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Abstract 

This paper considers Bayesian inference procedures for regression models with ordinally 

observed explanatory variables. Taking advantage of a latent variable interpretation of the 

ordinally observed variable we develop an efficient Bayesian inference procedure that 

estimates the regression model of interest jointly with an auxiliary ordered probit model for 

the unobserved latent variable. The properties of the inference procedure and associated 

MCMC algorithm are assessed using simulated data. We illustrate our approach in an 

investigation of gender based wage discrimination in the Swedish labor market and find 

evidence of wage discrimination. 
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1. Introduction 

The use of ordinal explanatory variables in regression models is a complicated but somewhat 

neglected issue. The basic problem stems from the fact that the relevant information in an 

ordinal variable is the ordering or rank of different observations, the values or labels assigned 

to different categories is irrelevant as long as the order is preserved. Directly including an 

ordinal explanatory variable in the model will consequently lead to results that to a large 

extent is determined by the particular values assigned to the categories. 

The simplest and probably most common solution is to replace the ordinal variable with 

dummy variables for the categories. This has two disadvantages; it increases the number of 

parameters to estimate and is likely to introduce a measurement error. The measurement error 

comes about when the categories of the ordinal variable do not correspond to well defined and 

homogenous states, for example the order customers arrive in a queue. In our experience 

ordinal data is, for the most part, not of this nature. Instead the data represents loosely defined 

categories such as “disagree”, “neutral” and “agree”, well – but not uniquely – defined 

categories such as educational attainment categorized as “completed primary education”, 

“completed secondary education”, “university degree” etc. or it is only recorded which 

interval, e.g. income bracket, a variable falls into. In these cases there is an underlying latent 

variable, the effect of which is the real object of interest and it is this situation that we focus 

on. 

That is, we assume that there is a well-defined latent variable 𝑧𝑖
∗ that one wishes to control for 

or estimate the effect of in the analysis but that there is only an ordinal indicator 𝑧𝑖, 

𝑧𝑖 = 𝑘 if 𝜇𝑘−1 < 𝑧𝑖
∗ ≤ 𝜇𝑘, 𝑘 = 1, … , 𝑚, 

available and that the model of interest includes the latent variable as a linear regressor, i.e.  
𝑦𝑖 = 𝐱𝑖

′𝛃 + 𝑧𝑖
∗𝛾 + 𝜀𝑖. Building on this assumption we propose an efficient Bayesian procedure 

for inference in linear regression models with ordinally observed explanatory variables. 

Our model setup is closely related to Breslaw and McIntosh (1998) who develop a simulation 

based procedure based on the assumption that the latent variable 𝑧𝑖
∗ is normal conditional on 

the variables 𝒘𝒊 (which may contain 𝒙𝑖). This assumption leads to an ordered probit model 

for 𝑧𝑖 and the distribution of 𝑧𝑖
∗ conditional on 𝒘𝑖 and 𝑧𝑖 is obtained as a truncated normal. 

Breslaw and McIntosh use a draw from this conditional distribution as a proxy for 𝑧𝑖
∗ and a 

second draw as an instrument to overcome the measurement error problem. We depart from 

this in that our approach is Bayesian and, crucially, that we estimate the equations for 𝑦𝑖 and 

𝑧𝑖
∗ jointly. 

Earlier related literature includes Hsiao and Mountain (1985) who consider the problem of 

estimating the equation for 𝑦𝑖 in a context where the cut points, 𝜇𝑘, for discretizing the latent 

variable are known. They suggested using an estimate of the expectation of, 𝐸(𝑧𝑖
∗|𝑧𝑖, 𝒙𝑖), 

conditional on 𝑧𝑖 and the fully observed explanatory variables, 𝒙𝑖, as a proxy for 𝑧𝑖
∗. This 

procedure will yield consistent estimates if the conditional expectation is estimated 

consistently.  

Estimating the expectation conditional on both 𝑧𝑖 and 𝒙𝒊 is complicated and Hsiao and 

Mountain also considered using the expectation conditional on 𝑧𝑖 only, 𝐸(𝑧𝑖
∗|𝑧𝑖). This is 
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easier to estimate and will yield consistent estimates if 𝑧𝑖
∗ − 𝐸(𝑧𝑖

∗|𝑧𝑖) is uncorrelated with 𝒙𝒊. 

This is unlikely to be the case but it turns out that 𝐸(𝑧𝑖
∗|𝑧𝑖) is a valid instrument for 𝑧𝑖

∗ and 

they suggested an instrumental variable estimator based on this. Terza (1987) generalized 

Hsiao and Mountain by allowing for unknown cut points and proposed an estimator of 

𝐸(𝑧𝑖
∗|𝑧𝑖) based on the assumption that the marginal distribution of 𝑧𝑖

∗ is normal. Using this as 

a proxy yields consistent estimates when 𝑧𝑖
∗ − 𝐸(𝑧𝑖

∗|𝑧𝑖) is uncorrelated with 𝒙𝑖.  

The outline of the paper is as follows. Section 2 introduces the model and the prior 

distribution and gives details of the posterior distribution of the parameters. Section 3 

suggests and evaluates a Markov chain Monte Carlo algorithm for exploring the posterior 

distribution and in section 4 we estimate a wage equation where the true educational 

attainment is unobserved. Finally, section 5 concludes. 

2. Regression with ordinally observed explanatory 

variables 

The basic model we consider is a linear regression model where one of the explanatory 

variables is only observed in the form of an ordinal indicator representing an underlying trait 

of fundamental interest. This could, for example, be “credit worthiness”, “job performance”, 

“health status”, “amount of schooling” – as in our application – or any difficult to measure 

characteristic that has been rated on an ordinal scale. Ideally we would like to estimate the 

model 

𝑦𝑖 = 𝐱𝑖
′𝛃 + 𝑧𝑖

∗𝛾 + 𝜀𝑖 (1)  

where 𝐱𝑖 denotes fully observed explanatory variables and 𝑧𝑖
∗ is a latent variable representing 

the true value of the unobserved trait. While 𝑧𝑖
∗ is unobserved we have at our disposal an 

ordinal indicator with m levels given by 

 𝑧𝑖 = 𝑘 if 𝜇𝑘−1 < 𝑧𝑖
∗ ≤ 𝜇𝑘, 𝑘 = 1, … , 𝑚 

which provides partial information about 𝑧𝑖
∗ for some unknown cut points 𝜇𝑘. To complete the 

model we follow Breslaw and McIntosh (1998) and make the additional assumption that 𝑧𝑖
∗ is 

well described by a second linear regression 

𝑧𝑖
∗ = 𝐰𝑖

′𝛅 + 𝜂𝑖. (2)  

Assuming that 𝜂𝑖 is normal Breslaw and McIntosh proposes a two stage estimation strategy 

where (2) is estimated as an ordered probit model and use the estimated model to simulate 

values of 𝑧𝑖
∗ that are then used to estimate (1) in the second stage using an IV-type estimator. 

We depart from Breslaw and McIntosh by estimating (1) and (2) jointly and thus making 

efficient use of all the information in the data. For convenience we retain the assumption that 

𝜂𝑖~𝑁(0,1) while also assuming that 𝜀𝑖~𝑁(0,1/𝜏). These assumptions are far from necessary 

but simplify the analysis and the proposed MCMC scheme for simulating from the posterior 

distribution.  

Augmenting the data by explicitly introducing the latent variable 𝑧𝑖
∗ in the analysis simplifies 

the analysis considerably and is key to our approach as it leads to a straightforward MCMC 

procedure for exploring the posterior distribution. 
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2.1 Prior distributions 

We specify a simple prior structure based on natural conjugate priors. That is, we use the 

priors 

𝜷 ∼ MVN(𝜷, 𝚺β) 

𝛾 ∼ N(γ, 𝜎𝛾
2) 

𝜹 ∼ MVN(𝜹, 𝚺δ)  

τ ∼ Gamma (𝑎, 𝑏) 

for the unknown parameters in (1) and (2) together with a uniform prior on the cut points 

𝜇𝑘subject to the restriction 

𝜇1 = 0 < 𝜇2 < ⋯ < 𝜇𝑚−1 < 𝜇𝑚 = ∞ 

where 𝜇1 is set to zero for identification purposes and the lower limit of the first class is 

𝜇0 = −∞. 

2.2 Posterior distribution 

The joint posterior distribution is intractable but the full conditional posteriors follow from 

standard results for the linear regression model if we also condition on the latent variable 𝑧∗. 

The full conditional posteriors for the regression parameters are normal and the conditional 

posterior for 𝜷 is 

𝜷|𝛾, 𝜏, 𝜹, 𝒛∗, 𝒚 ∼ MVN( 𝜷̅, 𝚺𝛽) 

with 𝚺β = (𝚺𝛽
−1𝜷 +  𝜏𝑿′𝒚̃)

−1

,  𝜷̅ = 𝚺β (𝚺𝛽
−1𝜷 +  𝜏𝑿′𝒚̃), and  𝒚̃ = 𝒚 − 𝛾𝒛∗. For 𝛾 we have 

𝛾|𝜷, 𝜏, 𝜹, 𝒛∗, 𝒚~𝑁(𝛾, 𝜎𝛾
2

) 

with 𝜎𝛾
2

= (𝜎𝛾
−2 + 𝜏𝒛∗′𝒛∗)

−1
, 𝛾 = 𝜎𝛾

2
(𝜎𝛾

−2γ + 𝜏𝒛∗′𝒚̆) and 𝒚̆ = 𝒚 − 𝑿𝜷. We will also make 

use of the joint conditional posterior for 𝜽 = (𝜷′, 𝛾)′. Let 𝜽 = (𝜷′, 𝛾)
′

,   𝚺𝜃 = (
𝚺β 𝟎

𝟎 𝜎𝛾
2) and 

𝑯 = (𝑿, 𝒛∗) we then have  

𝜽|𝜏, 𝜹, 𝒛∗, 𝒚~𝑁(𝜽, 𝚺𝜃) (3) 

for 𝚺𝜃 = (𝚺𝜃
−1 + 𝜏𝑯′𝑯)

−1
 and 𝜽 = 𝚺𝜃(𝚺𝜃

−1𝜽 + 𝜏𝑯′𝒚). 

The full conditional posterior for 𝜏 is Gamma, 

𝜏|𝜷, 𝛾, 𝒛∗, 𝒚 ∼ Gamma (
𝑛

2
+ 𝑎,

∑ (𝑦𝑖 – 𝒙𝑖
′𝜷 – 𝑧𝑖

∗𝛾)
2𝑛

1

2
+ 𝑏). 

(4) 

The full conditional posterior for 𝜹 is given by 
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𝜹|𝑧∗ ∼ MVN(𝜹 , 𝚺𝛿) (5) 

for 𝜹 = 𝚺𝛿  (𝚺𝜹
−1𝜹 + 𝐖′𝒛∗) and 𝚺𝛿 = (𝚺𝜹

−1 + 𝑾′𝑾 )
−1

. 

There is obviously a high degree of dependence between the distribution of the cut points, 𝜇𝑘, 

and the latent variable 𝑧𝑖
∗ and we will consider these distributions in some detail. The full 

conditional posterior for the cut points, 𝜇𝑘, follows from Albert and Chib (1993) as the 

uniform distributions 

𝜇𝑘|𝜇𝑘−1, 𝜇𝑘+1, 𝒛∗~𝑈 (max (max
𝑧𝑖=𝑘

𝑧𝑖
∗ , 𝜇𝑘−1) , min ( min

𝑧𝑖=𝑘+1
𝑧𝑖

∗ , 𝜇𝑘+1)). 
(6) 

Turning to the distribution of 𝑧𝑖
∗ conditional on the parameters in the model, the joint 

likelihood for (1) and (2) together with the restrictions imposed by the cut points gives the 

kernel of the conditional distribution as 

𝑝(𝑧𝑖
∗|𝜷, 𝛾, 𝜹, 𝜏, 𝝁, 𝑦𝑖 , 𝑧𝑖)

∝ exp [−
𝜏

2
(𝑦𝑖 − 𝒙𝑖

′𝜷 − 𝑧𝑖
∗𝛾)2] exp [−

1

2
(𝑧𝑖

∗ − 𝒘𝑖
′ 𝛅)

2
] I(𝜇𝑧𝑖−1 ≤ 𝑧𝑖

∗ ≤ 𝜇𝑧𝑖
). 

(7) 

Completing the square for 𝑧𝑖
∗ yields 

𝑝(𝑧𝑖
∗|𝜷, 𝛾, 𝜹, 𝜏, 𝝁, 𝑦𝒊, 𝑧𝒊) ∝ exp [−

𝜏𝑧

2
(𝑧𝑖

∗ − 𝑚𝑖)2] I(𝜇𝑧𝑖−1 ≤ 𝑧𝑖
∗ ≤ 𝜇𝑧𝑖

) 

for 𝑚𝑖 =  𝜏𝑧
−1 [𝜏𝛾 (𝑦𝑖 − 𝒙𝑖

′𝜷) + 𝒘𝑖
′𝜹] and 𝜏𝑧 = 𝜏𝛾2 + 1. That is, a truncated normal distribution 

𝑧𝑖
∗|𝜷, 𝛾, 𝜹, 𝜏, 𝝁, 𝑦𝑖 , 𝑧𝑖~𝑁(𝑚𝑖, 𝜏𝑧

−1)I(𝜇𝑧𝑖−1 ≤ 𝑧𝑖
∗ ≤ 𝜇𝑧𝑖

). (8) 

With a uniform prior on the cut points, the form of the joint posterior of 𝒛∗ and 𝜇2, … , 𝜇𝑚−1 

follows from (7) and we have 

𝑝(𝒛∗, 𝜇2, … , 𝜇𝑚−1|𝜷, 𝛾, 𝜹, 𝜏, 𝒚, 𝒛) ∝ ∏ exp [−
𝜏𝑧

2
(𝑧𝑖

∗ − 𝑚𝑖)
2] I(𝜇𝑧𝑖−1 ≤ 𝑧𝑖

∗ ≤ 𝜇𝑧𝑖
).

𝑛

𝑖=1
 

Integrating out the latent variable 𝒛∗ yields the joint conditional posterior of the cut points as 

𝑝(𝜇2, … , 𝜇𝑚−1|𝜷, 𝛾, 𝜹, 𝜏, 𝒚, 𝒛) ∝ ∏ {Φ[√𝜏𝑧(𝜇𝑧𝑖
− 𝑚𝑖)] − Φ[√𝜏𝑧(𝜇𝑧𝑖−1

− 𝑚𝑖)]}
𝑛

𝑖=1
 

(9) 

where Φ is the standard normal CDF. 

3. Markov chain Monte Carlo 

Our strategy for constructing a posterior sampler is to combine a standard Gibbs sampler for 

the linear regression (1) with a sampler for the ordinal probit model (2). For the linear 

regression part we can sample from the full conditionals (3) and (4). Albert and Chib (1993) 

suggested a straightforward Gibbs sampler for the ordinal probit model sampling in turn from 

the full conditional posteriors of the latent variable, the regression parameters and the cut 
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points. In our case this is the distributions (8), (5) and (6) where (8) differs from Albert and 

Chib and reflects the fact that  𝑧𝑖
∗ appears in both the linear regression and the ordinal probit. 

As pointed out by Cowles (1996) the sampler of Albert and Chib tends to converge slowly 

when the sample size is large and there are many observations in each category of the ordinal 

variable. Cowles attributed this to the high degree of dependence between the cut points and 

the latent variable and proposed the use of a Metropolis-Hastings step that updates 𝜇𝑘 and 𝑧𝑖
∗ 

jointly. A draw from the joint conditional posterior of 𝜇2, … , 𝜇𝑚−1 and 𝒛∗ can be obtained by 

first drawing 𝜇2, … , 𝜇𝑚−1 from (9) and then generating 𝑧𝑖
∗, 𝑖 = 1, … , 𝑛 from (8). Cowles suggests 

proposing new values for the cut points from truncated normal distributions centered at the 

current cut points, generate proposals for  𝑧𝑖
∗ from (8) conditional on the proposed cut points 

and accept or reject the proposals based on the standard M-H acceptance ratio.  Since (8) 

amounts to a Gibbs step the acceptance ratio does not depend on the current or proposed 

values of 𝒛∗ which simplifies the calculations. 

 

Algorithm 1: Metropolis-Hastings within Gibbs sampler 

Choose starting values 𝜷(0), 𝛾(0), 𝜏(0), 𝜹(0), 𝝁(0) with 𝜇0
(0)

= −∞, 𝜇1
(0)

= 0 and 𝜇𝑚
(0)

= ∞ 

and a value for the tuning parameter 𝜎𝑀𝐻
2 . 𝜎𝑀𝐻

2  determines the acceptance rate of the 

Metropolis-Hastings step and should be set to achieve a reasonable acceptance rate, Johnson 

and Albert (1999) suggests 0.05/𝑚 as a default. 

For 𝑗 = 1 to 𝐵 + 𝑅 

1) Set 𝑓0 = −∞, 𝑓1 = 0 and 𝑓𝑚 = ∞. 

a. For 𝑘 = 2, … , 𝑚 − 1 generate proposals 𝑓𝑘 from a 𝑁(𝜇𝑘
(𝑗−1)

, 𝜎𝑀𝐻
2 ) 

distribution truncated to the interval (𝑓𝑘−1, 𝜇𝑘+1
(𝑗−1)

). 

b. Set 𝜇𝑘
(𝑗)

= 𝑓𝑘 with probability 

𝛼 = ∏ {
Φ[√𝜏𝑧(𝑓𝑧𝑖

− 𝑚𝑖)] − Φ[√𝜏𝑧(𝑓𝑧𝑖−1 − 𝑚𝑖)]

Φ [√𝜏𝑧 (𝜇𝑧𝑖

(𝑗−1)
− 𝑚𝑖)] − Φ [√𝜏𝑧 (𝜇

𝑧𝑖−1

(𝑗−1)
− 𝑚𝑖)]

}

𝑛

𝑖=1

× ∏ {
Φ [(𝜇𝑘+1

(𝑗−1)
− 𝜇𝑘

(𝑗−1)
) 𝜎𝑀𝐻⁄ ] − Φ [(𝑓𝑘−1 − 𝜇𝑘

(𝑗−1)
) 𝜎𝑀𝐻⁄ ]

Φ[(𝑓𝑘+1 − 𝑓𝑘) 𝜎𝑀𝐻⁄ ] −  Φ [(𝜇𝑘−1
(𝑗−1)

− 𝑓𝑘) 𝜎𝑀𝐻⁄ ]
}

𝑚−1

𝑘=2

 

otherwise set 𝝁(𝑗) = 𝝁(𝑗−1). 

2) Generate 𝑧𝑖
∗(𝑗)

 from the full conditional posterior 

𝑧𝑖
∗|𝜷(𝑗−1), 𝛾(𝑗−1), 𝜹(𝑗−1), 𝜏(𝑗−1), 𝝁(𝑗), 𝑦𝑖 , 𝑧𝑖 in (8). 

3) Generate 𝜹(𝑗) from the full conditional posterior 𝜹|𝒛∗(𝑗) in (5). 

4) Generate 𝜏(𝑗) from the full conditional posterior 𝜏|𝛃(𝑗−1), 𝛾(𝑗−1), 𝒛∗(𝑗), y in (4). 

5) Generate 𝜽(𝑗) = (𝛽(𝑗)′
, 𝛾(𝑗)) ′ from the full conditional posterior 𝜽|𝜏(𝑗), 𝛅(𝑗), 𝒛∗(𝑗), 𝒚 

in (3). 

Discard the first B draws as burn-in. 
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We have experimented with both approaches and found that Cowles’ approach leads to a 

Markov chain that mixes well with lower autocorrelation in the chain than the pure Gibbs 

sampler. Our preferred sampler is summarized in Algorithm 1. Note that we take advantage of 

the fact that the acceptance ratio does not depend on 𝑧𝑖
∗ and generate new values for the latent 

variable irrespective of if the proposed cut points are accepted or not in order to improve the 

mixing of the chain. 

3.1 Performance of the MCMC algorithm and inference 

procedure 

To check the properties of the sampler in Algorithm 1 we generated a synthetic data set with 

𝑛 = 500 observations from the data generating process  

𝑧𝑖
∗ = 1 + 2.5𝑥1𝑖 + 1.5𝑥2𝑖 − 3𝑥3𝑖 + 𝜂𝑖 

𝑦𝑖 = 2 + 1.4𝑥3𝑖 + 0.5𝑥4𝑖 + 3𝑥5𝑖 + 4𝑧𝑖
∗ + 𝜀𝑖 

with the explanatory variables 𝑥𝑗𝑖~𝑁(1,1), 𝜂𝑖~𝑁(0,1) and 𝜀𝑖~𝑁(0,4). Note that the 

explanatory variable 𝑥3𝑖 is common to the two equations. For the vector of cut points we set 

𝜇2 = 2 and 𝜇3 = 4 leaving 159, 84, 86 and 171 observations in the four categories of the 

ordinal variable 𝑧𝑖. 

Using an uninformative prior with  

𝜷0 = (1.5, 1.6, 0.7, 2.8)′ 

𝚺0𝛽 = 10000𝑰 

𝛾0 = 0.5 
𝜏𝛾 = 0.00001 

𝜹0 = (0.8, 2.5, 1.6, −3.4)′ 
𝚺0𝛿 = 10000𝑰 
𝑎 = 𝑏 = 0.1 

we run a number of experiments to assess the convergence properties of the sampler. 

Throughout we set 𝜎𝑀𝐻
2 = 0.0225 which yields an acceptance rate of about 0.35 for the 

Metropolis-Hastings step.  

Based on the output from one chain with 100 000 draws the diagnostic of Geweke (1992) 

indicates that convergence is relatively quick but also that there are some outliers produced by 

the chain which will affect the results if a too short run is used. To confirm we run 5 chains 

with random overdispersed starting values, each with 20 000 draws after discarding 5 000 

draws as burn-in. Applying the Gelman and Rubin (1992) diagnostic yields potential scale 

reduction factors of 1.01 or less for the parameters. Running means for the first 1 500 draws 

from the five chains and the trace plot from one of the chains is displayed in Figure 1 for two 

of the parameters, 𝛾 and 𝜇3, which appear to be among the ones that are slowest to converge. 

The autocorrelations in the chain are small for parameters on the observed explanatory 

variables in the equation for 𝑦𝑖 but quite persistent for other parameters. The autocorrelation 

functions for the draws of selected parameters are displayed in Figure 2. 
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Figure 1: Running means and trace plots for simulated data 

Running mean of 𝛾 Running mean of 𝜇3 

  

Trace plot of 𝛾 Trace plot of 𝜇3 

  

 

Figure 2. Autocorrelation functions for simulated data. 

𝛽2 𝛾 

  

𝛿1 𝜇3 
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Summary statistics for the output of the long chain after discarding 5 000 draws as burn-in are 

displayed in Table 1 together with the in practice infeasible OLS estimates of the two 

equations using the actual values of 𝑧𝑖
∗ as comparison. The posterior distributions are well 

centered on the true parameter values with the possible exception of 𝛾 and 𝜏 and even for 

these parameters the 95% highest posterior density regions includes the true parameter values. 

Compared to the OLS estimates the Bayes estimates does equally well although there is a loss 

in precision due to the inability to observe the latent variable. 

The coefficient γ on the latent variable 𝑧𝑖
∗ can be difficult to interpret due to the lack of a fixed 

scale for the variable. The cut points in the ordinal probit equation do, however, carry 

information about the scale of 𝑧𝑖
∗. Recall that the cut point between the first and second 

category is fixed at 0. This together with, for example, the posterior means of the other cut 

points – in this case 2.09 and 4.15 – allows us to interpret γ. A move from the borderline 

between the first and second category to the borderline between the second and third 

categories would, for example, correspond to a change of the dependent variable y by about 8 

units. 

 

Table 1: Posterior distribution for simulated data 

Parameter True 

value 

OLS
a 

Posterior 

mean 

Posterior 

std. dev. 

Percentiles Num. 

std. err. 2.5%  50% 97.5% 

𝛽0 2.0 2.12 2.01 0.53 0.98 2.01 3.05 0.0068 

𝛽1 1.4 1.22 1.36 0.27 0.84 1.36 1.88 0.0020 

𝛽2 0.5 0.58 0.53 0.16 0.21 0.53 0.84 0.0009 

𝛽3 3.0 2.88 3.13 0.16 2.82 3.12 3.43 0.0009 

𝛾 4.0 3.98 3.75 0.18 3.41 3.75 4.11 0.0081 

𝜏 0.25 0.25
b 

0.17 0.02 0.13 0.17 0.23 0.0004 

𝛿0 1.0 1.04 1.09 0.15 0.80 1.09 1.39 0.0034 

𝛿1 2.5 2.48 2.62 0.14 2.36 2.61 2.89 0.0058 

𝛿2 1.5 1.52 1.65 0.09 1.47 1.65 1.83 0.0035 

𝛿3 –3.0 –2.98 –3.21 0.17 –3.55 –3.21 –2.90 0.0077 

𝜇2 2.0  2.09 0.16 1.78 2.08 2.41 0.0055 

𝜇3 4.0  4.15 0.23 3.71 4.14 4.63 0.0112 

a
 Infeasible estimate using actual values of the latent variable 𝑧𝑖

∗ .  
b
 Inverse of residual variance. 

 

4. Gender based wage discrimination 

Palme and Wright (1992) studied gender discrimination in the Swedish labor market. Here we 

estimate a version of their wage equation with job characteristics and individual specific 

characteristics one of which is an ordinal variable representing the level of education. This is 

a rather coarse classification of the true, latent, education level and simply including this as a 

set of dummy variables would introduce a measurement error in the model. Consequently we 

use the latent variable estimation procedure introduced in section 2 to estimate the wage 

equation. 
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We model the natural logarithm of the wage as a function of sex, age, marital status, work 

experience, integration in Swedish society (as measured by the home language when growing 

up), education level, region of residence and job characteristics. The education level is in turn 

modeled as a function of the education level of the parents. The data set is taken from the year 

2000 wave of the Swedish Level of Living Survey (Levnadsnivåundersökningen) (Johansson 

and Eriksson, 2000) and consists of 2 767 observations after restricting the sample to those 

who were employed at the time of the survey and removing observations with missing data. 

The variables are summarized in Table 2. 

Following Palme and Wright we capture the job characteristics by taking the first few 

principal components of a large set of indicator variables describing mainly the physical 

aspects of the job. Based on a Scree plot we choose to use the first four principal components 

which account for 43% of variation in the data. See Table 3 for details. 

In order to study the existence of gender discrimination we decompose the wage differential 

into four different components along the lines of Oaxaca (1973) and Blinder (1973). That is 

we estimate an extended version of the model discussed in section 2, 

𝑦𝑖 = 𝒙𝑖
′𝜷 + 𝒙𝑀𝑖

′ 𝜷𝑀 + 𝑧𝑖
∗𝛾 + 𝑧𝑀𝑖

∗ 𝛾𝑀 + 𝒑𝑖
′𝜽 + 𝒑𝑀𝑖

′ 𝜽𝑀 + 𝜀𝑖 

𝑧𝑖
∗ = 𝒘𝑖

′𝜹 + 𝒘𝑀𝑖
′ 𝜹𝑀 + 𝜂𝑖. 

where 𝒙𝑖 represents individual characteristics, 𝑧𝑖
∗ the unobserved level of schooling, 𝒑𝑖 the 

principal components representing job characteristics and 𝒘𝑖 is the education level of the 

parents. The subscript M on the variables indicate that the variables have been interacted with 

the dummy variable for males and the corresponding subscripted coefficient measures the 

difference between males and females.
3
 

The wage differential between men and women can then be decomposed into 

𝑦̅𝑀 − 𝑦̅𝐹 = (𝒙̅𝑀
′ − 𝒙𝐹

′ )𝜷 + (𝑧𝑀̅ − 𝑧𝐹̅)𝛾 + (𝒑̅𝑀
′ − 𝒑̅𝐹

′ )𝜽 + 𝒙̅𝑀
′ 𝜷𝑀 + 𝑧𝑀̅𝛾𝑀 + 𝒑̅𝑀

′ 𝜽𝑀 

the differential due to different individual characteristics, different levels of schooling, 

different job characteristics and the differential (or wage discrimination)  due to differences in 

the compensation for individual characteristics, levels of schooling and job characteristics. 

The model is estimated with the variables in Table 2 (including the squares of Age, 

ExperWork, ExperCompany and ExperJob), the four principal components in Table 3, the 

unobserved education level and interaction terms with the dummy for males. The education 

level is modeled as a function of the mother and fathers  education levels, again including 

interaction terms with the dummy for males. 

Specifying an uninformative prior we run a first chain with 50 000 replicates. Inspection of 

the output indicates that the convergence properties are quite good. The lag 10 autocorrelation 

is negligible for all parameters except the constant term and the cut points in the equation for 

the latent education level which are 0.19, 0.52 and 0.53. Running 5 shorter chains with 

                                                 
3
 This requires minor modifications to the sampler to account for the interaction term between males and the 

unobserved level of schooling. The mean and variance of the truncated normal distribution for 𝑧𝑖
∗ in (8) is now 

given by 𝑚𝑖 =  𝜏𝑧𝑖
−1[𝜏(𝛾 + 𝑀𝑖𝛾𝑀)(𝑦𝑖 − 𝒙𝑖

′𝜷) + 𝒘𝑖
′𝜹] and 𝜏𝑧𝑖

= 𝜏(𝛾 + 𝑀𝑖𝛾𝑀)2 + 1 where 𝑀𝑖 is the dummy 

variable for males.  
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overdispersed starting values and 25 000 draws and applying the Gelman and Rubin (1992) 

diagnostic indicates that 5 000 draws as burn-in is more than sufficient. 

 

Table 2: Data description 

Variable Description Characteristics 

Wage equation   

lnWage Log of hourly wage Mean = 4.71 

Male 1 = Male 50.4% 

Age Age in 2000 Mean = 43.1 

msMarried 1 = Married or cohabiting 74.8% 

ExperWork Years of work experience Mean = 20.5 

ExperCompany Years at current employer Mean = 8.98 

ExperJob Years in current position Mean = 6.67 

hlSwedish 1 = Swedish as home language 91% 

hlNordic 1 = Other Nordic language 3% 

hlEuro 1 = Other European language 3% 

hlOther 1 = Other home language 3% 

Education level 1 = Less than 7 years of primary education 7.4% 

2 = 9 years of primary education, vocational education 42.5% 

3 = High school degree, other tertiary education 35.0% 

4 = University degree, graduate education 15.1% 

rStockholm 1 = residing in Stockholm 17.4% 

rGothenburg 1 = residing in Gothenburg 7.6% 

rMalmo 1 = residing in Malmö 4.1% 

rLargeTown 1 = residing in town with more than 30 000 inhabitants 20.3% 

rSmallTown 1 = residing in small town 19.5% 

rRural 1 = rural resident 30.1% 

Education level 
  

elFather1 Fathers education level 

1 = Primary education or less 

58.7% 

elFather2 1 = Vocational education, high school 30.1% 

elFather3 1 = University education 11.3% 

elMother1 Mothers education level 

1 = Primary education or less 

61.6% 

elMother2 1 = Vocational education, high school 29.2% 

elMother3 1 = University education 9.1% 
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Table 3: Principal components capturing job characteristics 

 Loadings 

Variable PC 1 PC 2 PC 3 PC 4 

PunctualYes 0.274 –0.011 0.154 –0.516 

ClockYes 0.019 0.037 –0.332 0.043 

InflexYes –0.319 0.006 –0.159 0.647 

Lift11 0.027 0.021 0.036 0.020 

Lift12 0.066 0.043 0.025 0.045 

Lift13 0.118 0.021 0.028 0.057 

PhysicalDemYes 0.445 0.103 0.108 0.192 

SweatYes 0.313 0.087 0.008 0.175 

MentalYes 0.005 –0.469 0.502 0.199 

RepetYes 0.186 –0.126 –0.339 –0.102 

Stress1 –0.185 0.631 0.005 –0.030 

Stress2 0.088 –0.541 –0.311 0.033 

PhysicalExh1 0.023 –0.003 0.005 –0.008 

PhysicalExh2 0.082 –0.018 0.003 –0.029 

PhysicalExh3 0.209 0.037 0.141 0.300 

Noise111 0.074 0.061 0.031 0.062 

Noise112 0.028 –0.002 0.066 –0.012 

Noise121 0.089 0.031 –0.058 –0.035 

Noise122 0.064 –0.004 –0.023 –0.039 

MonoBodyYes 0.232 0.001 –0.559 0.046 

UnpleasBodyYes 0.441 0.104 0.080 0.212 

Gas11 0.104 0.024 –0.087 –0.024 

Gas12 0.083 0.027 0.001 0.030 

Gas13 0.067 0.087 0.032 0.120 

Dirty11 0.282 0.132 0.076 0.069 

Dirty12 0.079 0.048 –0.019 0.082 

Poison11 0.029 0.003 –0.005 0.000 

Poison12 0.028 0.019 0.015 0.018 

Poison13 0.066 0.062 –0.006 0.124 

Variance proportion 0.176 0.114 0.077 0.053 
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Table 4: Posterior distribution of parameters in wage equation 

Parameter Posterior 

mean 

Posterior 

std. dev. 

Percentiles Numerica

l std. error  
× 104 

 2.5% 97.5% 

Constant 4.22878 0.11957 3.99473 4.46384 5.4621 

age 0.00870 0.00678 –0.00464 0.02200 0.3111 

ageSq –0.00013 0.00007 –0.00027 0.00002 0.0034 

hlScand –0.02916 0.03675 –0.10053 0.04299 1.6407 

hlEuro –0.09613 0.04104 –0.17616 –0.01562 1.8930 

hlOther –0.10083 0.04061 –0.18006 –0.02041 1.8634 

msMarried 0.03907 0.01546 0.00883 0.06917 0.7044 

ExperWork 0.01180 0.00378 0.00439 0.01919 0.1757 

ExperWorkSq –0.00014 0.00007 –0.00028 0.00001 0.0034 

ExperCompanyYr 0.00715 0.00343 0.00043 0.01388 0.1573 

ExperCompanyYrSq –0.00013 0.00010 –0.00033 0.00008 0.0047 

ExperJobYr –0.00410 0.00377 –0.01150 0.00329 0.1734 

ExperJobYrSq 0.00006 0.00013 –0.00019 0.00030 0.0059 

rGothenburg –0.04510 0.02706 –0.09840 0.00786 1.2451 

rMalmo –0.08833 0.03413 –0.15473 –0.02137 1.5644 

rLargeTown –0.10904 0.02025 –0.14868 –0.06919 0.9268 

rSmallTown –0.14359 0.02159 –0.18616 –0.10144 0.9865 

rRural –0.11940 0.01922 –0.15702 –0.08163 0.8862 

PC1 –0.07036 0.00883 –0.08763 –0.05309 0.4141 

PC2 –0.01409 0.01083 –0.03531 0.00715 0.4988 

PC3 0.01202 0.01133 –0.01006 0.03409 0.5248 

PC4 0.05502 0.01334 0.02893 0.08103 0.6096 

male 0.42968 0.17777 0.07822 0.77853 8.1922 

m_age –0.01666 0.01026 –0.03673 0.00353 0.4751 

m_ageSq 0.00023 0.00011 0.00000 0.00045 0.0053 

m_hlScand 0.09359 0.05880 –0.02199 0.20861 2.7238 

m_hlEuro 0.04557 0.05547 –0.06302 0.15307 2.5651 

m_hlOther –0.14377 0.05604 –0.25347 –0.03445 2.5759 

m_msMarried 0.02252 0.02177 –0.02036 0.06512 0.9975 

m_ExperWork 0.00476 0.00551 –0.00599 0.01556 0.2572 

m_ExperWorkSq –0.00010 0.00010 –0.00031 0.00010 0.0047 

m_ExperCompanyYr 0.00659 0.00463 –0.00254 0.01559 0.2126 

m_ExperCompanyYrSq –0.00015 0.00013 –0.00041 0.00011 0.0061 

m_ExperJobYr –0.00624 0.00518 –0.01646 0.00395 0.2384 

m_ExperJobYrSq 0.00008 0.00016 –0.00024 0.00040 0.0077 

m_rGothenburg –0.03497 0.03932 –0.11223 0.04165 1.7993 

m_rMalmo –0.03581 0.05038 –0.13491 0.06317 2.3066 

m_rLargeTown –0.03339 0.02999 –0.09221 0.02544 1.3800 

m_rSmallTown –0.03457 0.03082 –0.09505 0.02616 1.4128 

m_rRural –0.04372 0.02831 –0.09910 0.01140 1.3066 

m_PC1 –0.00903 0.01220 –0.03292 0.01479 0.5760 

m_PC2 –0.02214 0.01419 –0.04985 0.00568 0.6585 

m_PC3 –0.02023 0.01693 –0.05319 0.01289 0.7883 

m_PC4 –0.04520 0.01848 –0.08177 –0.00906 0.8472 

Z* 0.09367 0.00784 0.07834 0.10900 0.5345 

m_Z* 0.01077 0.01183 –0.01246 0.03400 0.7012 

tau 18.48276 0.52565 17.47386 19.53953 28.4691 
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Tables 4 and 5 summarizes the posterior distribution of the parameters obtained by running a 

second long chain with 50 000 draws after discarding 10 000 draws as burn-in. As expected, 

the education level has a positive effect on the wage. There is also a positive effect of 

experience, in general and with the same employer, although there appears to be a small 

negative effect from staying in the same position. It is also clear that the wage level is higher 

in Stockholm (the base category) than in other areas of the country. We can also note that the 

marriage premium found in many other studies is confirmed for both males and females. 

There is a distinct disadvantage to having been brought up with a non-Scandinavian home 

language, in particular for males with a non-European home language. Finally we note that 

the wage is substantially higher for males than for females while, for the most part, the 

interaction terms with the dummy for males have posterior means close to zero and there is 

considerable uncertainty about the sign. 

Turning to the equation for the education level in Table 5 we find that the mothers and fathers 

education level has a positive effect on the education level with a tendency for males to have a 

lower education level than females. In addition, the effect of the mothers’ education is 

somewhat weaker for males than females. 

Table 6 and Figure 3 display the posterior distribution of the decomposition of the wage 

differential between males and females. In the sample the mean log wage is 4.80 for males 

and 4.62 for females, corresponding to geometric means of the hourly wage of 121.51 SEK 

and 101.63 SEK. Overall females have more favorable characteristics but males are better 

compensated, i.e. there is evidence of wage discrimination. The difference in compensation 

between males and females is largely driven by the compensation for the individual 

characteristics and the dummy for males, the property of being male. Similarly, females tend 

to have a higher education level but males are better rewarded for their educational 

achievements. Interestingly, there is a slight tendency for males to have better paying jobs 

while at the same time females tend to receive a higher reward for the job characteristics. 

 

Table 5: Posterior distribution of parameters in equation for education level 

Parameter Posterior 

mean 

Posterior 

std. dev. 

Percentiles Numerical 

std. error  
× 104 

 2.5% 97.5% 

Const2 1.17569 0.04911 1.08018 1.27268 7.5641 

elFather2 0.37130 0.06919 0.23570 0.50636 3.7632 

elFather3 0.75303 0.11830 0.51941 0.98345 6.6027 

elMother2 0.52244 0.06994 0.38522 0.65991 3.6637 

elMother3 0.89225 0.12526 0.64692 1.13879 6.8815 

male –0.02871 0.05778 –0.14183 0.08441 2.9968 

m_elFather2 0.04690 0.09813 –0.14435 0.23805 5.1683 

m_elFather3 0.07791 0.16076 –0.23772 0.39390 8.5800 

m_elMother2 –0.12314 0.09935 –0.31705 0.07220 5.1358 

m_elMother3 –0.35220 0.17460 –0.69207 –0.01061 9.3177 

c2 1.54805 0.03951 1.47255 1.62673 10.1250 

c3 2.69977 0.04777 2.60767 2.79368 12.2313 
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Table 6: Posterior distribution of decomposition of the wage differential 𝑦̅𝑀 − 𝑦̅𝐹 

Parameter Posterior 

mean 

Posterior 

std. dev. 

Percentiles Numerica

l std. error  
× 104 

 2.5% 97.5% 

Difference due to individual 

characteristics –0.00674 0.00336 –0.01337 –0.00016 0.1563 

Difference in compensation 

for individual characteristics 0.17730 0.02049 0.13711 0.21766 1.1654 

Difference due to education 

level –0.00766 0.00170 –0.01110 –0.00445 0.0921 

Difference in compensation 

for education level 0.01650 0.01808 –0.01885 0.05184 1.0519 

Difference due to job 

characteristics 0.00198 0.00216 –0.00224 0.00620 0.0992 

Difference in compensation 

for job characteristics –0.00263 0.00150 –0.00560 0.00029 0.0695 

Total difference due to 

characteristics –0.01242 0.00412 –0.02052 –0.00432 0.1933 

Total difference due to 

compensation 0.19117 0.00976 0.17197 0.21013 0.4549 

 

5. Concluding remarks 

In this paper we propose a general solution to the problem of estimating linear regression 

models where one of the explanatory variables is ordinally observed. We extend the earlier 

literature in two directions. Firstly we consider a Bayesian formulation of the problem, 

secondly we explicitly consider both the process generating the underlying latent variable and 

the regression model of primary interest and estimate them jointly for improved efficiency. 

We propose a straightforward Metropolis-Hastings within Gibbs sampler for exploring the 

posterior distribution and demonstrate that it performs well on both real and simulated data. 

While we have not discussed this explicitly it should be clear that our inference procedure is 

also applicable in the simpler situation when the cut points for converting the unobserved 

latent variable into an ordinal indicator are known. E.g. when survey respondents are asked to 

report in which interval their income falls. 

The usefulness of the modeling approach and inferential procedure is illustrated in an 

investigation of gender based wage discrimination in the Swedish labor market where the 

education level is only ordinally observed. We find substantial evidence of wage discrimation, 

part of which is due to females being less rewarded than males for their educational 

achievements. 

 

  



15 

 

Figure 3: Posterior distribution of decomposition of the wage differential 𝑦̅𝑀 − 𝑦̅𝐹 
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