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Abstract

In this paper we consider the estimated weights of tangency portfolio. The

returns are assumed to be independently and multivariate normally distributed. We

derive analytical expressions for the higher order non-central and central moments of

these weights. Moreover, the expressions for mean, variance, skewness and kurtosis

of the estimated weights are obtained in closed-forms. Finally, we complement our

result with an empirical study where we analyze a portfolio with actual returns of

eight financial indexes listed in NASDAQ stock exchange.
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1 Introduction

The fundamental goal of the portfolio theory as devised by Markowitz (1952) is to de-

termine efficient way of portfolio allocation. The mean-variance optimization technique

plays a central role in allocating the investments among different asset. According to it,

the investor allocates the wealth among risky assets by maximizing the expected return

based on a given level of risk or by minimizing the risk for a given level of expected

returns. The trade-off between the risk and return of the portfolio is at the heart of

portfolio theory, which seeks to find optimal allocations of the investor’s initial wealth to

the available assets. The tangency portfolio is the portfolio that consists of both risky

and risk-free assets. In order to have entire understanding of the conditions and processes

in a portfolio, the study on statistical properties of the tangency portfolio is crucial and

unavoidable.

Statistical properties of the estimated tangency portfolio weights are intensively dis-

cussed in the literature. Britten-Jones (1999) developed an F -test for the tangency port-

folio weights, while Bodnar (2009) delivered sequential monitoring procedures for the

tangency portfolio weights. The univariate density of the tangency portfolio as well as its

asymptotic distribution under the assumption of independently and multivariate normally

distributed returns are obtained by Okhrin and Schmid (2006). Later on, Bodnar and

Okhrin (2011) derived the explicit density of the linear transformation of the estimated

weights and suggested several exact tests of general linear hypothesis about the elements

of the portfolio weights. Kotsiuba and Mazur (2015) derived the approximate density

function formula for the weights which is based on the Gaussian integral and the third

order Taylor expansion. Bodnar et al. (2017) extended the results by Bodnar and Okhrin

(2011) in the setting when both the population and the sample covariance matrices are

singular. Moreover, they established the high-dimensional asymptotic distribution of the

estimated weights of the tangency portfolio when both the portfolio dimension and the

sample size increase to infinity. Finally, Bauder et al. (2017) studied the distributional

properties of the weights of the tangency portfolio from the Bayesian point of view.

The aim of the present paper is to derive the higher order moments of the sample

weights of the tangency portfolio in closed-forms when the returns are assumed to be

independently and multivariate normally distributed. As argued by Okhrin and Schmid

(2006), the knowledge of portfolio weights leads to information about the expected port-

folio return and the variance of the portfolio return. Since the expected portfolio returns

play a crucial role in most financial theories, the knowledge of higher moments of the

estimated portfolio weights can be helpful in learning about the expected portfolio return

as well as the portfolio variance. Similarly, via deriving expressions for skewness and

kurtosis of estimated weights, we would be able to understand the tail and asymmetric

behaviour of wealth distribution. Moreover, Okhrin and Schmid (2006) shows that the

moments of the optimal portfolio weights are very sensitive to changes in the moments of
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stock returns. The obtained expressions for the higher moments of the estimated portfolio

weights can, therefore, be very informative to account for tail risks in making portfolio

strategies. We have obtained explicit expressions for partial cases such as the mean, vari-

ance, skewness, and kurtosis. In particular, we take a look at the skewness and kurtosis

for measuring the deviation from the normal distribution.

This paper is organized as follows. In Section 2, we establish preliminary results which

we use in proving main results in Section 3. In Section 3, we deliver explicit formulas

for the higher order non-central and central moments of the estimated tangency portfolio

weights. Moreover, we derive the mean, variance, skewness and kurtosis in closed-forms.

The results of the empirical study are given in Section 4, while Section 5 summarizes the

paper.

2 Preliminary Results

In this section, we present the preliminary results, which are used in proving our main

results of Section 3. Let us note that our results are complementary to the ones obtained

in Bodnar and Okhrin (2011), Kotsiuba and Mazur (2015) and Bodnar et al. (2016).

Let A ∼ Wk(n,Σ), i.e., the random matrix A has a k-dimensional Wishart distribu-

tion with n degrees of freedom and a positive definite covariance matrix Σ. We assume

that n > k, implying that the matrix A is non-singular. Also, let z ∼ Nk(µ, λΣ), it

means that the random vector z has the k-dimensional normal distribution with mean

vector µ and covariance matrix λΣ, where λ > 0 is a constant.

In Lemma 1, we present a stochastic representation for lTA−1z, where l is a k-

dimensional vector of constants. Let us note that this result can be found in Bodnar and

Okhrin (2011). Below, the symbol F(d1, d2, s) stands for the non-central F -distribution

with d1 and d2 degrees of freedom and the non-centrality parameter s, while the symbol
d
= stands for the equality in distribution

Lemma 1. Let A ∼ Wk(n,Σ), n > k and z ∼ Nk(µ, λΣ) with λ > 0 and positive definite

Σ. Furthermore, let A and z be independent and l be a k-dimensional vector of constants.

Then the stochastic representation of lTA−1z is given by

lTA−1z
d
=

1

u1

(
lTΣ−1µ +

√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

)
(1)

where u1 ∼ χ2
n−k+1, u2 ∼ N (0, 1) and u3 ∼ F(k − 1, n − k + 2, s) with s = µTRlµ/λ

and Rl = Σ−1 − Σ−1llTΣ−1/lTΣ−1l. The random variables u1, u2 and u3 are mutually

independently distributed.

From Lemma 1 we get that a stochastic representation of lTA−1z is given in terms of
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independently distributed χ2, a standard normal and a non-central F random variables.

Let us recall that a confluent hypergeometric function 1F1(a; b;x) is defined by

1F1(a; b;x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+ · · · =

∞∑
k=0

(a)k
(b)k

xk

k!
, (2)

where (a)k and (b)k are Pochhammer symbols (cf. Abramowitz and Stegun (1984, Chapter

13)).

In the next theorem, we consider the higher order moments of lTA−1z.

Theorem 1. Let A ∼ Wk(n,Σ), n > k and z ∼ Nk(µ, λΣ) with λ > 0 and positive

definite Σ. Furthermore, let A and z be independent and l be a k-dimensional vector of

constants. Then the r-th order moment of lTA−1z is given by

E
[
(lTA−1z)r

]
=

1

(n− k − 1)...(n− k − 2r + 1)

×

(lTΣ−1µ)r +

br/2c∑
j=1

(
r

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)r−2j (
λlTΣ−1l

)j (
1 +

j∑
m=1

(
j

m

)
cm

)(3)

for n− k + 1 > 2r with

cm =
(k − 1 + 2(m− 1)) ... (k − 1)

(n− k − 2(m− 1)) ... (n− k)
e−

s
2 1F1

(
m+

k − 1

2
;
k − 1

2
;
s

2

)
,

where s = µTRlµ/λ and Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l.

Proof. From Lemma 1 we obtain that

E
[
(lTA−1z)r

]
= E

[(
1

u1

(
lTΣ−1µ +

√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

))r]

= E
[(

1

u1

)r]
E

[(
lTΣ−1µ +

√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

)r]
,

where the last equality follows from the fact that u1 is independent of u2 and u3.

Since u1 ∼ χ2
n−k+1, we get that 1/u1 ∼ Inv − χ2

n−k+1. From Glen (2017, p. 18) it

follows that

E
[(

1

u1

)r]
=

Γ
(
n−k+1

2
− r
)

2rΓ
(
n−k+1

2

) =
Γ
(
n−k+1

2
− r
)

2r(n−k+1
2
− 1)...(n−k+1

2
− r)Γ

(
n−k+1

2
− r
)

=
1

(n− k − 1)...(n− k − 2r + 1)
, n− k + 1 > 2r.

This result follows from the property Γ(x) = (x− 1)Γ(x− 1).

Using the well-known binomial formula (see Biggs (1979, p. 129)) and the fact that u2
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and u3 are independent, we obtain that

E

[(
lTΣ−1µ +

√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

)r]

= E

 r∑
i=0

(
r

i

)(
lTΣ−1µ

)r−i(√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

)i


=
r∑

i=0

(
r

i

)(
lTΣ−1µ

)r−i (
lTΣ−1l

)i/2 E
[
ui2
]
E

[(
λ+

λ(k − 1)

n− k + 2
u3

)i/2
]
.

Let us note that the odd moments of the standard normal distribution are equal to zero,

i.e. E
[
u2j+1

2

]
= 0 for j ∈ {0, 1, 2, . . . }, while the even moments are given by

E[u2j
2 ] =

(2j)!

2jj!
for j ≥ 1,

c.f. Walck (1996, Chapter 34.2)). It leads us to

E

[(
lTΣ−1µ +

√(
λ+

λ(k − 1)

n− k + 2
u3

)
lTΣ−1lu2

)r]

=
r∑

i=0

(
r

i

)(
lTΣ−1µ

)r−i (
λlTΣ−1l

)i/2 E
[
ui2
]
E

[(
1 +

k − 1

n− k + 2
u3

)i/2
]

= (lTΣ−1µ)r +

br/2c∑
j=1

(
r

2j

)(
lTΣ−1µ

)r−2j (
λlTΣ−1l

)j E [u2j
2

]
E

[(
1 +

k − 1

n− k + 2
u3

)j
]

= (lTΣ−1µ)r +

br/2c∑
j=1

(
r

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)r−2j (
λlTΣ−1l

)j E[(1 +
k − 1

n− k + 2
u3

)j
]
.

Applying the binomial formula again we get

E

[(
1 +

k − 1

n− k + 2
u3

)j
]

= E

[
j∑

m=0

(
j

m

)(
k − 1

n− k + 2
u3

)m
]

=

j∑
m=0

(
j

m

)(
k − 1

n− k + 2

)m

E [um3 ] .

For m ≥ 1 it holds that (see Walck (1996, Chapter 32.2))
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cm :=

(
k − 1

n− k + 2

)m

E [um3 ]

=
Γ
(
n−k+2

2
−m

)
Γ
(
n−k+2

2

) Γ
(
k−1

2
+m

)
Γ
(
k−1

2

) e−
s
2 1F1

(
m+

k − 1

2
;
k − 1

2
;
s

2

)
=

(k − 1 + 2(m− 1)) ... (k − 1)

(n− k − 2(m− 1)) ... (n− k)
e−

s
2 1F1

(
m+

k − 1

2
;
k − 1

2
;
s

2

)
. (4)

Finally, putting all the terms together we get the statement of the theorem.

Now we consider an explicit formula for the higher oder central moments of lTA−1z

which is given in the next corollary.

Corollary 1. Let A ∼ Wk(n,Σ), n > k and z ∼ Nk(µ, λΣ) with λ > 0 and positive

definite Σ. Furthermore, let A and z be independent and l be a k-dimensional vector of

constants. Then the r-th order central moment of lTA−1z is given by

E
[(

lTA−1z− E[lTA−1z]
)r]

= (−κ1)r +
r∑

i=1

(
r

i

)
(−κ1)r−i

(n− k − 1)...(n− k − 2i+ 1)

×

(lTΣ−1µ)i +

bi/2c∑
j=1

(
i

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)i−2j (
λlTΣ−1l

)j (
1 +

j∑
m=1

(
j

m

)
cm

)
for n− k + 1 > 2r with κ1 = 1

n−k−1
lTΣ−1µ and

cm =
(k − 1 + 2(m− 1)) ... (k − 1)

(n− k − 2(m− 1)) ... (n− k)
e−

s
2 1F1

(
m+

k − 1

2
;
k − 1

2
;
s

2

)
,

where s = µTRlµ/λ and Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l.

Proof. From Theorem 1 it follows that

κ1 := E
[
lTA−1z

]
=

1

n− k − 1
lTΣ−1µ. (5)

Using the binomial formula and properties of the mathematical expectation, we obtain

that

E
[(

lTA−1z− κ1

)r]
= E

[
r∑

i=0

(
r

i

)
(−κ1)r−i(lTA−1z)i

]
(6)

= (−κ1)r +
r∑

i=1

(
r

i

)
(−1)r−iκr−i1 E

[
(lTA−1z)i

]
. (7)
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Finally, applying Theorem 1 we get the statement of the corollary.

In the following corollary, we deliver the expressions of the second order central mo-

ment, the third order central moment, and the fourth order central moment for lTA−1z

in closed-forms without using the confluent hypergeometric function.

Corollary 2. Let A ∼ Wk(n,Σ), n > k and z ∼ Nk(µ, λΣ) with λ > 0 and positive

definite Σ. Furthermore, let A and z be independent and l be a k-dimensional vector of

constants. Also, let s = µTRlµ/λ with Rl = Σ−1 −Σ−1llTΣ−1/lTΣ−1l Then

(a) the second order central moment of lTA−1z is given by

E[(lTA−1z− E[lTA−1z])2] = d
(0)
1 (lTΣ−1µ)2 + d

(0)
2 lTΣ−1l,

for n− k > 3 with

d
(0)
1 =

n− k + 1

(n− k)(n− k − 1)2(n− k − 3)
and d

(0)
2 =

λ(n− 1) + µTΣ−1µ

(n− k)(n− k − 1)(n− k − 3)
;

(b) the third order central moment of lTA−1z is given by

E[(lTA−1z− E[lTA−1z])3] = d
(1)
1 (lTΣ−1µ)3 + d

(1)
2 lTΣ−1µ · lTΣ−1l

for n− k > 5 with

d
(1)
1 =

16

(n− k − 1)3(n− k − 3)(n− k − 5)
,

d
(1)
2 =

12λ

(n− k − 1)2(n− k − 3)(n− k − 5)

(
1 +

s+ k − 1

n− k

)
;

(c) the fourth order central moment of lTA−1z is given by

E[(lTA−1z− E[lTA−1z])4] = d
(3)
1 (lTΣ−1µ)4 + d

(3)
2 (lTΣ−1µ)2lTΣ−1l + d

(3)
3 (lTΣ−1l)2

for n− k > 7 with

d
(2)
1 =

3[(n− k + 1)(n− k − 5)(n− k − 7)− (n− k − 1)2(n− k − 9)]

(n− k − 1)4(n− k − 3)(n− k − 5)(n− k − 7)
,

d
(2)
2 =

6λ(1 + c1)[(n− k − 1)2 − (n− k + 3)(n− k − 7)]

(n− k − 1)3(n− k − 3)(n− k − 5)(n− k − 7)
,

d
(2)
3 =

3λ2(1 + 2c1 + c2)

(n− k − 1)(n− k − 3)(n− k − 5)(n− k − 7)
,
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with

c1 =
s+ k − 1

n− k
and c2 =

s2 + (2s+ k − 1)(k + 1)

(n− k)(n− k − 2)
.

Proof. From Theorem 1 and Walck (1996, Chapter 32.2) we obtain that

c1 =
k − 1

n− k + 2
E[u3] =

s+ k − 1

n− k
,

c2 =

(
k − 1

n− k + 2

)2

E[u2
3] =

s2 + (2s+ k − 1)(k + 1)

(n− k)(n− k − 2)
.

Using Corollary 1, we get that the second order central moment of lTA−1z is given by

E[(lTA−1z− E[lTA−1z])2] = (−κ1)2 +
2∑

i=1

(
2

i

)
(−κ1)2−i

(n− k − 1)...(n− k − 2i+ 1)

×

(lTΣ−1µ)i +

bi/2c∑
j=1

(
i

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)i−2j (
λlTΣ−1l

)j (
1 +

j∑
m=1

(
j

m

)
cm

)
= κ2

1 −
2κ1

n− k − 1
lTΣ−1µ +

1

(n− k − 1)(n− k − 3)

×
[
(lTΣ−1µ)2 + λ

(
1 +

s+ k − 1

n− k

)
lTΣ−1l

]
=

[
1

(n− k − 1)(n− k − 3)
− 1

(n− k − 1)2

]
(lTΣ−1µ)2

+
λ

(n− k − 1)(n− k − 3)

(
1 +

s+ k − 1

n− k

)
lTΣ−1l

= d
(0)
1 (lTΣ−1µ)2 + d

(0)
2 lTΣ−1l

with d
(0)
1 and d

(0)
2 as defined in the formulation of the corollary.
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In order to derive the third order central moment of lTA−1z, it holds that

E
[(

lTA−1z− E[lTA−1z]
)3
]

= (−κ1)3 +
3∑

i=1

(
3

i

)
(−κ1)3−i

(n− k − 1)...(n− k − 2i+ 1)

×

(lTΣ−1µ)i +

bi/2c∑
j=1

(
i

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)i−2j (
λlTΣ−1l

)j (
1 +

j∑
m=1

(
j

m

)
cm

)
= −κ3

1 +
3κ2

1

n− k − 1
lTΣ−1µ− 3κ1

(n− k − 1)(n− k − 3)

[
(lTΣ−1µ)2 + λ(1 + c1)lTΣ−1l

]
+

1

(n− k − 1)(n− k − 3)(n− k − 5)

[
(lTΣ−1µ)3 + 3λ(1 + c1)lTΣ−1µ · lTΣ−1l

]
=

[
2

(n− k − 1)3
− 3

(n− k − 1)2(n− k − 3)
+

1

(n− k − 1)(n− k − 3)(n− k − 5)

]
(lTΣ−1µ)3

+3λ

[
1

(n− k − 1)(n− k − 3)(n− k − 5)
− 1

(n− k − 1)2(n− k − 3)

]
×
(

1 +
s+ k − 1

n− k

)
lTΣ−1µ · lTΣ−1l

= d
(1)
1 (lTΣ−1µ)3 + d

(1)
2 lTΣ−1µ · lTΣ−1l

with d
(1)
1 and d

(1)
2 which are defined in the statement of the corollary.

Finally, we derive the fourth order central moment of lTA−1z. From Corollary 1, we
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have

E
[(

lTA−1z− E[lTA−1z]
)4
]

= (−κ1)4 +
4∑

i=1

(
4

i

)
(−κ1)4−i

(n− k − 1)...(n− k − 2i+ 1)

×

(lTΣ−1µ)i +

bi/2c∑
j=1

(
i

2j

)
(2j)!

2jj!

(
lTΣ−1µ

)i−2j (
λlTΣ−1l

)j (
1 +

j∑
m=1

(
j

m

)
cm

)
=

1

(n− k − 1)4
(lTΣ−1µ)4 − 4κ3

1

n− k − 1
lTΣ−1µ +

6κ2
1

(n− k − 1)(n− k − 3)
(lTΣ−1µ)2

+
6λ(1 + c1)κ2

1

(n− k − 1)(n− k − 3)
lTΣ−1l− 4κ1

(n− k − 1)(n− k − 3)(n− k − 5)
(lTΣ−1µ)3

− 12λ(1 + c1)κ1

(n− k − 1)(n− k − 3)(n− k − 5)
lTΣ−1µ · lTΣ−1l

+
1

(n− k − 1) . . . (n− k − 7)
(lTΣ−1µ)4 +

6λ(1 + c1)

(n− k − 1) . . . (n− k − 7)
(lTΣ−1µ)2lTΣ−1l

+
3λ2(1 + 2c1 + c2)

(n− k − 1) . . . (n− k − 7)
(lTΣ−1l)2

=

[
6

(n− k − 1)3(n− k − 3)
− 3

(n− k − 1)4
− 4

(n− k − 1)2(n− k − 3)(n− k − 5)

+
1

(n− k − 1) . . . (n− k − 7)

]
(lTΣ−1µ)4

+

[
6λ(1 + c1)

(n− k − 1)3(n− k − 3)
− 12λ(1 + c1)

(n− k − 1)2(n− k − 3)(n− k − 5)

+
6λ(1 + c1)

(n− k − 1) . . . (n− k − 7)

]
(lTΣ−1µ)2lTΣ−1l

+
3λ2(1 + 2c1 + c2)

(n− k − 1) . . . (n− k − 7)
(lTΣ−1l)2

= d
(2)
1 (lTΣ−1µ)4 + d

(2)
2 (lTΣ−1µ)2lTΣ−1l + d

(2)
3 (lTΣ−1l)2

with d
(2)
1 , d

(2)
2 , and d

(2)
3 as defined in the formulation of the corollary. It completes the

proof of the corollary.

3 Main Results

We consider a portfolio that consists of k assets. Let xt = (x1t, . . . , xkt)
T be the k-

dimensional vector of log-returns of these assets at time t = 1, . . . , n. The weight of the

ith asset in the portfolio is denoted by wi and let w = (w1, · · · , wk)T be the vector of

weights. Let the mean vector of the asset returns be denoted by µ and the covariance

matrix by Σ which is assumed to be positive definite. Notice that the mean-variance

portfolio problem is equivalent to maximizing the expected quadratic utility. Since the

risk is usually measured by the variance of the portfolios return, the optimal portfolio
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without a risk-free asset is obtained by minimizing the portfolio variance for a given

level under the constraint wT1k = 1 where 1k denotes the vector of ones. However, if

short selling is allowed and a risk-free asset, with return rf , is available, then part of

investor’s wealth is invested into the risk-free asset, whereas the rest of the wealth is

invested into the portfolio from the efficient frontier. The return of risky assets is given

as µp = wT (µ− rf1k) + rf with the variance σ2
p = wTΣw. Maximizing the utility leads

us to the tangency portfolio weights which are given by

wTP = α−1Σ−1(µ− rf1). (8)

where α denotes the investor’s attitude towards risk. The tangency portfolio lies on the

intersection of the mean-variance frontier and the tangency line drawn from the portfolio

consisting of the risk-free asset (Ingersoll (1987)).

Throughout the paper it is assumed that the asset returns x1, . . . ,xn are independent

and identically normally distributed, i.e. xt ∼ Nk(µ,Σ), t = 1, . . . , n. Since µ and Σ are

unknown parameters the investor cannot determine wTP . In practice, these parameters

need to be estimated. Here we use the corresponding sample estimators for µ and Σ

expressed as

x =
1

n

n∑
j=1

xj and S =
1

n− 1

n∑
j=1

(xi − x)(xi − x)T .

Replacing µ and Σ with x and S in (8), we obtain the sample estimator ŵTP of tangency

portfolio weights wTP , i.e.

ŵTP = α−1S−1(x− rf1).

In this paper we focus on the linear combination of the tangency portfolio weights. In

particular, we are interested in

θ = lTwTP = α−1lTΣ−1(µ− rf1),

where l is a k-dimensional vector of constants. Then the sample estimator of θ is given

by

θ̂ = lT ŵTP = α−1LS−1(x− rf1).

We now utilize fundamental results obtained in Theorem 1 and Corollary 2 to derive

explicit expressions for the higher order non-central and central moments of θ̂ = lT ŵTP .

11



Theorem 2. Let x1, . . . ,xn be identically and independently distributed random vec-

tors with x1 ∼ Nk(µ,Σ), k < n − 1 and Σ > 0. Also, let l be a k-dimensional

vector of constants, l̆ = (n − 1)/αl, µ̆ = µ − rf1k, and s̆ = nµ̆TRl̆µ̆ with Rl̆ =

Σ−1 −Σ−1 l̆̆lTΣ−1/̆lTΣ−1l̆. Then

(a) the r-th order moment of θ̂ is given by

µr := E[θ̂r] =
1

(n− k − 2) . . . (n− k − 2r)

×

(̆lTΣ−1µ̆)r +

br/2c∑
j=1

(
r

2j

)
(2j)!

(2n)jj!

(
l̆TΣ−1µ̆

)r−2j (
l̆TΣ−1l̆

)j
×

(
1 +

j∑
m=1

(
j

m

)(
k − 1

n− k + 1

)m

c̆m

)]
, n− k > 2r

where

c̆m =
(k − 1 + 2(m− 1)) . . . (k − 1)

(n− k − 2(m− 1)− 1) . . . (n− k − 1)
e−

s̆
2 1F̃1

(
m+

k − 1

2
;
k − 1

2
;
s̆

2

)
.

(b) the r-th order central moment of θ̂ is given by

µr := E[(θ̂ − µ1)r] = (−µ1)r +
r∑

i=1

(
r

i

)
(−µ1)r−i

(n− k − 2) . . . (n− k − 2i)

×

(̆lTΣ−1µ̆)i +

bi/2c∑
j=1

(
i

2j

)
(2j)!

(2n)jj!

(
l̆TΣ−1µ̆

)i−2j (
l̆TΣ−1l̆

)j
×

(
1 +

j∑
m=1

(
j

m

)(
k − 1

n− k + 1

)m

c̆m

)]
, n− k > 2r.

Proof. From Muirhead (1982, Chapter 3) we have that

x ∼ Nk

(
µ,

1

n
Σ

)
,

V := (n− 1)S ∼ Wk(n− 1,Σ),

moreover, x and V are independently distributed. Since

θ̂ = lT ŵTP = α−1lTS−1(x− rf1k) =
n− 1

α
lTV−1(x− rf1k).

the rest of the proof follows from Theorem 1 and Corollary 2.

The following corollary delivers the expressions of the mean and the variance for ŵTP .
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Corollary 3. Let x1, . . . ,xn be identically and independently distributed random vectors

with x1 ∼ Nk(µ,Σ), k < n − 1 and Σ > 0. Also let µ̆ = µ − rf1k and δ = nµ̆TΣ−1µ̆.

Then the mean and the variance of ŵTP are given by

E[ŵTP ] =
n− 1

n− k − 2
wTP

and

Var[ŵTP ] = d̆
(0)
1 wTPwT

TP + d̆
(0)
2 Σ−1

with

d̆
(0)
1 =

(n− k)(n− 1)2

(n− k − 1)(n− k − 2)2(n− k − 4)
and d̆

(0)
2 =

(n− 1)2(n− 2 + δ)

nα2(n− k − 1)(n− k − 2)(n− k − 4)
.

Proof. From Corollary 2 we get the first two moments of θ̂ which are given by

E[θ̂] =
n− 1

n− k − 2
θ

and

Var[θ̂] = d̆
(0)
1 θ2 + d̆

(0)
2 lTΣ−1l

with

d̆
(0)
1 =

(n− k)(n− 1)2

(n− k − 1)(n− k − 2)2(n− k − 4)
and d̆

(0)
2 =

(n− 1)2(n− 2 + δ)

nα2(n− k − 1)(n− k − 2)(n− k − 4)
.

Moreover, since l is an arbitrary vector of constants we get the statement of the corollary.

In the next corollary, we derive the expressions for skewness and the kurtosis of θ̂ =

lT ŵTP .

Corollary 4. Let x1, . . . ,xn be identically and independently distributed random vec-

tors with x1 ∼ Nk(µ,Σ), k < n − 1 and Σ > 0. Also, let l be a k-dimensional

vector of constants, l̆ = (n − 1)/αl, µ̆ = µ − rf1k, and s̆ = nµ̆TRl̆µ̆ with Rl̆ =

Σ−1 −Σ−1 l̆̆lTΣ−1/̆lTΣ−1l̆. Then the skewness θ̂ is given by

Skewness[θ̂] =
(
d̆

(1)
1 θ3 + d̆

(1)
2 θlTΣ−1l

)(
d̆

(0)
1 θ2 + d̆

(0)
2 lTΣ−1l

)−3/2

13



with d̆
(0)
1 and d̆

(0)
2 which are defined in Corollary 3, and

d̆
(1)
1 =

16(n− 1)3

(n− k − 2)3(n− k − 4)(n− k − 6)
,

d̆
(1)
2 =

12(n− 1)3

α2n(n− k − 2)2(n− k − 4)(n− k − 6)

(
1 +

s̆+ k − 1

n− k − 1

)
,

while the kurtosis of θ̂ is expressed as

Kurtosis[θ̂] =
(
d̆

(3)
1 θ4 + d̆

(3)
2 θ2lTΣ−1l + d̆

(3)
3 (lTΣ−1l)2

)(
d̆

(0)
1 θ2 + d̆

(0)
2 lTΣ−1l

)−2

.

where

d̆
(3)
1 =

3(n− 1)4[(n− k)(n− k − 6)(n− k − 8)− (n− k − 2)2(n− k − 10)]

(n− k − 2)4(n− k − 4)(n− k − 6)(n− k − 8)
,

d̆
(3)
2 =

6(1 + c̆1)(n− 1)4[(n− k − 2)2 − (n− k + 2)(n− k − 8)]

α2n(n− k − 2)3(n− k − 4)(n− k − 6)(n− k − 8)
,

d̆
(3)
3 =

3(1 + 2c̆1 + c̆2)(n− 1)4

α4n2(n− k − 2)(n− k − 4)(n− k − 6)(n− k − 8)
,

with

c̆1 =
s̆+ k − 1

n− k − 1
and c̆2 =

s̆2 + (2s̆+ k − 1)(k + 1)

(n− k − 1)(n− k − 3)
.

Proof. The skewness of θ̂ is given by

Skewness[θ̂] =
µ3[

Var(θ̂)
]3/2

= µ3

(
d̆

(0)
1 θ2 + d̆

(0)
2 lTΣ−1l

)−3/2

,

where Var(θ̂) is obtained from Corollary 4. From Corollary 2 it follows that

µ3 = d̃
(1)
1 (̆lTΣ−1µ̆)3 + d̃

(1)
2 l̆TΣ−1µ̆ · l̆TΣ−1l̆,

where

d̃
(1)
1 =

16

(n− k − 2)3(n− k − 4)(n− k − 6)

d̃
(1)
2 =

12

n(n− k − 2)2(n− k − 4)(n− k − 6)

(
1 +

s̆+ k − 1

n− k − 1

)
with s̆ = nµ̆TRl̆µ̆ and Rl̆ = Σ−1−Σ−1 l̆̆lTΣ−1/̆lTΣ−1l̆. Furthermore, µ3 can be rewritten
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in the next form

µ3 = d̃
(1)
1 (n− 1)3θ3 + d̃

(1)
2 α−2(n− 1)3θlTΣ−1l

= d̆
(1)
1 θ3 + d̆

(1)
2 θlTΣ−1l,

where d̆
(1)
1 and d̆

(1)
2 are the same as in the formulation of the corollary. Putting all above

together we get the skewness of θ̂.

We later move on and derive the explicit formula for the kurtosis of θ̂. It holds that

Kurtosis[θ̂] =
µ4[

Var(θ̂)
]2 = µ4

(
d̆

(0)
1 θ2 + d̆

(0)
2 lTΣ−1l

)−2

.

Using Corollary 2 we get

µ4 = d̃
(3)
1 (̆lTΣ−1µ̆)4 + d̃

(3)
2 (̆lTΣ−1µ̆)2l̆TΣ−1l̆ + d̃

(3)
3 (̆lTΣ−1l̆)2

where

d̃
(3)
1 =

3[(n− k)(n− k − 6)(n− k − 8)− (n− k − 2)2(n− k − 10)]

(n− k − 2)4(n− k − 4)(n− k − 6)(n− k − 8)
,

d̃
(3)
2 =

6(1 + c̆1)[(n− k − 2)2 − (n− k + 2)(n− k − 8)]

n(n− k − 2)3(n− k − 4)(n− k − 6)(n− k − 8)
,

d̃
(3)
3 =

3(1 + 2c̆1 + c̆2)

n2(n− k − 2)(n− k − 4)(n− k − 6)(n− k − 8)
,

with

c̆1 =
s̆+ k − 1

n− k − 1
and c̆2 =

s̆2 + (2s̆+ k − 1)(k + 1)

(n− k − 1)(n− k − 3)
.

Moreover, µ4 can be rewritten as

µ4 = d̆
(3)
1 θ4 + d̆

(3)
2 θ2lTΣ−1l + d̆

(3)
3 (lTΣ−1l)2

where d̆
(3)
1 , d̆

(3)
2 , and d̆

(3)
3 are the same as in the formulation of the corollary. It completes

the proof of the corollary.

4 Empirical Illustration

In this section we present the results of empirical study where we show how theoretical

results of the previous section can be applied to real data. We consider weekly data of

k = 8 financial indexes which are listed in NASDAQ stock exchange. Their abbreviated

symbolic names are RCMP, IXTS, IXCO, TRAN, INDS, NBI, IXIC, BANK. The data are
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taken for the period from August 2007 to April 2017. Weekly log returns on each index

have been considered. The weekly log returns on the three-month US treasury bill are

used as the risk-free rate. The risk aversion coefficient α is taken as 50.

Table 1 presents the mean, variance, skewness, and kurtosis for the densities of the

estimated tangency portfolio weights. The sample size n is set to be {50, 100, 250, 500}.
We observe that some expected values are negative, which means that we have a short sales

for corresponding financial index. The variance of weights decreases significantly with the

increase in sample size n. Moreover, when n increases the skewness tends to approach 0,

while the kurtosis remains closer to 3 in all cases, thereby, indicating that the distribution

of estimated weights satisfies the normality assumption. Through this empirical exercise,

we confirm that with a larger sample size the distribution of the tangency portfolio weights

can be nicely approximated by the normal distribution.

RCMP IXTS IXCO TRAN INDS NBI IXIC BANK

n=50

Mean 0.345032 0.366515 4.040067 -0.088892 3.133680 0.791789 -9.273100 0.765419

Variance 0.181189 0.418301 10.845010 0.136999 9.958039 0.724571 69.775950 0.279168

Skewness 0.265720 0.187369 0.393428 -0.079937 0.322791 0.303303 -0.358553 0.457357

Kurtosis 3.673955 3.636377 3.766017 3.606461 3.710161 3.696932 3.736855 3.828065

n=100

Mean -0.162695 0.004987 1.735233 0.006186 1.288362 0.321607 -3.708634 0.481352

Variance 0.049531 0.082501 2.881014 0.037299 2.505783 0.220435 18.010550 0.066849

Skewness -0.101411 0.002422 0.141026 0.004469 0.112747 0.095092 -0.120923 0.249975

Kurtosis 3.271306 3.261263 3.280801 3.261277 3.273696 3.270086 3.275581 3.324378

n=250

Mean -0.317376 -0.015590 1.122693 0.037473 1.027947 0.404376 -2.576696 0.313285

Variance 0.017011 0.025321 0.770156 0.011379 0.580828 0.058658 4.492414 0.023227

Skewness -0.120780 -0.004982 0.064620 0.017854 0.068081 0.083944 -0.061447 0.102745

Kurtosis 3.113364 3.099390 3.103303 3.099666 3.103740 3.106041 3.102924 3.109425

n=500

Mean -0.276951 -0.050477 0.848870 0.002643 0.774054 0.303571 -1.723870 0.071699

Variance 0.006687 0.013159 0.204863 0.004343 0.132618 0.016668 1.185713 0.007898

Skewness -0.081740 -0.010861 0.0459880 0.000990 0.052017 0.057427 -0.038897 0.019895

Kurtosis 3.055911 3.049724 3.051577 3.049616 3.052130 3.052686 3.051016 3.049980

Table 1: Mean, variance, skewness and kurtosis of the estimator for the eight financial

indexes from NASDAQ stock exchange.

5 Conclusions

In this paper we study higher order moments of the estimated tangency portfolio weights

obtained under the assumption of normally and independently distributed returns. In par-

ticular, we derive the higher order non-central and central moments of estimated weights
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that depend on the confluent hypergeometric function. Moreover, we provide the ex-

pressions of the mean, variance, skewness and kurtosis in a closed-forms without using

the confluent hypergeometric function. The results are supported by an empirical study,

where such expressions are evaluated for the actual returns for eight financial indexes

listed in NASDAQ stock exchange.
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