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Abstract

This paper includes a simulation study on the bias and MSE proper-
ties of a two-step probit model estimator for handling missing values
in covariates by conditional imputation. In one smaller simulation it is
compared with an asymptotically efficient estimator and in one larger it
is compared with the probit ML on complete cases after listwise dele-
tion. Simulation results obtained favors the use of the two-step probit
estimator and motivates further developments of the methodology.

Keywords binary variable, imputation, OLS, heteroskedasticity

1 Introduction

A major issue in applied research is the effect of covariates on study vari-
ables. Often the topic considered involves a binary, two-valued dependent
variable. Examples are if a new method of teaching improves performance
in later courses or not (Greene (2008)), and if a married woman participates
in the labor force or not (Chib & Greenberg (1998)). One of the two most
frequently employed statistical models for analysis of such study variables is
the probit model (Bliss (1934)). This model is nonlinear in parameters and is
usually estimated with maximum likelihood (ML), i.e. using the probit ML
estimator (e.g. Hayashi (2000)).

Frequent in applied work, one or several model covariates are associated with
missing values. Deletion of all observations having missing values, so called
list wise deletion, is not to recommend, but is often done for practical reasons.
Little & Rubin (1987) notes that using only Complete-Case (CC) observations
causes loss of information unless they are MCAR. Enders (2010) also find
that deletion of observations produces distorted estimates in most situations.
List wise deletion is thus not a statistically efficient way of using available
data, and alternative methods have been suggested. Little & Rubin (1987)
discuss in detail on combination of different types of missing data analyses,
and expanded coverage of bayesian methodology. Schafer (1997) discussed
statistical properties of different kinds of methods dealing with incomplete
multivariate data with continuous variable, categorical variable or both.
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Available methods for handling missing values in covariates depend on the
form of model to estimate. ML estimation may be used if the model is fully
parametric and involves models for the covariates as well (e.g. Gourieroux &
Monfort (1981)). For the probit model, Conniffe & O′Neill (2011) propose an
asymptotically efficient estimator under missing values of covariate variables.
Their estimator correspond to a first round iteration of the method of scoring
algorithm for the ML estimator using consistent initial estimates.

Our objective in this paper is to study a related two-step estimation proce-
dure by means of simulation. The two-step estimator of the probit model
corresponds to an adaption of the generalized least squares estimator sug-
gested by Dagenais (1973) for linear regression with missing covariate values.
It can also be interpreted as a feasible limited information ML estimator since
a distributional assumption is utilized in a second probit ML estimation step.

The main idea of the estimation procedure is explained in terms of estimation
of a linear regression model in the first part of the next section. In the second
part, the idea is applied to the probit model and consistency properties are
addressed. Section 2 also includes a numerical comparison of the properties
of the estimator with those of the Conniffe & O′Neill (2011) estimator. In
Section 3 the two-step estimation procedure is compared with probit ML after
list wise deletion. The comparison is made by simulation using a real data
set for generation of populations. A summary of results and ideas for future
research are given in the final section.

2 Probit ML estimation with missing data

2.1 Imputation in the linear model

Consider the linear regression model

yi = x′iβ + εi (1)

where yi is the dependent variable, xi = (xi1, . . . , xiK)′ is the vector of regres-
sors, β is the associated vector of regression coefficients, and εi = yi − x′iβ
is a random disturbance term independently distributed with zero mean and
variance σ2

i conditionally on the regressors, i.e. εi|xi ∼ (0, σ2
i ).

Suppose observations of the regressors includes some missing values. Introduce
a K × K diagonal matrix Ri whose k:th element equals 1 if xik is observed
and zero if the value is missing. Also, let R̄i = I −Ri, where I is the identity
matrix.

Let zi be an additional vector of variables used for modeling regressor variables.
Write E(xi|Rixi, zi) = Rixi+E(R̄ixi|Rixi, zi) = xri+µr̄i. Note that the mean
of variables with missing values are made conditional on observed variables.
Thus, if the set of observed variables is different, the conditional expectation
of a missing variable may be different. When modeling for missing values
of a variable in different observations, the models may therefore be different.
Also note that the vector µr̄i contains zeros for variables with observed values.
Missing values are in xri represented by zeros.

Using the conditional mean values in place of missing values yields the imputed
regressor vector

x•i = xri + µr̄i

which gives the imputation errors Mi = xi − x•i = R̄i(xi − µr̄i). These errors
have conditional mean E(Mi|xri, zi) = 0 and covariance Cov(Mi|xri, zi) =
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R̄iCov(xi − µr̄i|xri, zi)R̄i = Σr̄i. In this covariance matrix variances and co-
variances corresponding to observed variables are zero. It is also here as-
sumed that imputation errors between different units are independent with
e.g. E(MiM

t
j |xri, xrj , zi, zj) = 0 (i 6= j).

For the linear regression considered, the imputations yield the model

yi = x′•iβ + ηi (2)

where the disturbance term ηi = εi + M ′iβ has mean E(ηi|xri, zi) = 0 and
variance ωi = V (ηi|xri, zi) = β′Σr̄iβ + σ2.

For the moment, assuming knowledge of µr̄i and Σr̄i there are at least two
alternatives for estimation of model (2) (Dagenais (1973), Gourieroux & Mon-
fort (1981)). The first is to apply OLS and correct for heteroskedasticity in
variance estimation, where the OLS estimator has conditional covariance ma-
trix

(
N∑
i=1

x•ix
′
•i)
−1

N∑
i=1

ωix•ix
′
•i(

N∑
i=1

x•ix
′
•i)
−1

A second alternative is to make use of the OLS estimate and derive variance
estimates ω̂i = β̂′OLSΣ̂r̄iβ̂OLS + σ̂2 and apply feasible WLS

β̂FWLS = (

N∑
i=1

(1/ω̂i)x
′
•ix•i)

−1
N∑
i=1

(1/ω̂i)x
′
•iyi

As an alternative to running OLS on model (2) for deriving an initial estimate
of β, OLS can be applied to the subset of complete cases.

In practice the conditional means µr̄i and covariance matrices Σr̄i are unknown
and have to be estimated. Following (Conniffe & O′Neill, 2011) separate mod-
els for the covariates have to be specified and estimated on available data.

2.2 Imputation in the probit model

The above approach is readily applicable to missing data problems in estima-
tion of the binary probit model. Replace the dependent variable in model (1)
with the latent variable y∗i and set σ2 = 1. Observations are only made on
an indicator variable yi = 1(y∗i > 0), stating whether the latent variable is
positive or not. Assuming the error ηi = εi +M ′iβ to be normally distributed,
then

P (yi = 1|x•i) = Φ(
x′•iβ√

β′Σr̄iβ + 1
) (3)

The model given in (3) is related to Burr (1988) who studies Berkson regres-
sor measurement errors in probit modelling of dose/response experiments. For
identifiability she finds it necessary to either know the regressor slope coeffi-
cient or the measurement error variance, which neither are usually known.

Here the model (3) is in the context of imputation, and the imputation error
covariance matrix is assumed at least estimable. Thus, given knowledge of the
conditional means µr̄i and the covariances Σr̄i this model can be estimated
with ML.

Conniffe & O′Neill (2011) suggest an efficient estimator by considering simulta-
neous estimation of the probit model (3) and the parameters in the models for
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the missing variables, assuming a simultaneous distribution for the response
and explanatory variables. Their idea is to estimate the parameters with ML
using complete cases in a first step. These are used as initial, consistent esti-
mates in a second step. For the second step, they set up the log-likelihood for
all observations, including those with missing values. Their efficient estimator
is then defined as the outcome of the first round of the methods of scoring
algorithm for the MLE.

A two-step probit estimator is studied in the present paper. In the first step,
the probit ML estimator is used on the complete cases only (CC probit),
yielding estimates β̂CC . Then estimates of the conditional means and covari-
ances, i.e. µ̂r̄i and Σ̂r̄i, respectively, are obtained from estimates of appropriate
models. In the second step, the imputed regressor vectors are weighted into

x̂•i(ŵ) = x̂•i/
√
ŵi = (xri + µ̂r̄i)/

√
β̂′CCΣ̂r̄iβ̂CC + 1 and probit ML estimation

is applied for estimation of the model

P (yi = 1|x̂•i(ŵ)) = Φ(x̂•i(ŵ)′β) (4)

yielding the two-step probit estimator β̂2S .

Two-step estimators can be shown consistent under appropriate conditions
(e.g. Wooldridge (2002), Sec. 13.10). Consider imputations made and esti-
mated variances (ŵi) as functions of an estimate of a parameter vector θ, i.e.
x̂•i(ŵ) = x•i(w : θ̂), such that x•i(w) = x•i(w : θ). Let l̂(b) = (1/n)log(L̂(b))
denote the log likelihood based on (4), and let l(b) = (1/n)

∑
yilogΦ(x•i(w)′b)+

(1−yi)log(1−Φ(x•i(w)′b)). By Taylor expansion l̂(b)− l(b) = Sn(b, θ∗)(θ̂−θ),
where Sn(b, θ∗) is a vector of first order derivatives wrt θ evaluated at a point
between θ̂ and θ. If Sn(b, θ∗) is bounded a.s. and (θ̂ − θ) → 0 a.s., then
l̂(b) − l(b) → 0 a.s. Lemma 3 in Amemiya (1973) can then be used to obtain
consistency of the two-step estimator since l(b) is the log-likelihood for the
standard probit model.

2.3 Comparison with an efficient estimator

Table 1 reports simulation results on bias and standard error for the two-step
probit estimator. The setup of the simulation study equals the one reported
in Conniffe & O′Neill (2011), and the results in their table are reproduced.
The purpose is to compare the two-step probit estimator with their efficient
estimator.

The model is
y∗i = β1x1i + β2x2i + εi (5)

where x1i ∼ N(0, 1), x2i = cx1i + ui, ui ∼ N(0, σ), and εi ∼ N(0, 1). The
parameters in the model are fixed at (β1, β2, c, σ)=(1,1,1,1). Missing values on
the second regressor, xi2, are generated using the model Pr(R2i = 1 | xi1) =
Φ(xi1 − b), where b=-1, 0, or 1.

First, the results obtained here for the CC probit estimator are similar to those
reported by Conniffe & O′Neill (2011), suggesting comparability over the two
studies. There is a tendency to smaller variance estimates for β1. The results
for the two-step probit estimator compare well with those of the Conniffe &
O′Neill (2011) estimator (EE), especially for the lower proportions of missing
values.

Table 2 presents the means of the probit ML variance estimates in the second
step. They show the probit ML variance estimator of the variance of β1 give
too large estimates, while the one for the variance of β2 gives too low estimates.
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β1 β2

25%, Pr(M = 1) = Φ(x− 1)
two-step probit 1.0076 1.0028

(.0103) (.009)
EE (Conniffe & O’Neill′s) 1.0045 1.0098

(.0109) (.008)
CC probit 1.008 1.003

(.012) (.008)
CC (Conniffe & O’Neill′s) 1.009 1.009

(.014) (.008)
50%, Pr(M = 1) = Φ(x)

two-step probit 1.009 1.007
(.0123) (.015)

EE (Conniffe & O’Neill′s) 1.007 1.016
(.0131) (.013)

CC probit 1.008 1.009
(.019) (.013)

CC (Conniffe & O’Neill′s) 1.017 1.015
(.024) (.013)

75%, Pr(M = 1) = Φ(x+ 1)
two-step probit 1.042 0.993

(.021) (.042)
EE (Conniffe & O’Neill′s) 1.006 1.05

(.021) (.0375)
CC probit 1.029 1.025

(.041) (.036)
CC (Conniffe & O’Neill′s) 1.04 1.05

(.071) (.038)

Table 1: Estimated means and variances (in parenthesis) of estimators of
model (5) for different levels of missing values of variable w (1000
replications, n=1000)

β1 β2

25%, Pr(M = 1) = Φ(x− 1)
two-step probit 0.0111 (.076) 0.0072 (-.2004)
CC probit 0.0133 (.083) 0.0079 (-.032)

50%, Pr(M = 1) = Φ(x)
two-step probit 0.0138 (.122) 0.0105 (-.285)
CC probit 0.0200 (.073) 0.0129 (.030)

75%, Pr(M = 1) = Φ(x+ 1)
two-step probit 0.0236 (.138) 0.0223 (-.527)
CC probit 0.0413 (.011) 0.0356 (.031)

Table 2: Means and relative bias (in parenthesis) of probit ML variance esti-
mates for the two-step probit estimator and the CC probit estimator
in Table 1
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Variable Name Value Frequency Proportion

(y) DL
1=holding a driving licence 612 90.8%

0=no driving licence 62 9.2%

(x1) gender
1=female 304 45.1%
0=male 370 54.9%

(x2) Cs
1=married or sambo 418 62.0%

0=single 256 38.0%

Table 3: Summary of Categorical Variables

Figure 1: Histogram of Continuous Variables
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Histogram of Variable LOGDIS (x5) 
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3 Simulation Study

3.1 Data and models

To illustrate the properties of the two-step probit estimator, a simulation ex-
periment is conducted based on a real dataset with 674 observations. This
dataset contains a binary variable describing whether or not a person holds a
driving license. The variable is here denoted DL. Other variables in the data
are age, distance between work and home, yearly income, civil status (denoted
as Cs hereafter) and a female gender dummy variable.

Table (3) shows descriptives of the categorical variables DL (y), gender (x1)
and Cs (x2). Figure (1) shows histograms of age (x3), income (x4) and the
logarithm of distance between home and work (logdis, x5). Derived variables
used are age squared (x6 = x2

3) and age times gender (x7 = x1 ∗ x3).

In the simulations, DL is treated as the dependent variable, while Cs (x2),
age (x3), income (x4) and logdis (x5) are used as regressors. This model was
fitted to the data set and used as the true model in the simulations. Additional
variables were tested using a backward selection procedure (Cox & Snell, 1981),
and the likelihood ratio test was used for selection between models. The ML
estimates of the final model are displayed in Table (4).
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Intercept Cs (x2) age (x3) income (x4) logdis (x5)

estimates -0.3517 0.2770 0.0120 0.6035 0.0772

Standard error 0.3170 0.1576 0.0067 0.1450 0.0476

Table 4: ML estimates of probit model regressing y on x2, x3, x4 and x5,
R2
p = 0.227 1

Intercept gender (x1) agegender (x7)

estimates 1.2513 1.2656 -0.0792

Standard error 0.0875 0.3534 0.0089

Table 5: ML estimates of probit model regressing Cs (x2) on x1 and x7, R2
p =

0.59

In practice, modelling of variables with missing values can be done using the
data set at hand as well as additional variables available. Careful modeling
requires a controlled process where different formulations of the model are
evaluated and tested against each other. Such procedures are not possible to
implement in this simulation study.

The models used for imputation in the simulation are obtained from analyses
of the data set available. Two variables, Cs and Income, are considered for
missing values in the simulation. The imputations for Cs are made using the
probit model reported in Table (5). The linear regression model reported in
Table (6) are used for imputations of Income.

In the simulations, before imputing missing values in an iteration, the models
shown in tables (5) and (6) are re-estimated on the complete cases in that
iteration.

3.2 Simulation setup

The general technique used in the simulation, is to first draw a sample from the
population (the data set of 674 observations), and then generate the dependent
variable using the fitted model in Table (4). Then missing values are generated
at random followed by imputing values using the models in tables (5) and
(6) fitted to the complete cases. Thereafter the two-step probit estimator is
applied. In more detail, the simulations are made in the following steps.

1. A simple random sample with size n is selected from the population.
For each selected unit, the binary response variable yi is generated from
a random draw from the Bernoulli (Φ(X ′β)) distribution. Here X is the
vector of variables and β is the parameter estimates in Table (4). The
intercept is adjusted to yield an approximately 50/50 ratio of 0’s and
1’s.

2. Missing values in explanatory variables (Cs or income, or both) are
generated by taking a simple random sample. Two independent simple
random samples are taken to generate cases with missing values in both
variables.

3. For CC estimation, probit regression is applied on the subset of ob-
servation with non-missing values. This estimator is denoted β̃CC . The

1The pseudo-goodness-of-fit (R2
p) utilized here is proposed by Laitila (1993). For probit

case, R2
p = β̂′

MLΣ̂xβ̂ML/1 + β̂′
MLΣ̂xβ̂ML, where β̂ML is the MLE of the probit model and

Σ̂x is the covariance matrix of the regressors.
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Intercept age (x3) logdis (x5) age2 (x6) agegender (x7)

estimates -0.8577 0.1074 0.0602 -0.000984 -0.0144

Standard error 0.2306 0.0116 0.0131 0.00014 0.00093

Table 6: OLS estimates of linear model regressing income (x4) on x3, x5, x6

and x7, where R2 = 0.41

models used for imputations of Cs and income, respectively, are esti-
mated on complete cases.

4. Missing values are imputed. For the Cs variable, the imputation error
variance is estimated by Λi(1−Λi) where Λi is the estimated probability
of Csi = 1. For income, the error variance is estimated as the residual
variance in the fit of the model (6) to complete cases. The covariance
between imputation errors is set to zero.

5. The regressor vector x•i is divided with
√
β̃′CCΣ̃r̄iβ̃CC + 1 or with 1,

depending on if it contains imputed elements or not. Resulting regressor
vector is denoted x̃i.

6. The two-step probit estimate is obtained by probit ML regressing the
generated yi on x̃i.

7. Steps 1 - 6 are repeated 1000 times.

3.3 Results

Figure 2 illustrates the comparison of the absolute values of the bias estimates
of the CC probit and the two-step probit estimators. The case considered is
missing values in the binary civil status variable Cs. The sample size varies
from 100 to 500 and the response rate varies from 30% to 90%.

The bias estimates for the two-step procedure keep staying on a lower platform
than that of the CC probit estimator for all variables except for Cs. For larger
sample sizes and higher response rates, the bias estimates for the two estima-
tors are close to each other. With exception for the Cs variable, the figure
shows on more pronounced smaller biases for the two-step probit estimator
when the response rate is small and, the difference increases with a decreasing
sample size.

For the Cs variable this pattern is not observed for the lower response rate.
The bias for the two-step probit estimator is either smaller than the one for
the CC probit estimator, or the biases for the two estimators are close.

Figure 3 illustrates corresponding comparison of MSE estimates for the case
considered in Figure 2. The MSEs of the estimators for all four parameter
estimates have the same pattern. The MSE estimates for the two-step probit
estimator are smaller than those of the CC probit estimator for all sample
sizes and response rates. The MSEs obtained for the two estimators are close
when both response rate and sample size are high. The MSE of the CC probit
estimator increases more rapidly than that of the two-step probit estimator
with the decrease of the response rate and the sample size. Results for the
estimators of the intercept is not shown, but plotted bias and MSE estimates
yield surfaces similar to the ones for the income variable.

Additional bias and MSE results are shown in tables 7 and 8 for the n = 100
case. The results in the upper third are for missing values in Cs, the middle
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Figure 2: Bias comparison in CC and two-step procedure
when missing value occurs in Cs
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Figure 3: MSE comparison in CC and two-step procedure
when missing value occurs in Cs
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third for missing values in income, and the lower third for missing values in
both variables. The bias estimates generally increase with the increase of
proportion of missing values. The value (or absolute value) of bias estimates
for the two-step probit estimator are smaller than those for the CC probit
estimator. This is observed in all cases except for the Cs variable when missing
values occur only in that variable. Correspondingly, the MSE estimates gets
larger when the proportion of missing values gets larger. Here, the MSE
estimates for the two-step probit estimator are smaller than those for the CC
probit estimator in all cases without exception.

In Table 9, coverage rates are shown for 95% confidence intervals of β̂CC and
β̂2S . The coverage rates are calculated as

∑1000
i=1 Ii/1000 where the indicator

Ii = 1(β̂i−zα/2SEβ̂i < β < β̂i+zα/2SEβ̂i), stating whether the 95% confidence
interal covers β or not. The standard error used is the one obtained from the
probit ML estimator in the second step. Results are for the sample size n = 100
and show that the two-step probit estimator works comparably well with the
CC probit estimator. Using separate t-tests shows that 68.9% of the coverage
rates of the two-step procedure do not significantly differ from 95%.

To explore how the two-step procedure works in a less balanced case, the
percentage of 1’s of the response variable y is decreased from 0.5 to 0.3. The
comparison of bias and MSE of the estimators of the CC probit model and
the two-step procedure is displayed in Table 10. Another set of simulations
is made where the latent linear regression model behind the binary response
have a 50% increase in R2, from 0.227 to 0.341. Results are presented in
Table 11. The results obtained in both additional simulations are similar to
those in tables 7 and 8, where the MSEs of the two-step probit estimator for
all the parameters are smaller than that of the CC probit estimator, and the
corresponding biases of the two-step probit estimator are smaller than that of
the CC probit estimator except for a few cases.

4 Discussion

Listwise deletion of observation with missing values implies loss of precision in
estimation. This paper consider estimation of a probit model and studies the
potentials of a two-step probit estimation procedure, where missing values are
imputed with estimated conditional expectations and weighted for additional
imputation error variance.

Simulation results suggest the two-step probit estimator to reduce bias and
increase efficiency compared with probit ML using complete cases only. The
simulation study shows that the two-step probit estimator produces more ac-
curate estimates in terms of smaller bias and MSE. Smaller MSE estimates
are obtained for all sample sizes and response rates considered. Only when
imputations are made for a missing dichotomous regressor, biases are observed
larger than probit on complete cases. The difference in bias is small, however.

The two-step procedure keeps a lower MSE even at the larger sample sizes
(n = 500) and the larger response rates considered. Although the general
results are in favor of the two-step probit estimator, the greatest gains are
observed for small sample sizes and high rates of missing values.

The two-step probit estimator provide a model in the second step which devi-
ates from the normality assumption behind the probit model, unless regressor
variables are normally distributed. This leads to a model misspecification
leading to potential inconsistency of the two-step probit ML estimator. The
effects of this misspecification were not observed as severe as expected, and
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the increase in bias is well compensated with reduction in variance, yielding a
lower MSE.

This robustness property of the two-step probit estimator were also observed
by Conniffe & O′Neill (2011). One of their simulations are here replicated for
the two-step probit estimator and results shows it to compare well with the
Conniffe & O′Neill (2011) estimator.

One advantage of the two-step probit estimator is its simplicity in application,
standard software can be used. Our purpose here is to study the potentials
in using the estimator with respect to bias and MSE. Results are in summary
most promising and further study of properties of the estimator is motivated.
There are at least two topics to consider. One is variance estimation. Using
the standard errors from the second probit step gave almost correct coverage
rates of 95% parameter confidence intervals in the n = 100) case, although
standard errors are inconsistent (Murphy & Topel (1985)). A potential im-
provement is bootstrapping. The extra uncertainty come from the initial pa-
rameter estimates and the estimates of the conditional means. Bootstrapping
these estimates, gives a bootstrap sample of the two-step probit estimator
which can be utilized for measuring the extra variability.

A second topic for further study are the asymptotic properties of the two-
step probit estimator. Of special interest here is consistency, or rather, the
size of the asymptotic bias if assumptions of normally distributed regressors
are not met. When the two-step probit estimator is preceeded by an initial
probit estimate on complete cases it may be possbile to use a Hausman type
of model misspecification test. Such a test could guard against cases when the
normality assumption behind the probit model in the second step is grossly
violated.

Response Rate Variable

Cs income Intercept Cs (x2) age (x3) income (x4) logdis (x5)

70% 100%
CC -0.1847 -0.0199 0.0010 0.0774 0.0139
two-step -0.1282 -0.0248 0.0006 0.0643 0.0075

50% 100%
CC -0.2910 -0.0130 0.0012 0.1296 0.0164
two-step -0.1270 -0.0278 0.0005 0.0680 0.0068

30% 100%
CC -0.7991 -0.0210 0.0039 0.3617 0.0251
two-step -0.1610 -0.0319 0.0007 0.0850 0.0077

100% 70%
CC -0.1954 0.0212 0.0006 0.0841 0.0075
two-step -0.0994 0.0017 -0.0001 0.0560 0.0031

100% 50%
CC -0.3070 0.0275 0.0013 0.1208 0.0143
two-step -0.0758 0.0080 0.0000 0.0317 0.0046

100% 30%
CC -0.7414 0.0143 0.0047 0.2810 0.0357
two-step -0.0376 0.0254 0.0005 -0.0171 0.0070

70% 70%
CC -0.2884 -0.0029 0.0008 0.1454 0.0094
two-step -0.0818 -0.0050 -0.0003 0.0622 0.0004

60% 60%
CC -0.5060 0.0276 0.0026 0.2047 0.0185
two-step -0.0916 -0.0034 -0.0003 0.0655 0.0004

50% 50%
CC -0.9352 -0.0430 0.0035 0.4456 0.0406
two-step -0.1216 -0.0158 -0.0005 0.0920 0.0004

Table 7: Bias of estimates in CC probit and two-step Procedure when n=100
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Response Rate Variable

Cs income Intercept Cs (x2) age (x3) income (x4) logdis (x5)

70% 100%
CC 0.7058 0.1412 0.0003 0.1161 0.0131
two-step 0.4750 0.1146 0.0002 0.0784 0.0087

50% 100%
CC 1.1068 0.2089 0.0004 0.1864 0.0200
two-step 0.4860 0.1329 0.0002 0.0807 0.0088

30% 100%
CC 3.5122 0.4507 0.0009 0.6141 0.0482
two-step 0.5344 0.1649 0.0002 0.0872 0.0091

100% 70%
CC 0.7111 0.1429 0.0003 0.1184 0.0130
two-step 0.4489 0.0983 0.0002 0.0954 0.0087

100% 50%
CC 1.1241 0.2137 0.0004 0.1868 0.0197
two-step 0.4435 0.1016 0.0002 0.1121 0.0089

100% 30%
CC 2.9505 0.4603 0.0009 0.4851 0.0442
two-step 0.4514 0.1079 0.0002 0.1437 0.0093

70% 70%
CC 1.1543 0.2196 0.0004 0.2023 0.0205
two-step 0.4596 0.1174 0.0002 0.0921 0.0087

60% 60%
CC 1.9603 0.3347 0.0006 0.3297 0.0318
two-step 0.4706 0.1275 0.0002 0.0968 0.0088

50% 50%
CC 4.7627 0.7132 0.0013 0.8766 0.0687
two-step 0.5018 0.1421 0.0002 0.1070 0.0091

Table 8: MSE of estimates in CC probit and two-step Procedure when n=100

Response Rate Variable

Cs income Intercept Cs (x2) age (x3) income (x4) logdis (x5)

70% 100%
CC 95.4% 94.1% 94.6% 94.7% 95.0%
two-step 95.1% 94.9% 93.0% 93.6% 94.6%

50% 100%
CC 95.2% 94.8% 93.7% 95.5% 93.9%
two-step 94.2% 93.7% 93.0% 93.6% 94.2%

30% 100%
CC 97.2% 93.9% 94.6% 95.6% 94.6%
two-step 94.4% 93.9% 93.3% 94.5% 93.9%

100% 70%
CC 94.6% 93.2% 93.7% 95.1% 95.3%
two-step 95.1% 94.9% 93.2% 94.9% 95.2%

100% 50%
CC 95.0% 94.2% 94.1% 95.2% 93.3%
two-step 93.9% 94.0% 92.8% 95.6% 94.4%

100% 30%
CC 95.5% 94.4% 94.8% 95.7% 94.5%
two-step 93.5% 94.0% 93.1% 93.3% 92.7%

70% 70%
CC 94.2% 92.5% 94.0% 93.7% 93.6%
two-step 95.0% 93.1% 95.3% 94.0% 94.2%

60% 60%
CC 95.1% 94.4% 95.8% 95.2% 94.9%
two-step 94.8% 93.7% 95.7% 93.7% 94.3%

50% 50%
CC 96.4% 95.1% 96.0% 96.2% 95.2%
two-step 94.2% 92.3% 94.7% 93.1% 94.0%

Table 9: Coverage Rate of 95% CI of estimates in CC probit and two-step
Procedure when n=100
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Response Rate Variable

Cs income Intercept Cs (x2) age (x3) income (x4) logdis (x5)

70% 100%

CC -0.2390 -0.0059 -0.0003 0.1218 0.0023
(0.8522) (0.1630) (0.0003) (0.1311) (0.0145)

two-step -0.1239 -0.0248 -0.0005 0.0791 0.0016
(0.5406) (0.1290) (0.0002) (0.0824) (0.0096)

50% 100%

CC -0.4166 -0.0049 0.0010 0.1758 0.0100
(1.4306) (0.2476) (0.0005) (0.2144) (0.0226)

two-step -0.1348 -0.0261 -0.0005 0.0847 0.0022
(0.5573) (0.1499) (0.0002) (0.0856) (0.0097)

30% 100%

CC -0.8632 -0.0481 0.0032 0.3236 0.0423
(3.8548) (0.5494) (0.0011) (0.5521) (0.0541)

two-step -0.1905 -0.0245 -0.0002 0.1047 0.0030
(0.6176) (0.1867) (0.0002) (0.0947) (0.0101)

100% 70%

CC -0.2436 0.0207 0.0001 0.0943 0.0115
(0.8474) (0.1643) (0.0003) (0.1229) (0.0146)

two-step -0.1106 -0.0148 -0.0006 0.0647 0.0076
(0.5211) (0.1109) (0.0002) (0.1000) (0.0096)

100% 50%

CC -0.3739 0.0000 0.0001 0.1580 0.0188
(1.3730) (0.2496) (0.0004) (0.2091) (0.0223)

two-step -0.0823 -0.0142 -0.0007 0.0518 0.0075
(0.5159) (0.1150) (0.0002) (0.1215) (0.0098)

100% 30%

CC -0.9408 -0.0579 0.0034 0.3491 0.0471
(4.2221) (0.5829) (0.0011) (0.6033) (0.0551)

two-step -0.0675 0.0033 -0.0002 0.0183 0.0101
(0.5324) (0.1217) (0.0002) (0.1582) (0.0103)

70% 70%

CC -0.3635 -0.0089 0.0005 0.1526 0.0132
(1.3933) (0.2547) (0.0005) (0.2128) (0.0230)

two-step -0.1266 -0.0386 0.0004 0.0652 0.0036
(0.5383) (0.1333) (0.0002) (0.0957) (0.0096)

60% 60%

CC -0.6518 -0.0325 0.0017 0.2617 0.0301
(2.5460) (0.3935) (0.0007) (0.3901) (0.0381)

two-step -0.1482 -0.0361 0.0004 0.0732 0.0035
(0.5564) (0.1443) (0.0002) (0.1022) (0.0098)

50% 50%

CC -1.3937 -0.1728 0.0046 0.5388 0.0798
(9.5247) (1.1349) (0.0022) (2.3155) (0.1345)

two-step -0.2032 -0.0545 0.0008 0.0964 0.0037
(0.8798) (0.2103) (0.0004) (0.5950) (0.0168)

Table 10: Bias and MSE of estimates in CC probit and two-step Procedure
when n=100 and the binary response variable y is less balanced.
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Response Rate Variable

Cs income Intercept Cs (x2) age (x3) income (x4) logdis (x5)

70% 100%

CC -0.2495 -0.0014 0.0012 0.1012 0.0169
(0.8670) (0.1526) (0.0003) (0.1429) (0.0144)

two-step -0.1644 -0.0130 0.0013 0.0609 0.0100
(0.5661) (0.1219) (0.0002) (0.0921) (0.0095)

50% 100%

CC -0.4849 0.0085 0.0029 0.1725 0.0283
(1.5235) (0.2315) (0.0004) (0.2421) (0.0227)

two-step -0.1854 -0.0006 0.0014 0.0671 0.0098
(0.5881) (0.1414) (0.0002) (0.0953) (0.0096)

30% 100%

CC -1.0390 0.0736 0.0078 0.3666 0.0299
(4.3311) (0.5424) (0.0010) (0.6737) (0.0509)

two-step -0.2555 0.0149 0.0019 0.0895 0.0109
(0.6670) (0.1767) (0.0002) (0.1043) (0.0100)

100% 70%

CC -0.2733 0.0227 0.0008 0.1116 0.0152
(0.8806) (0.1548) (0.0003) (0.1482) (0.0144)

two-step -0.0608 -0.0055 -0.0007 0.0495 0.0029
(0.5076) (0.1045) (0.0002) (0.1091) (0.0093)

100% 50%

CC -0.4316 0.0161 0.0020 0.1826 0.0143
(1.4472) (0.2340) (0.0004) (0.2471) (0.0218)

two-step -0.0031 -0.0055 -0.0011 0.0237 0.0012
(0.4937) (0.1077) (0.0002) (0.1251) (0.0094)

100% 30%

CC -0.9668 0.0309 0.0053 0.4174 0.0266
(4.1731) (0.5148) (0.0010) (0.7323) (0.0502)

two-step 0.0437 0.0075 -0.0011 -0.0154 0.0017
(0.5071) (0.1138) (0.0002) (0.1587) (0.0099)

70% 70%

CC -0.3980 0.0150 0.0017 0.1724 0.0187
(1.4490) (0.2401) (0.0004) (0.2486) (0.0228)

two-step -0.1229 0.0005 0.0004 0.0562 0.0080
(0.5425) (0.1258) (0.0002) (0.1064) (0.0095)

60% 60%

CC -0.7365 0.0576 0.0053 0.2509 0.0347
(2.7233) (0.3755) (0.0007) (0.4266) (0.0365)

two-step -0.1216 0.0003 0.0005 0.0527 0.0076
(0.5507) (0.1359) (0.0002) (0.1104) (0.0096)

50% 50%

CC -1.5992 0.0991 0.0098 0.5651 0.0936
(9.0418) (0.8228) (0.0019) (1.2694) (0.0940)

two-step -0.1758 -0.0023 0.0005 0.0842 0.0100
(0.5983) (0.1521) (0.0002) (0.1223) (0.0100)

Table 11: Bias and MSE of estimates in CC probit and two-step Procedure
when n=100 with higher R2

p.
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