. Deville
& Särndal (1992) propose calibration weighting in survey estimation with
multivariate auxiliary information. Särndal & Lundström (2005) propose
a calibration estimator for nonresponse adjustment. Kott (2006) consid-
ered calibration using a known response probability function and suggests
calibration for estimation. Montanari & Ranalli (2005) discuss calibration
estimator in a neural network mode.

The core idea of the calibration estimation approach is to utilize auxiliary
information by replacing the design weights in the Horwitz-Thompson (HT)
estimator with weights replicating known population totals when attached
to auxiliary variables. Särndal & Lundström (2005) makes a distinction be-
tween using population level and sample level information. They also derive
several approximate bias expressions for the estimator proposed. These give

1



guidelines for selection of auxiliary information aiming for the reduction of
the bias of the calibration estimator. Attempts to find indicators and algo-
rithms for selection of appropriate sets of auxiliary variables are found in
e.g.Särndal & Lundström (2008) and Schouten (2007).

In addition to nonresponse for study variables, missing values of auxiliary
variables frequently occur in registers. These missing values can be substi-
tuted with imputed values derived from rules defined by information at the
response, sample or population levels. After imputation the resulting vari-
able can be treated as any other auxiliary variable. However, the properties
of the resulting calibration estimator depend on the way the imputations
are derived. Consider for instance the cases of imputations with at constant
and conditional regression mean imputation.

This paper is concerned with the potential bias introduced in the Särndal &
Lundström (2005) estimator by imputing auxiliary information. Of special
interest are the effects of using information at the population, the sample
and the response set levels, respectively. Results are obtained by considering
the probability limits of the calibration estimator and by using a small sim-
ulation illustration. Results indicate that imputation does not add an extra
source of bias. Increased bias may be obtained due to the effect of using
less powerful information in comparison with the original not fully observed
auxiliary variable.

The calibration estimator proposed by Särndal & Lundström (2005) is de-
fined in the next section and its probability limit is considered. Section 3
considers deterministic imputation for missing values of auxiliary and in-
strument variables and the probability limits of the resulting calibration
estimator is derived. Results are illustrated with a small simulation study
in Section 4 and a discussion on the results and future research are found in
the final section.

2 The Calibration Estimator

Consider a finite population with N elements U={1, 2, . . . , N}, in which
yk is a target variable, xk is a vector of auxiliary variables with known or
estimated population totals, and zk is a vector of instrument variables with
the same length as xk. The instrument vector will be assumed to satisfy the
restriction µ′zk = 1 for all k ∈ U and some constant vector µ.

A probability sample s with expected sample size n(N) is selected from U by
a probability sampling design p(s). When non-response occurs, only a subset
of the sample r ⊂ s is observable, where the size of the response set is denoted
as nr. The response mechanism is assumed random with q(r|s) denoting the
conditional response distribution, such that the probability of a response of
element k given its selection to a sample equals θk = Pr(k ∈ r|k ∈ s, s). In
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addition to the observations yk (k ∈ r), assume data on xk and zk are also
available for the units in the response set r.

The calibration estimator of the population total Y =
∑

U yk suggested by
Särndal & Lundström (2005) is

Ŷw =
∑
r

wkyk (1)

where wk = dkvk, vk = 1 + λrzk, λr = (X̂ −
∑

r dkxk)
′(
∑

r dkzkx
′
k)
−1, and

X̂ denotes the vector with known or estimated population totals of xk.

The calibration estimator (1) with zk = xk can be rewritten in the form of
a generalized regression (GREG) estimator (e.g. Deville & Särndal (1992)).
Adapting for a general instrument vector, the calibration estimator equals

Ŷw = X̂ ′B̂r +
∑
r

dk(yk − x′kB̂r) (2)

where

B̂r = (
∑
r

dkzkx
′
k)
−1(

∑
r

dkzkyk) (3)

Consider the definitions:

Definition 2.1. (Sequence of populations) The vector tk=(yk, x
′
k, z
′
k) is non-

random, real-valued and defined for a bounded set such that ‖tk‖ < κ for
some κ < ∞. Assume the existence of the infinite sequence {tk}∞k=1. The
population UN is then defined as the index set for the first N units in the
sequence {tk}∞k=1 with associated set of variable vectors {t1, t2, . . . , tN}.

Definition 2.2. (Sequence of samples/response sets) For a given population
UN , a probability sample sN ⊆ UN of expected size n(N) is drawn using a
probability sampling design pN (s) with positive inclusion probabilities πk >
ς > 0. Conditionally on the sample, observations of tk are obtained for a
subset of the sample, rN ⊆ sN according to the non-response distribution
q(r|s) yielding response probabilities θk = Pr(k ∈ rN |k ∈ sN ).

Let B̂Nr denote the estimator (3) defined on the response set rN . Also,
define

BNθ = (
∑
UN

θkzkx
′
k)
−1(

∑
UN

θkzkyk) (4)

The index N on statistics below is used to indicate its calculation on popu-
lation UN or its subsets sN and rN .
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Lemma 1. Under the definitions (2.1) and (2.2) and the assumption i)∑∑
UN :k 6=l | πkldkdl−1 |= O(N), consider the statistic Ψ̂N = N−1

∑
rN
dkck

where ck (k ∈ UN ) are nonrandom real valued scalars bounded by | ck |<
κ < ∞. Then Ψ̂N = Op(1), (Ψ̂N − E(Ψ̂N )) = Op(N

−1/2) and E(Ψ̂N ) =
N−1

∑
UN

θkck.

A proof of Lemma 1 follows from Corollary 1.7.1.1 in Fuller (2009).

Theorem 2.1. (Probability limit for B̂Nr) Under the assumptions in Lemma
1 and the assumption N−1

∑
UN

θkzkx
′
k is non-singular for all N>N0, then

p lim
N→∞

(B̂Nr −BNθ) = 0 (5)

A proof of Theorem 2.1 follows Slutsky’s theorem after applying Lemma (1)
to the matrices defining B̂r in equation (3). From Theorem 2.1, the following
corollary is obtained.

Corollary 2.1. (Consistency of Ŷw) If plimN→∞(X̂N −XN )/N = 0, then

plimN→∞(ŶwN − YNθ)/N = 0 (6)

where ŶwN = X̂ ′N B̂Nr and YNθ = X ′NBNθ

Due to the restriction µ′zk = 1, Y = X ′BU wereBU = (
∑

U zkx
′
k)
−1∑

U zkyk.
Corollary 2.1 then yields the approximate bias expression

Bias(Ŷw) ≈ X ′(Bθ −BU ) (7)

This approximate bias expression equals the nearbias expressions in Corol-
lary 9.1 in Särndal & Lundström (2005).

Corollary 2.1 and the bias expression (7) shows the calibration estimator to
be biased and inconsistent in general. However, from the bias expression,
Särndal & Lundström (2005) derive conditions for an approximate zero bias.
Here, the ability to reduce bias strongly relies on the use of appropriate
auxiliary information (Särndal & Lundström (2005), Särndal (2011)).

3 Imputations in Auxiliary Information

3.1 Probability limits

A frequent problem when using register information or sample survey data
for construction of sets of auxiliary variables is missing data. It is therefore
of interest to understand the effects of using imputed values in the auxil-
iary information used for calibration. Here, missing values of auxiliary (or
instrument) variables are assumed generated by a non-random mechanism.
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To keep the derivation general, the problem of imputation for missing values
of instrument variables is also treated, since one option for the instrument
variable is to use the auxiliary vector, i.e. zk = xk. Below it is also assumed
that the instrument vector, with or without imputed values, satisfies the
restriction µ′zk = 1 for all k ∈ U and some constant vector µ.

There are several methods available for construction of imputed values. One
aspect upon which the methods can be divided is whether the imputations
made are deterministic or random. Here, only deterministic imputation is
considered.

Let A denote either U , s or r. Also let Ux denote the part of the population
with values of the auxiliary variable, and let Ūx be the part with missing
values. Similarly, rz denotes the part of the response set with values of the
instrument variable zk, and r̄z denotes the part with missing values. The
divisions here of the sets U and r are treated as nonrandom.

For notation of variable vectors which might contain imputed values, the no-
tation of Särndal & Lundström (2005) is adapted and the following notations
are introduced

x̃•k(A) = 1(k ∈ Ux)xk + 1(k ∈ Ūx)x̂k(A) (8)

and

z̃•k(A) = 1(k ∈ rz)zk + 1(k ∈ r̄z)ẑk(A) (9)

Here, 1() denotes the indicator function equaling one if the argument is true,
and equaling zero otherwise. In (8) and (9) x̂k(A) and ẑk(A) denote imputed
values derived from calculations on the set A. Different sets A can be used
for xk and zk.

For a treatment of the asymptotic properties of the calibration estimator
based on imputed auxiliary and/or instrument variables, let xk(A) and
zk(A) denote imputations made when N → ∞. Here the argument A is
not defining the actual set used for calculations, it represents the asymp-
totic counterparts of an imputation method based on the set A. With these
”asymptotic” imputations, equations (8) and (9) are rewritten as x•k(A) =
1(k ∈ Ux)xk + 1(k ∈ Ūx)xk(A) and z•k(A) = 1(k ∈ rz)zk + 1(k ∈ r̄z)zk(A),
respectively. The instrument vectors with imputed information are assumed
to satisfy the restriction µ′z̃•k(A) = µ′z•k(A) = 1 for all k ∈ r and some
constant µ. The following ”uniform convergence” assumptions on the impu-
tations are made.

Assumption 1. There exists finite constants Mx and Mz such that

max
k∈U
‖ x̃•k(A)− x•k(A) ‖< MxωxN (10)
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and

max
k∈r
‖ z̃•k(A)− z•k(A) ‖< MzωzN (11)

where ωxN = op(1) and ωzN = op(1).

For simplicity, the index N for population UN on the vectors in Assumption
1 has been omitted.

Using the defined auxiliary and instrument variable vectors, the following
three parameter vectors are defined.

B̂r(A) = (
∑
r

dkz̃•k(A)x̃′•k(A))−1(
∑
r

dkz̃•k(A)yk) (12)

Bθ(A) = (
∑
U

θkz•k(A)x′•k(A))−1(
∑
U

θkz•k(A)yk) (13)

and

BU (A) = (
∑
U

z•k(A)x′•k(A))−1(
∑
U

z•k(A)yk) (14)

The calibration estimator (1) based on imputed values equals Ŷw(A) =
X̂ ′(A)B̂r(A), where X̂ ′(A) is the vector with known or estimated population
totals of auxiliary variables with imputations, e.g. X̂ ′(A) =

∑
U x̃•k(A).

The following theorem is shown in the appendix.

Theorem 3.1. (Probability limit for B̂Nr(A)) Assume Definition 2.1, where
xk = x•k(A) and zk = z•k(A), Definition 2.2, and Assumption 1. Also
assume i) the sampling design yields second order inclusion probabilities
πkl = Pr(k&l ∈ s) such that

∑∑
UN ,k 6=l | πkldkdl − 1 |= O(N), and ii)

N−1
∑

UN
θkz•k(A)x′•k(A) is non-singular for all N>N0, then

p lim
N→∞

(B̂Nr(A)−BNθ(A)) = 0 (15)

Proof: Let B̂∗r (A) = (
∑

r dkz•k(A)x′•k(A))−1(
∑

r dkz•k(A)yk). With As-
sumption 1 we obtain

‖ 1

N

∑
r

dkz̃•k(A)x̃
′
•k(A)−

1

N

∑
r

dkz•k(A)x
′
•k(A) ‖≤‖

1

N

∑
r

dk(z̃•k(A)− z•k(A))(x̃•k(A)− x•k(A))′ ‖

+ ‖ 1

N

∑
r

dk(z̃•k(A)− z•k(A))x′•k ‖ + ‖
1

N

∑
r

dkz•k(A)(x̃•k(A)− x•k(A))′ ‖

≤ Op(1)MxωxNMzωzN +Op(1)MzωzNκ+Op(1)MxωxNκ = op(1)

and similarly ‖ 1
N

∑
r dkz̃•k(A)yk − 1

N

∑
r dkz•k(A)yk ‖≤ op(1), so that

p limN→∞(B̂r(A)−B̂∗r (A)) = 0. According to Theorem 2.1, p limN→∞(B̂∗r (A)−
Bθ(A)) = 0, and the result follow by the triangular inequality. �

The theorem gives the corollary
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Corollary 3.1. Assume the assumptions of Theorem 3.1 and plimN→∞(X̂N (A)−
XN (A))/N = 0, where XN (A) =

∑
UN

x•k(A), then

plimN→∞(ŶNω(A)− YNθ(A))/N = 0 (16)

where YNθ(A) = X ′N (A)BNθ(A)

Corollary 3.1 is the major result of this paper. First, it gives the approxi-
mative bias expression for the calibration estimator based on auxiliary and
instrument variables containing imputations as

Bias(Ŷω(A)) ≈ X ′(A)(Bθ(A)−BU (A)) (17)

This expression is of the same form as expression (7), i.e. imputation does
not add new components to the structure of the bias. Second, the bias
expression has the same form irrespective of what set of data (U , s, or
r) is used for deriving imputations. Finally, Theorem 3.1 shows that the
design weighted least squares solutions (3) and (12) converge in probability
to two different population vectors. Also, the two least squares solutions
can be considered as inconsistent estimators of two different true population
regressions vectors. As the bias expressions in (7) and (17) show, the bias of
the calibration estimator is defined by the distance between the probability
limits of (3) and (12), and the corresponding true population regression
vectors. Thus, without additional assumptions, it is not possible to conclude
that the bias of calibration estimators based on imputed values are larger
than the bias obtained if all auxiliary and instrument variable values were
known.

3.2 Mean value and regression imputation

Mean value imputation for the jth element in xk is given by

x̂jk(A) = x̂j(A) = n−1Axj

∑
Axj

xjl

Then x̂jk(U) = xj(U) = n−1Uxj

∑
Uxj

xjl and x̂•jk(U)−x•jk(U) = 0. Further-

more, the design weighted sample mean is x̂jk(s) = xj(s) = N̂−1sxj

∑
sxj

dlxjl

with N̂sxj
=

∑
sxj

dk. The sample mean is consistent for the mean of the

subpopulation Ux ⊂ U , i.e. plimN→∞(xj(s) − xj(U)) = 0. Thus, using
mean imputation based on available observation in the population or in the
sample, weighted with the design weight, satisfies Assumption 1.

An interesting result here is that the design weighted sample means converge
in probability to the population level means, whereby the two imputation
methods yields asymptotically equivalent calibration estimators.
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Assumption 1 is also fulfilled by using mean imputation based on the re-
sponse set. Consider the design weighted response set mean x̂jk(r) = xj(r) =

N̂−1rxj

∑
rxj

dlxjl with N̂rxj
=

∑
rxj

dk. This quantity converges in proba-

bility to the θ weighted population mean xj(U) = N−1θxj

∑
Uxj

θlxjl with

Nθxj
=

∑
Uxj

θk.

For mean imputation using sample or response set information, respectively,
note that the uniform convergence assumed in Assumption 1 is obtained
since the same value is imputed for all units with missing values.

For regression imputation, consider the imputations,

x̂jk(A) = u′kδ̂(A)

where uk is a finite dimensional vector of non-random variables, available
for all k ∈ U , and

δ̂(A) = (
∑
Axj

vkuku
′
k)
−1

∑
Axj

vkukxjk

where vk denotes some positive weight. Suppose this regression coefficient
estimator is consistent for δ(A), i.e. plimN→∞(δ̂(A) − δ(A)) = 0, and let
xjk(A) = u′kδ(A) where ‖ uk ‖< M . Then Assumption 1 is satisfied since

| x̂jk(A)− xjk(A) |< M ‖ δ̂(A)− δ(A) ‖.

4 Simulation

To illustrate how bias of the calibration estimator is influenced by using im-
puted values for the auxiliary variable, a simulation experiment is conducted
based on a real dataset with 1046 observations, where the amount of fish
consumption, birth year, education level and civil status are collected. Fish
consumption, education level and civil status are all categorical variables,
valuing from 0 to 6, 1 to 3, and 1 to 7 respectively. Variable age is generated
from variable birth year for later use.

A population is generated by enlarging the original dataset to 100,000 ob-
servations with random sampling with replacement. To achieve a large pop-
ulation without duplicates, a term ε/10 is added to the original values of
variable age and education level, where ε is a random number from N(0, 1).
Thereafter another variable ”personal income” is generated based on lin-
ear regression income=1.95*age-49*gender+53.44*education+39.04, where
the coefficients is obtained from regression on statistics presented in the re-
port Folk- och bostadsräkningarna 1990. For avoiding duplicates and better
controlling the correlation between yk and xk, the values of fish consump-
tion is rewritten by the predicted value of the regression fishconsumption
=1.1935+0.0008*income-0.0167*civilstatus+ε/10.
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The intention of the simulation study is to provide a numerical example
of the results in earlier sections. In the simulation study, the total value
of fish consumption yk is of interest. And it is assumed that the variable
income is the only accessible variable and highly correlated with yk, which
is denoted as xk and will be used as auxiliary information for calibrating the
total value of yk. Also zk = xk. Both xk and yk have 30% missing values at
random. The missing values in xk will be replaced by group-mean in each
group categorized by variable civil status which is denoted as uk. A random
sample consisting yk, xk and uk with 1000 observations will be drawn from
the population.

The bias of the calibration estimator Bias(Ŷw) = E(Ŷw)−Y will be studied
in four different cases with different patterns of response probabilities for yk
and probabilities of missing values of xk.

• Case I: θk is constant and ϑk is constant.

• Case II: θk is varying and ϑk is constant.

• Case III: θk is constant and ϑk is varying.

• Case IV: θk is varying and ϑk is varying.

Response probabilities and probabilities of missing values are in the four
cases given by:

• θk = 70% in case I/III

• θk = 50% if income ≤ 215, 70% if income ∈ (215,265), and 90%
if income ≥ 265 in case II/IV.

• ϑk = 30% in Case I/II

• ϑk = 50% if yk ≥ 4.05, 45% if yk ∈ [3.95,4.05), 40% if yk ∈ [3.87,3.95),
35% if yk ∈ [3.8,3.87), 25% if yk ∈ [3.73,3.87), 20% if yk ∈ [3.65,3.73),
12% if yk ∈ [3.53,3.65), and 5% if yk <3.53 in case III/IV

Here, θk is the response probability in yk and ϑk is the probability that xk
is not missing in register system.

The group-mean imputation will be utilized to make up for the missing
values in auxiliary variable xk. In this stage, the following three kinds of
collection of objects (i.e., A) are considered.

Imputation 1 A = U , i.e., the estimator for imputation is based on the
whole population.
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Table 1: Group-means in different imputation levels

Group-Mean

civil status
Imputation1 Imputation2a Imputation3b

A = U A = s A = r
1 244.82 249.46 247.98
2 238.26 235.75 241.24
3 227.56 225.68 225.43
4 225.39 223.37 222.87
5 253.33 274.36 276.67
6 247.84 236.95 239.78
7 242.96 261.59 248.82

a Group-mean listed in this column is only one example of a sample
in one of the iterations during the simulation

b Group-mean listed in this column is only one example of a
response set in one of the iterations during the simulation

Imputation 2 A = s, i.e., the estimator for imputation is based on the
sample level.

Imputation 3 A = r, i.e., the estimator for imputation is based on the
response level.

In our study, take Case I as an example, the group-means in different impu-
tation levels are displayed in Table 1.

Replicating the simulation for 5000 times, the expectation of the calibration
estimator is estimated by E(Ŷw) =

∑5000
i=1 Ŷwi/5000 and the bias is estimated

with Bias(Ŷw) = E(Ŷw) − Y . Below shows the profile graph of the bias
estimates in each case under different imputation level.

Bias Estimates in Case I & III

(True Value of Y is 380332)
Imputation Level

B
ia

s

-60

-40

-20

1 2 3

0.596 0.595 0.595

0.596 0.595 0.595

0.578
0.577 0.577

0.578 0.577 0.577

Case1InfoS
Case1InfoU
Case3InfoS
Case3InfoU

Bias Estimates in Case II & IV

(True Value of Y is 380332)
Imputation Level

B
ia

s

-2950

-2900

-2850

1 2 3

0.5863
0.585

0.5859

0.5863
0.585

0.5859

0.5529 0.5517

0.5707

0.5529
0.5517

0.5707

Case2InfoS
Case2InfoU
Case4InfoS
Case4InfoU
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It is told from the graphs above that the biases of the calibration estimator
vary very slightly within each case, no matter if the auxiliary variable with
missing values is imputed at population level, sample level or response level.
And the variance of the calibration estimates are quite close within each
case as well.

A steep decrease occurs in Case IV when using response level information
for imputation. It could be explained by the increasing correlation between
interested variable (fish consumption) and auxiliary variable (income)as la-
belled on the graphs, whereas the stable correlation corresponds with the
stable bias in other cases.

In comparison, the bias estimates of calibration estimator with full-recorded
auxiliary are -22 (with InfoU) and -21 (with InfoS) respectively when the
response probability of yk is constant, and the bias estimates increase to
-2170 (with InfoU) and -2158 (with InfoS) when the response probability of
yk is varying.

5 Discussion

This paper presents results of importance for applied use of the Särndal
& Lundström (2005) estimator when missing values prevail among the in-
strument and auxiliary variables. The major aim of the estimator is provide
estimators with reduced bias due to nonresponse. Results here show that im-
putation of instrument/auxiliary variable values does not in itself contribute
to bias. However, in comparison with fully observed auxiliary information,
variables with imputed values can be expected to be less powerful whereby
an indirect effect of increased bias is obtained.

This result is valid for imputations made using information from a popula-
tion register, the sample or the response set, which is a little remarkable.
One may expect the response set being less suited for deriving imputations
since variable distributions are distorted by the nonresponse. However, one
case considered in the simulation indicate the effect might be the reverse.
Further explorations on this topic is of interest.

When imputations (deterministic) are made using population level informa-
tion only, the variance estimator proposed by Särndal & Lundström (2005)
can be used. When imputations are based on sample or response set infor-
mation, imputation adds an additional random component to the estimator
whereby this variance estimator may not be valid. This is another topic for
further research.

11



References

Deville, J. & Särndal, C. (1992). Calibration estimators in survey sampling.
Journal of the American Statistical Association 87, 376 – 382.

Fuller, W. (2009). Sampling statistics. John Wiley & Sons.

Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse
and coverage errors. Survey Methodology 32, 133 – 142.

Montanari, G. & Ranalli, M. (2005). Nonparametric model calibration esti-
mation in survey sampling. Journal of the American Statistical Associa-
tion 100, 1429 – 1442.

Särndal, C. (2011). Three factors to signal non-response bias with appli-
cations to categorical auxiliary variables. International Statistical Review
79, 233 – 254.

Särndal, C. & Lundström, S. (2005). Estimation in surveys with nonre-
sponse. John Wiley & Sons.

Särndal, C. & Lundström, S. (2008). Assessing auxiliary vectors for con-
trol of nonresponse bias in the calibration estimator. Journal of Official
Statistics 24, 167 – 191.

Schouten, B. (2007). A selection strategy for weighting variables under a
not-missing-at-random assumption. Journal of Official Statistics 23, 51
– 68.

12


