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Abstract 

Tail-hedge discounting is based on decomposition of returns from long-term investments in a 

fraction (gamma) that is correlated with consumption and another that is not. The first part is 

discounted at a discount rate that includes a risk premium, the other with the risk-free rate. We 

estimate gamma for forestry on Swedish data for stumpage prices and GDP per capita 1909-

2012. We demonstrate in three forestry cases that the result considerably changes the expected 

present value of long-term forestry investments. 
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1. Introduction 
In several places, owners of forest land plant trees although the internal rate of return on a tree 

plantation is substantially lower than the normal return on other investments. For instance in 

Sweden, 50 percent of all tree planting was made in the northern half of the country (Norrland), 

which also has about half of the country´s productive forest land (Swedish Forest Agency 2016), 

although only a small fraction of the forest land in this region can yield an expected return of 3 

percent or more from such investments. 1 Policy makers and many forest professionals have 

since long defended such practices, irrespective of whether they result from deliberate forest 

management policies or legal reforestation requirements by various arguments, one of them 

being that forest investments are safe2, so the relevant opportunity cost of capital is not the return 

on other productive investments but on government bonds, with a long run, so called risk-free, 

yield at one to two percent in real terms.3  In this study, we investigate to what extent this claim 

can be corroborated, based on long historical time series for Sweden. 

In recent forest economics literature, some authors have discussed implications for forestry of the 

precautionary savings argument in macroeconomics. This argument is based on the observation 

that there is uncertainty over the long-term development of the overall macro economy, 

including future rates of interest. It can be shown that given this uncertainty the certainty 

                                                           
1 Hultkrantz (1987) estimated that the share of the forest land area with a positive soil (bare land) value was 1 and 14 
percent in the northern and southern halves of Norrland, respectively. 
2 This matter was actually a main topic at the very first meeting of the Swedish Economic Association in 1887 in 
which a lecture was held by “merchant Sörensen” on the “future of our forests” (Sörensen 1887). He presented 
tables demonstrating the “astonishing” effects from discounting future revenues from young forest stands, but 
argued that forest resources would always be demanded and there would be fewer sellers than buyers. Prices would 
therefore always be set so as to cover the cost of cultivation, so there was no risk in cultivating forest resources by 
planting trees (pp. 17-18), in particular, he added,  since planting could be made by “oldsters and under-aged 
people” (p. 19). 
3 For historical records on the real rate of return on «a relatively riskless» asset in the US, UK, Japan, German and 
France, see Mehra 2003. The inflation-adjusted return on long-term government bonds in Sweden 1901 – 2012 was 
2.1 percent (geometrical average), see Waldenström (2015). 
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equivalent term structure of the discount rate is declining. This therefore reduces the effect from 

discounting on the present value of returns that come a long time after the initial investment. 

Hepburn and Koundouri (2007) estimated such certainty-equivalent term structures from analysis 

with various statistical methods of historical UK rate of interest data and show that the they lead 

to substantially higher discounted benefits from forest projects.4    

However, the precautionary savings motive is an argument for raising investments in capital in 

general, not specifically in forest resources.  While the rates of return from other assets may vary 

over time, this is true also for the return from forest resources. In fact, there is no point in 

increasing the share of forest assets in an asset portfolio if the payoff from forestry is highly 

correlated with returns from other assets. As the finance literature persistently insists, it is the 

covariant, non-diversifiable, risk that is relevant for investment decisions. Recently, Weitzman 

(2012, 2013) has suggested an approach for discounting future benefits at a societal level based 

on the idea is that the return of an investment can be (linearly) decomposed into one portion that 

is covariant with the non-diversifiable systematic risk of the macro-economy and another portion 

that is independent of it. He then argues that it would be justified to require an average rate of 

return from risky investments on the first portion and a return on the second that corresponds to 

the return on government bonds and similar assets that are considered as “safe” assets. 

Calculating an exponentially weighted average of these rates then yields a discount rate that is 

declining over time at a rate that depends on the portion of the covariant risk. Weitzman calls the 

proportion of the expected payoff that is correlated with the macro-economy the real project 

                                                           
4 Amacher, Ollikainen and Koskela (2009, section 9.2.2) studies how forestry is affected by interest rate uncertainty, 
see also Gong and Löfgren (2003). 
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gamma, henceforth gamma for short. As he shows, the weighted average formula has the same 

form as the conventional CAPM in a two period setting, with gamma replacing the CAPM beta. 

Weitzman does not show, however, how the gamma can be estimated. In Mantalos and 

Hultkrantz (2016) we demonstrate that such estimation is not trivial and that different estimation 

methods have to be used depending on the dynamic properties of the relevant time series and 

their correlation. We also suggest suitable approaches. In this paper we consider a series of 

annual stumpage prices in Sweden from 1909 – 2012 that we previously studied in Hultkrantz et 

al. (2014) and GDP per capita for the same period. We estimate gamma for this case and show 

how the result can be used to evaluate forest investments. Our perspective is that of a strategic 

planner taking a societal view, as for instance that of a national forest regulatory body or of an 

administration of public forest land.5  While the main implications for forest management from 

our results are similar to the conclusions in Hepburn and Koundouri (2007), we derive them on 

different theoretical grounds and with a different empirical approach. 

The paper is organized as follows. In the next section we briefly review the standard CAPM 

model for valuation of risky assets and Weitzman’s “tail-hedge” discounting model. Section 3 

describes how we estimated the gamma, after having made some small modifications. A more 

extensive description of the empirical estimation is found in the Appendix. In section 4 we 

demonstrate the result by evaluation of three long-term investment forestry cases. Section 5 

contains a discussion and some final conclusions.  

                                                           
5 In particular we will not consider the idiosyncratic risk of the useof a specific forest-management practice on  a 
specific site.  
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2. Theory 
In this section we review first the standard CAPM model for valuation of risky assets and then 

the “tail-hedge discounting” approach of Weitzman (2012, 2013). 

2.1 CAPM 

The Capital Asset Pricing Model, or the CAPM, is a model of asset prices (Sharpe 1964 , 

Lintner 1965 and Mossin 1966).6 The model states that in equilibrium investors get a return 𝑟𝑟𝑖𝑖 on 

a risky asset that is equal to the return 𝑟𝑟𝑓𝑓 on a riskfree asset plus a risk premium that is equal to 

the equity premium 𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓 on a fully diversified market portfolio times 𝛽𝛽𝑖𝑖 , the latter factor 

being a measure of the non-diversifiable  systematic risk, equal to the co-variance over the 

variance, or the slope coefficient in a linear regression of the return on the specific asset with 

market portfolio return.  Thus:  

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑓𝑓  + 𝛽𝛽𝑖𝑖 (𝑟𝑟𝑚𝑚 − 𝑟𝑟𝑓𝑓)    (2.1) 

where 𝛽𝛽𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖,𝑟𝑟𝑚𝑚)
𝜎𝜎𝑚𝑚2

.  

 

For analysis at a societal level, the consumption capital asset pricing model (CCAPM) 

was developed in the late 1970’s. It extends the CAPM by focusing on the correlation between 

the yield from a specific asset and overall consumption. However, in spite of its strong 

theoretical merits, the CCAPM is difficult to apply empirically, among others because of the 

diversity of the population with respect to possession of various kinds of assets (see the review 

                                                           
6 Merton (1973) extended the CAPM framework to cover inter-temporal portfolio choices (ICAPM). 
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by Breeden at al. 2015). The “tail-hedge” discounting model suggested by Weitzman (2012, 

2013) can be seen as a pragmatic short-cut approach to such difficulties. 

2.2 The «tail-hedge» discounting model 

Weitzman (2012, 2013) has developed a model for calculation of the social rate of 

discount for investments in risky assets.  In Weitzman (2012) he starts with the standard so 

called Ramsey equation for the social rate of discount under riskfree assumptions.7  He argues 

that in consideration of real-world risk, risk-averse investors expect that low-probability large 

loss events are somewhat more likely than what is implied by the normal distribution. He shows 

that with otherwise standard assumptions on the parameters of the Ramsey equation  it is 

possible to reconcile the Ramsey equation with empirically observed levels of the risk-free rate 

and equity premium. 

He then makes the crucial assumption that the instantaneous net benefit of a single 

marginal investment project 𝐵𝐵𝑡𝑡 can be decomposed as a  linear combination of contemporary 

consumption, 𝐶𝐶𝑡𝑡 , standardized with the expected value, and a project-specific random variable 

𝐼𝐼𝑡𝑡 that is uncorrelated with consumption (which therefore can be made deterministic by 

diversification over a pool of projects). More specifically, the net benefit at time t is 

𝐵𝐵𝑡𝑡 = 𝑏𝑏𝑡𝑡 �(1 − 𝛾𝛾𝑡𝑡)𝐼𝐼𝑡𝑡 + 𝛾𝛾𝑡𝑡
𝐶𝐶𝑡𝑡

𝐸𝐸(𝐶𝐶𝑡𝑡)
�, (2.7) 

where tγ  is the proportion of the pay-offs at time t that is correlated with aggregate consumption, 

and, therefore, is non-diversifiable, while (1- tγ ) is stochastically independent of the aggregate 

                                                           
7 This is equation (2) in Hepburn and Koundouri (2007). 
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economy. The latter component is normalized by setting E(It) = 1 for all t. That implies that 

expected net benefits at time t, are given by E(Bt) = bt.  

Weitzman (2012, 2013) calls the coefficient tγ  the “real project gamma”. We will 

use gamma to distinguish it from the “regular” CAPM beta. Gamma is defined as “the fraction of 

expected payoffs that on average is due to the uncertain macro-economy” (Weitzman 2012, p. 

15, italics in original). Introducing the rate of return on a risk free asset fr and risky equity er , 

respectively, Weitzman shows that the discount rate for a project with tγ  will be 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 = −1
𝑡𝑡

[ln(1 − 𝛾𝛾𝑡𝑡) 𝑒𝑒−𝑟𝑟
𝑓𝑓 + 𝛾𝛾𝑒𝑒−𝑟𝑟𝑒𝑒𝑡𝑡] . (2.8) 

The gamma is used for calculation of a weighted average of the riskless and risky 

discount factors.  He notices that in the limit as 𝑡𝑡 → 0, or more precisely when the number of 

periods is two, the risk-adjusted rate of discount is  

𝑟𝑟0
𝛾𝛾0 = (1 − 𝛾𝛾0)𝑟𝑟𝑓𝑓  +  𝛾𝛾0 𝑟𝑟𝑚𝑚, (2.9) 

which is similar to the CAPM equation, but gamma has a different definition than the CAPM 

beta. Thus, in this case, the risk-adjusted rate of discount is a (gamma-weighted) weighted 

average of the riskless and risky rates. As t increases, the risk-adjusted rate will approach the 

risk-free rate.  

3. Estimation of gamma for forest investment from a Swedish time series 
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In Hultkrantz et al. (2013) we analyzed the time-series properties of stumpage prices (timber 

rent) in Sweden 1909-2012.8 We found that this is a stationary series with a structural level 

break at the end of WW2. As a measure of the overall macro-economy we will here use GDP 

volume per capita.9 As shown in Mantalos and Hultkrantz (2016) the appropriate statistical 

procedure for estimating the gamma hinges upon the time-series properties of the two variables 

and whether they are co-integrated.  

When we have a stationary series ty  (stumpage prices) that follows an AR(1) process and 

another  series tx  , ln(GDP), that follows a random walk with drift , by following the Box-

Jenkins methodology, Box, Jenkins and Reinsel (1994),  we can use the following finite 

distributed lags (FDL) regression model : 

1t t t ty c y b x uρ −= + + ∆ +     (3.1) 

By moving the lagged part of the series from the right part of equation (3.1) to the left part we 

have: 

1t t t t

t t t

y y c b x u
Dy c b x u

ρ −− = + ∆ +

= + ∆ +
    (3.2) 

tDy  is (2.4) is the so called “rho difference”. This can be estimated in a Cochrane-Orcutt 

procedure, Cochrane and Orcutt (1949). 

                                                           
8 Prices for the period 1909-1955 were collected by Streyffert (1960); for the period 1956-2002 by the Swedish 
Forest Agency (Statistical Yearbook of Forestry, various issues); and for 2003-2012 by the stumpage broker 
Rotpostmäklarna AB. Prices are deflated by the Consumer Price Index (CPI). 
9 This data comes from Edvinsson (2014).  
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Alternatively, by subtracting the 1ty − from both sides of (3.1) we get: 

1 1( 1)t t t t ty y c y b x uρ− −− = + − + ∆ +   or more brief  

1t t t ty c y b x uφ −∆ = + + ∆ +     (3.3) 

where ty∆  is the first difference of the series ty .  

As shown in Mantalos and Hultkrantz (2016) for the gamma estimation to meet the restriction  

0 1γ< ≤  it must be that ( ) ( )* *x y
s s=  The simplest way to meet this restriction and equation 

(3.1), while maintaining the same relationship between the two variables, is to use the following 

simple transformation: 

( ) ( )* */ 1, / 1,
t tt t y t t xy y y s x x x s   = − + = − +        (3.4) 

In this way both variables have the same means and the same standard deviations equal to one. 

We can then use the two modified standardized random variables *
tDy and *

tx∆  for estimation of 

gamma as: 

* *
t tDy c x uγ= + ∆ +         (3.5)  

or 

* *
1t t t ty c y x uφ γ−∆ = + + ∆ +          (3.6) 

by estimating the regression with AR errors of *
ty on *

tx∆ .  
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Gamma was estimated with the following procedure: We did and an ordinary regression of *
ty on 

*
tx∆ ,  and stored the residuals. We then analyzed the time series structure of the residuals to 

determine if they have an AR structure. We then used ,t ty Dy∆ and tx∆  to get an idea of the 

number of lags that should be included in the FDL model (3.6). We found that no lags were 

significant so we estimated this model with zero lags. We also estimated the “Rho-difference” 

model (3.5) with Cochrane-Orcutt. Both approaches resulted in estimates of gamma of about 0.4.  

All calculations are shown in the appendix. 

4.  Evaluation of forestry cases 

With this estimate of gamma we can calculate the risk-adjust social discount rate from equation 

(2.8) for any set of 𝑟𝑟𝑓𝑓, 𝑟𝑟𝑒𝑒 and t. Following reasonably close to the parameters used in forest case 

evaluations by Hepburn and Koundouri (2007) we will assume that 𝑟𝑟𝑓𝑓  = 2% and 𝑟𝑟𝑒𝑒 = 6%. For 

demonstration we have chosen three forest investment cases, one of them being the long-horizon 

harvest case used by Hepburn and Koundouri, which is a 120-year cycle plantation of Scottish 

Oak. The other two are “typical” cases presented on a web site demonstrating a model for 

economic evaluation of forest management provided the Swedish National  Forestry Board, one 

being a 74-year cycle plantation of Scots Pine in Southern Norrland, the other a 76-year cycle of 

Norwegian Spruce in southern Sweden (Götaland). The assumed cash flows and the 

corresponding present values from discounting with either the conventional re or with “tail-

hedge” discount rates are shown in Table 1. 

As can be seen, for all three cases the net present values (NPV) from conventional discounting 

are negative. The benefit-cost ratios (BCR), defined as the sum of discounted future net revenues 
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divided by the initial outlay, are around 0.2 in all three cases. However, with the “tail-hedge” 

discount rate the BCR becomes 1.5 in both Swedish cases and 3 for Scottish oak in UK. 

5. Discussion and conclusions 
Investors regularly require an additional rate of return, a so called equity premium, on risky 

assets over the rate of return from a so-called risk free placement, like an AAA-rated government 

bond. Tail-hedge discounting is based on the assumption that returns from an investment can be 

linearly decomposed into one part (the gamma fraction) that is correlated (and therefore non-

diversifiable) with overall consumption (here GDP per capita) and one part (one minus gamma) 

that is not (and there can be used for hedging the consumption risk). In discounting future returns 

the equity premium is then included in the discount rate for the correlated component but not for 

the uncorrelated component. The discount factor for total returns is an average of the discount 

factors for the two components and the discount factor for the correlated component (with the 

higher discount rate) falls faster than the discount factor for the uncorrelated component. 

Therefore the average rate of discount (weighted with the discount factors) will decrease over 

time. 

As shown in Mantalos and Hultkrantz (2016) if asset returns and overall consumption follow 

stochastic processes that are co-integrated, then gamma is unity and the asset cannot be used as a 

hedge. In Mantalos et al. (2014) this is shown to be the case (or at least close to it) for road and 

rail infrastructure investment. However, timber is different. Based on a long-time series for 

stumpage prices in Sweden, from 1909 – 2012, we estimate gamma to 0.4. This means that the 

weighted average rate of discount is close to the risk-free discount rate already for the returns 

from the first thinning of a typical forest plantation in Sweden. As was demonstrated in three 

forestry cases this has a remarkable effect on the overall benefit-cost ratios of long-term forestry 
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investments. It should be noted that unlike previous studies that have estimated “hyperbolic” 

discount-rate term structures, this result is based on the notion of relevant (co-variant) risk 

(within an, albeit loose, CCAPM framework). 

An obvious limitation of this finding is that we have used data from one specific country only, 

mainly because long-time series for the relevant price (the timber rent or the net price) are very 

rare. However, Sweden can be characterized as an open economy during the whole period 

spanned by the data, possibly with exceptions during WW1 and WW2, and the Swedish forest 

industry has during the whole period (in fact, even much longer) been highly dependent on 

exports. Therefore the price series we have used to a large extent reflects developments on the 

world markets for forest products. 

A more severe limitation is therefore that we use historical data as a guide for the future. This is 

a limitation that this study shares with a large part of the empirical finance literature. However, a 

main message of the historical data on stumpage prices is that the value of forest resources has 

been robust to the various phases of transformation of the economy during periods of 

industrialization, servification, and digitalization. Timber has proven to be a useful raw material 

for a wide range of products and uses. The specific products have changed over time, from for 

instance railroad sleepers and fuel wood to copy paper and DMT diesel, but the demand for 

wood has remained. Because of this basic general-purpose feature of wood (or wood fiber, bio 

chemicals or forests), it seems that investment in forest assets can be regarded as a useful hedge 

against long-term macro-economic growth risk. In fact, in comparison to conventional “risk-

free” assets such as nominal government bonds, timber is a real-valued resource that also can be 

used as a hedge against inflation. 
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A more philosophical concern is how the discount rate used by the current generation of forest 

owners, i.e., those individuals who decides on whether to plant trees or not, is affected by the fact 

that a large part of the returns from these investments will be captured by future generations. 

This topic has been analyzed with overlapping-generation models, see Amacher et al. (2009) for 

a review. For example, Hultkrantz (1992) showed in a model where the next generation of forest 

owners harvests the trees that were planted by the current generation that the current generation 

should evaluate investment opportunities with the conventional net present value criterion, using 

a discount rate corresponding to the opportunity cost of capital, as long as the current generation 

puts some positive weight (even a very slight one) on the utility of future generations (i.e., there 

is a bequest motive). 
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Table 1. Cash flows and present values (PV) in three forestry investment cases: Scots pine 

(Southern Norrland, land class T24); Spruce (Götaland, land class G28) and Scotish Oak (UK). r 

= discount rate with tail-hedge discounting, PV = present value, NPV = net present value, BCR = 

benefit cost ratio). 

Pine, S Norrland, T24   

Age Cash flow PV(6%) r PV(r) 

Year SEK/ha SEK/ha % SEK/ha 

1 -8856 -8856  -8856 

41 4114 377 2.9% 1249 

58 11694 398 2.8% 2395 

74 71128 954 2.6% 10309 

NPV  -7127  5098 

BCR  0.20  1.58 
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Spruce, Götaland, G28   

Age Cash flow PV(6%) r PV(r) 

Year SEK/ha SEK/ha % SEK/ha 

1 -13995 -13995  -13995 

40 4916 478 2.96% 1530 

50 13489 732 2.85% 3311 

76 118317 1412 2.63% 16441 

NPV  -11373  7287 

BCR  0.19  1.52 

 

Scottish Oak, UK    

Age Cash flow PV(6%) r PV(r) 

Year GBP/ha GBP/ha % GBP/ha 

1 -1100 -1100  -1100 

60 4000 121 2.75% 784 

80 8000 76 2.61% 1022 

100 10000 29 2.50% 848 

120 12000 11 2.42% 680 

NPV  -863  2234 

BCR  0.22  3.03 
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Appendix  

A. Model Identification process: 

1. We start by doing an ordinary regression of *
ty on *

tx∆ ,  and store the residuals. 

2. Analyze the time series structure of the residuals to determine if they have an AR structure. 

3. If the residuals from the ordinary regression appear to have an AR structure, estimate the ty∆  

(3.6), or the tDy (3.5) 

4. We use the ,t ty Dy∆ and tx∆  to get an idea of the number of lags that we should use in our 

FDL Model, (3.1). 

5. We estimate gamma. 

B. Model Estimation process: 

In the first step we estimate the residuals of ty on, and as can be seen in Figure 1, the sample 

ACF and sample PACF of the residuals show clearly the pattern of an AR(1) process. 

Figure 2 shows that the estimated rho is 0.94714  by using the Cochrane-Orcutt procedure while 

in the next step we estimate the ,t ty Dy∆ and tx∆ and make the cross-correlogram.  
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Figure 1 Step 1: SACF and SPACF of the residuals in the first step 

 

 

Figure 2 Step 2: Estimating the “rho” by Cochrane-Orcutt procedure 

Performing iterative calculation of rho... 
 
                 ITER       RHO        ESS 
                   1      0.94185   2.45114 
                   2      0.94669   2.45046 
                   3      0.94714   2.45046 

 
Model 2: Cochrane-Orcutt. using observations 1911-2012 (T = 102) 

Dependent variable: LPRICE 
 

  Coefficient Std. Error t-ratio p-value  
const 5.79602 0.293269 19.7635 <0.00001 *** 
DLGDP 0.062181 0.0122651 5.0698 <0.00001 *** 
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Figure 3 Step 3: Cross Correlations the ,t ty Dy∆ and lagged tx∆  

  

The correlogram in figure 3 shows identical results. The only significant lag of tx∆ is the zero 

lag. That means that we use only tx∆ in our regressions, 3.5 and 3.6. 

We modify ,t ty Dy∆ and tx∆ as: 

( ) ( ) ( )* * */ 1,  / 1, / 1,
t t tt t Dy t t y t t xDy Dy Dy s y y y s x x x s∆ ∆     = − + ∆ = ∆ − ∆ + ∆ = ∆ − ∆ +       

Figure 4 Step 4: Estimating Gamma 

Equation 3.6 

Model 4a: OLS. using observations 1910-2012 (T = 103) 
Dependent variable: dLPRICE1 

 
  Coefficient Std. Error t-ratio p-value  

const 0.568636 0.126649 4.4899 0.00002 *** 
DLGDP1 0.431364 0.0897723 4.8051 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  1.000024 

Sum squared resid  83.02509  S.E. of regression  0.906659 

R-squared  0.186067  Adjusted R-squared  0.178008 

F(1. 101)  23.08887  P-value(F)  5.39e-06 

Log-likelihood -135.0480  Akaike criterion  274.0960 

Schwarz criterion  279.3654  Hannan-Quinn  276.2303 

rho  0.008825  Durbin-Watson  1.977528 
 

Equation 3.5 

Model 4b: OLS. using observations 1910-2012 (T = 103) 
Dependent variable: D_rho_LPRICE1 

 
  Coefficient Std. Error t-ratio p-value  

const 0.577485 0.127235 4.5387 0.00002 *** 
DLGDP1 0.422515 0.0901876 4.6848 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  1.000020 

Sum squared resid  83.79501  S.E. of regression  0.910853 

R-squared  0.178513  Adjusted R-squared  0.170379 

F(1. 101)  21.94776  P-value(F)  8.76e-06 

Log-likelihood -135.5234  Akaike criterion  275.0467 

Schwarz criterion  280.3162  Hannan-Quinn  277.1810 

rho  0.038893  Durbin-Watson  1.916612 
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Figure 4a shows the results of estimated gamma by using the regression 3.6 while figure 4b 

shows the results of estimated gamma by using the regression 3.5.  

The difference between these two is very small 0,009 and we can without hesitation to round 

them off to 0.4. 

However in both OLS regressions the residuals show a suggestion for use of MA(q) to make 

them white noise.  

Figure 5a shows the use of model 3.6 with maximum likelihood allowing for MA(|12|,|14|,|16|) 

residuals. We do also the same for the model 3.5, see Figure 5b  

Figure 5 Step4: Estimating the “MWbeta” with ARIMAX model 

Figure 5a 
 

Model 5a: ARMAX. using observations 1910-2012 (T = 103) 
Dependent variable: dLPRICE1 

Standard errors based on Hessian 
  Coefficient Std. Error z p-value  

const 0.587609 0.099677 5.8951 <0.00001 *** 
theta_12 -0.166448 0.0876354 -1.8993 0.05752 * 
theta_14 0.216999 0.0992103 2.1873 0.02872 ** 
theta_16 -0.319721 0.111514 -2.8671 0.00414 *** 
DLGDP1 0.417066 0.0763813 5.4603 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  1.000024 

Mean of innovations -0.006700  S.D. of innovations  0.811883 

Log-likelihood -126.2995  Akaike criterion  264.5989 

Schwarz criterion  280.4073  Hannan-Quinn  271.0018 
 

Figure 5b 
 

Model 5b: ARMAX. using observations 1910-2012 (T = 103) 
Dependent variable: D_rho_LPRICE1 

Standard errors based on Hessian 
  Coefficient Std. Error z p-value  

const 0.607006 0.102588 5.9169 <0.00001 *** 
theta_12 -0.141886 0.0858746 -1.6522 0.09849 * 
theta_14 0.239044 0.0983899 2.4296 0.01512 ** 
theta_16 -0.307987 0.110411 -2.7894 0.00528 *** 
DLGDP1 0.399168 0.0765601 5.2138 <0.00001 *** 

 
Mean dependent var  1.000000  S.D. dependent var  1.000020 

Mean of innovations -0.014928  S.D. of innovations  0.821299 

Log-likelihood -127.4363  Akaike criterion  266.8725 

Schwarz criterion  282.6809  Hannan-Quinn  273.2754 
 

As we see in figure 6 the residuals after estimating the equations 3.6 and 3.5 with maximum 

likelihood and allowing residuals to follow MA(|12|,|14|,|16|) process are white noise. 

The estimated gamma, as can be seen in figure 5, is 0.417 for model 3.6 and 0.399 for model 3.5.  
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To summarize our analysis we managed to estimate gamma for two time series by using the 

Finite Distributed Lag (FDL) model 3.1 with zero lag for the first difference of ln(GDP) in two 

variations for the ln(stumpage prices) the “Rho” difference and first difference. The result is that 

gamma is about 0.4. 

Figure 6 Step 5: Sample ACF PACF for the residuals of ARIMAX models 

Figure 6a SACF and SPACF (3.6) model 

 

Figure 6b SACF and SPACF (3.5) model 
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