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Abstract

In this paper we consider the product of a singular Wishart random matrix and

a singular normal random vector. A very useful stochastic representation is derived

for this product, in using which the characteristic function of the product and its

asymptotic distribution under the double asymptotic regime are established. The

application of obtained stochastic representation speeds up the simulation studies

where the product of a singular Wishart random matrix and a singular normal

random vector is present. We further document a good performance of the derived

asymptotic distribution within a numerical illustration. Finally, several important

properties of the singular Wishart distribution are provided.
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1 Introduction

The multivariate normal distribution is one of the basic central distributions and a build-

ing block in multivariate statistical analysis. It is also a standard assumption in many sta-

tistical applications where the normal distribution is usually accompanied by the Wishart

distribution. Namely, if we consider a sample of size n from k-dimensional normal distri-

bution, the unbiased estimators for the mean vector and for the covariance matrix have a

k-dimensional normal distribution and a k-dimensional Wishart distribution, respectively,

as well as they are independent (see, e.g., Muirhead [17, Chapter 3]).

A number of papers deal either with the properties of the sample mean vector or

with the properties of the sample covariance matrix, although these two objects appear

often together in the expressions of different statistics. Consequently, a question arises

how the distributions of functions involving both a Wishart matrix and a normal vector

could be derived. Recently, this topic has attracted a lot of attention in the literature

from both the theoretical perspectives (c.f., Bodnar and Okhrin [7]; Bodnar et al. [3])

and the applications (see, e.g., Jobson and Korkie [13]; Kan and Zhou [14]; Bodnar [2]).

While Bodnar and Okhrin [7], Kotsiuba and Mazur [16] derived the exact distribution

and the approximative distribution of the product of an inverse Wishart matrix and a

normal vector, Bodnar et al. [3] extended these results to the case of the product of

a Wishart matrix and a normal vector. It is remarkable that the product of an inverse

Wishart matrix and a normal vector has a direct application in discriminant analysis (c.f.,

Rencher and Christensen [20]) and in portfolio theory (see, e.g., Britten-Jones [8]). On

the other hand, the product of a Wishart matrix and a normal vector can be considered

from the viewpoint of Bayesian statistics when inferring the discriminant function and

the portfolio weights by employing the inverse Wishart - normal prior which appears to

be a conjugate prior for the mean vector and the covariance matrix under normality (see,

e.g., Bernardo and Smith [1]).

Singular covariance matrix is present in practical applications, especially when data

are drawn from a large-dimensional process. For example, the construction of an optimal

portfolio with a singular covariance matrix has become an important topic in finance (see,

e.g., Pappas et al. [18]; Bodnar et al. [5]). While the normal distribution with the singular

covariance matrix is known as the singular normal distribution in statistical literature,

there is no unique definition in the case of the Wishart distribution. The singular Wishart

distribution introduced by Khatri [15] and Srivastava and Khatri [21] deals with the case

when the sample size is smaller than the process dimension. The practical relevance

of this case is discussed in Uhlig [23], while some theoretical finding were derived in

Srivastava [22], Bodnar and Okhrin [6], Bodnar et al. [4]. Another type of the singular

Wishart distribution, the so-called pseudo-Wishart distribution, was discussed in Dıaz-

Garcıa et al. [9]. The covariance matrix is assumed to be singular in this family of Wishart

distributions. Later on, we refer to the Wishart distribution with a singular covariance

matrix independently if the sample size is larger or smaller than the process dimension
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as the singular Wishart distribution.

In the present paper, we contribute to the existent literature on the singular Wishart

distribution and the singular normal distribution by considering both distributions not

separately but in a combination. We derive a very useful stochastic representation for

the product of a singular Wishart matrix and a normal vector which provides an elegant

way of characterizing the finite sample distribution of the product as well as it appears to

be very useful in the derivation of its asymptotic distribution under the high-dimensional

asymptotic regime, i.e. when both the sample size and the process dimension become

very large.

The rest of the paper is structured as follows. Section 2 contains several distributional

properties of the singular Wishart distribution which are used as a tool to prove the

main results of the paper presented in Section 3. Here, the distribution of the product

of a singular Wishart matrix and a singular normal random vector is derived in terms

of a stochastic representation from which we also obtain the characteristic function of

the product. Furthermore, we prove the asymptotic normality of the product under

the high-dimensional asymptotic regime. The finite sample performance of the obtained

asymptotic results is discussed in Section 4, while Section 5 presents the summary.

2 Preliminary results

In this section, we present several distributional properties of the singular Wishart distri-

bution which are used in proving the main results of the paper.

Let A ∼ Wk(n,Σ), i.e., the random matrix A has a k-dimensional singular Wishart

distribution with n degrees of freedom and covariance matrix Σ which is positive semi-

definite with rank(Σ) = r < k. Throughout the paper, no assumption is made about the

relationship between the sample size n and the process dimension k. The results are valid

in both cases n ≥ k (Wishart distribution with positive semi-definite covariance matrix

Σ) and k < n (singular Wishart distribution with positive semi-definite covariance matrix

Σ). Also, let Ik be the k × k identity matrix, ⊗ stands for the Kronecker product, and

the symbol
d
= denotes the equality in distribution.

In Proposition 1, we derive the distribution of a linear symmetric transformation of

the singular Wishart random matrix.

Proposition 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let M : p× k be a matrix

of constants with rank(M) = p such that MΣ 6= 0. Then

MAMT ∼ Wp(n,MΣMT ).

Moreover, if rank(MΣ) = p ≤ r, then MAMT and MΣMT are of the full rank p.

Proof. From Theorem 5.2 of Srivastava [22] we have that the stochastic representation of
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A is given by

A
d
= XXT with X ∼ Nk,n(0,Σ⊗ In).

Then using Theorem 2.4.2 of Gupta and Nagar [11] we get

MAMT d
= MXXTMT d

= YYT ,

where Y ∼ Np,n(0, (MΣMT )⊗ In). This completes the proof of the proposition.

An application of Proposition 1 leads the following result summarized in Proposition

2.

Proposition 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let W : p×k be a random

matrix which is independent of A such that rank(WΣ) = p ≤ r ≤ n with probability one.

Then

(WΣWT )−1/2(WAWT )(WΣWT )−1/2 ∼ Wp(n, Ip)

and is independent of W.

Proof. Using the fact that W and A are independently distributed, we obtain that the

conditional distribution of WAWT |(W = W0) is equal to the distribution of W0AWT
0 .

Then applying Proposition 1 we obtain

(W0ΣWT
0 )−1/2(W0AWT

0 )(W0ΣWT
0 )−1/2 ∼ Wp(n, Ip).

Since this distribution does not depend on W, it is also the unconditional distribution of

(WΣWT )−1/2(WAWT )(WΣWT )−1/2. The proposition is proved.

In the next corollary, we consider a special case of Proposition 2 with p = 1.

Corollary 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r ≤ k and let w be a p-dimensional

vector which is independent of A with P (wTΣ = 0) = 0. Then

wTAw

wTΣw
∼ χ2

n,

and is independent of w.

3 Main results

In this section, we present the main results of the paper which are complementary to the

ones obtained in Bodnar et al. [3, 4] to the case of high-dimensional data and singular

covariance matrix.
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3.1 Finite sample results

Let z be k-dimensional singular normally distributed random vector with mean vector

µ and covariance matrix κΣ, κ > 0, such that rank(Σ) = r < k, i.e. z ∼ Nk(µ, κΣ).

Also, let M be a p× k matrix of constants with rank(M) = p ≤ r ≤ min{n, k} such that

MΣ 6= 0. We are interested in the distribution of MAz when A and z are independently

distributed where A has a singular Wishart distribution as defined in Section 2.

In Theorem 1, we derive a stochastic representation for MAz. The stochastic rep-

resentation is an tool in the theory of multivariate statistics and it is frequently used in

Monte Carlo simulations (c.f., Givens and Hoeting [10]). Its importance in the theory of

elliptically contoured distributions is well described by Gupta et al. [12].

Theorem 1. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ), κ > 0.

We assume that A and z are independently distributed. Also, let M : p× k be a matrix of

constants of rank p < r ≤ n and denote Q = PTP with P = (MΣMT )−1/2MΣ1/2. Then

the stochastic representation of MAz is given by

MAz
d
= ζMΣ1/2t +

√
ζ(MΣMT )1/2

[
√

tT tIp −
√

tT t−
√

tT (Ik −Q)t

tTQt
PttTPT

]
z0,

where ζ ∼ χ2
n, t ∼ Nk(Σ1/2µ, κΣ2), and z0 ∼ Np(0, Ip); ζ, t, and z0 are mutually

independent.

Proof. Since A and z are independently distributed it holds that the conditional distri-

bution of MAz|(z = z∗) is equal to the distribution of MAz∗.

Let M̃ be the matrix which is obtained from M by adding a row vector z∗, i.e.

M̃ = (MT , z∗)T . Consider the following two partitioned matrices

Ã = M̃AM̃T =

(
MAMT MAz∗

z∗TAMT z∗TAz∗

)
=

(
Ã11 Ã12

Ã21 Ã22

)

and

Σ̃ = M̃ΣM̃T =

(
MΣMT MΣz∗

z∗TΣMT z∗TΣz∗

)
=

(
Σ̃11 Σ̃12

Σ̃21 Σ̃22

)

Since A ∼ Wk(n,Σ) and rank(M̃) = p + 1 ≤ r, it holds that Ã ∼ Wp+1(n, Σ̃)

following Proposition 1. Using Theorem 3.2.10 of Muirhead [17], we get the conditional

distribution of Ã12 = MAz∗ given Ã22 expressed as

Ã12|Ã22 ∼ Np
(
Σ̃12Σ̃

−1
22 Ã22, Σ̃11·2Ã22

)
with Σ̃11·2 = Σ̃11 − Σ̃12Σ̃

−1
22 Σ̃21.
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Let ζ = Ã22Σ̃
−1
22 . Then from Corollary 1 we get that ζ ∼ χ2

n, and it is independent of

z. Hence,

MAz|ζ, z ∼ Np
(
ζMΣz, ζ(zTΣzMΣMT −MΣzzTΣMT )

)
,

which leads to the stochastic representation of MAz given by

MAz
d
= ζMΣz +

√
ζ(zTΣzMΣMT −MΣzzTΣMT )1/2z0, (1)

where ζ ∼ χ2
n, z ∼ Nk(µ, κΣ), and z0 ∼ Np(0, Ip). Moreover, ζ, z, and z0 are mutually

independent.

Next, we calculate the square root of (zTΣzMΣMT −MΣzzTΣMT ) using the fol-

lowing equality

(D− bbT )1/2 = D1/2(Ip − cD−1/2bbTD−1/2)

with c =
1−
√

1−bTD−1b

bTD−1b
, b = MΣz, and D = zTΣzMΣMT that leads to

MAz
d
= ζMΣz +

√
ζ(MΣMT )1/2

×

[
√

zTΣzIp −
√

zTΣz−
√

zT (Σ−Σ1/2QΣ1/2)z

zTΣ1/2QΣ1/2z
PΣ1/2zzTΣ1/2PT

]
z0,

where P = (MΣMT )−1/2MΣ1/2 and Q = PTP.

Finally, making the transformation t = Σ1/2z ∼ Nk(Σ1/2µ, κΣ2), we obtain the

statement of the theorem.

Next, we consider the special case of Theorem 1 when p = 1 and M = mT .

Corollary 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ), κ > 0.

We assume that A and z are independently distributed. Let m be a k-dimensional vector

of constants such that mTΣm > 0. Then the stochastic representation of mTAz is given

by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0, (2)

where ζ ∼ χ2
n and z0 ∼ N (0, 1); ζ, z0, and z are mutually independent.

The proof of Corollary 2 follows directly from (1). The result of the corollary is very

useful from the viewpoint of computational statistics. Namely, in order to get a realization

of mTAz it is sufficient to simulate two random variables from the standard univariate

distributions together with a random vector which has a singular multivariate normal

distribution. There is no need to generate a large-dimensional object A and, as a result,

the application of (2) speeds up the simulations where the product of A and z is present.

Another application of Corollary 2 leads to the expression of the characteristic function

of Az presented in the following theorem.
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Theorem 2. Let A ∼ Wk(n,Σ) with rank(Σ) = r < k and let z ∼ Nk(µ, κΣ). We

assume that A and z are independently distributed. Then the characteristic function of

Az is given by

ϕAz(u) =
exp

(
−κ−1

2
µTRΛ−1RTµ

)
κr/2|Λ|1/2

∫ ∞
0

|Ω(ζ)|−1/2fχ2
n
(ζ)

× exp

(
iζνTΛRTu− ζ2

2
uTRΛΩ(ζ)−1ΛRTu +

1

2
νTΩ(ζ)ν

)
dζ,

where ν = κ−1Ω(ζ)−1Λ−1RTµ,

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · uTΣu−ΛRTuuTRΛ

]
,

and Σ = RΛRT is the singular value decomposition of Σ with diagonal matrix Λ con-

sisting of all r non-zero eigenvalues of Σ and R the k × r matrix of the corresponding

eigenvectors; fχ2
n

denotes the density function of the χ2 distribution with n degrees of

freedom.

Proof. From the stochastic representation derived in Corollary 2, we get that

ϕAz(u) = E
(
exp

(
iuTAz

))
= E

(
exp

(
iζuTΣz + i

√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

))
= E

(
exp

(
iζuTΣz

)
E
(

exp
(
i
√
ζ
[
zTΣz · uTΣu− (uTΣz)2

]1/2
z0

)
|ζ, z

))
= E

(
exp

(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

]))
= E

(
E
(

exp
(
iζuTΣz

)
exp

(
−1

2
ζ
[
zTΣz · uTΣu− (uTΣz)2

])
|ζ
))

= E
(
E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
))

where v = RTu; Σ = RΛRT is the singular value decomposition of Σ; y = RTz ∼
Nr(RTµ, κΛ) has a non-singular multivariate normal distribution.

Hence,

E
(

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
|ζ
)

=
1

(2πκ)r/2|Λ|1/2

∫
Rr

exp
(
iζvTΛy

)
exp

(
−1

2
ζ
[
yTΛy · vTΛv − (vTΛy)2

])
× exp

(
−κ

−1

2
(y −RTµ)TΛ−1(y −RTµ)

)
dy
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where

κ−1(y −RTµ)TΛ−1(y −RTµ) + ζ
[
yTΛy · vTΛv − (vTΛy)2

]
= (y − ν)TΩ(ζ)(y − ν) + d

with

Ω(ζ) = κ−1Λ−1 + ζ
[
Λ · vTΛv −ΛvvTΛ

]
,

ν = κ−1Ω(ζ)−1Λ−1RTµ,

d = κ−1µTRΛ−1RTµ− νTΩ(ζ)ν = κ−1µTΣ+µ− νTΩ(ζ)ν.

As a result, we get

ϕAz(u) =
exp

(
−κ−1

2
µTΣ+µ

)
κr/2|Λ|1/2

∫ ∞
0

|Ω(ζ)|−1/2fχ2
n
(ζ)

× exp

(
iζνTΛv − ζ2

2
vTΛΩ(ζ)−1Λv +

1

2
νTΩ(ζ)ν

)
dζ.

This completes the proof of the theorem.

3.2 Asymptotic distribution under double asymptotic regime

In this section we derive the asymptotic distribution of MAz under double asymptotic

regime, i.e. when both r and n tend to infinity such that r/n → c ∈ [0,+∞). In the

derivation of the asymptotic distribution we rely on the results of Corollary 2.

The following conditions are needed for ensuring the validity of the asymptotic results

presented in this section

(A1) Let (λi,ui) denote the set of non-zero eigenvalues and eigenvectors of Σ. We assume

that there exist l1 and L1 such that

0 < l1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr ≤ L1 <∞

uniformly on k.

(A2) There exists L2 such that

|uTi µ| ≤ L2 for all i = 1, . . . , r uniformly on k.

Theorem 3. Let A ∼ Wk(n,Σ) with rank(Σ) = r < p and let z ∼ Nk(µ, κΣ),κ > 0.

Assume r
n

= c + o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n → ∞. Also, let m be a k-

dimensional vector of constants such that mTΣm > 0 and |uTi m| ≤ L2 for all i = 1, . . . , r

uniformly on k. Assume that A and z are independently distributed. Then, under (A1)
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and (A2), it holds that the asymptotic distribution of mTAz is given by

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1) ,

where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

Proof. From Corollary 2, the stochastic representation of mTAz is given by

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

with ζ ∼ χ2
n, z0 ∼ N (0, 1) and z ∼ Nk(µ, κΣ),κ > 0; ζ, z0, and z are mutually indepen-

dent.

From the property of χ2-distribution, we immediately obtain the asymptotic distribu-

tion of ζ given by
√
n

(
ζ

n
− 1

)
d∼ N (0, 2) as n→∞ (3)

Further, it holds that
√
n(z0/

√
n) ∼ N (0, 1) for all n, consequently it is its asymptotic

distribution.

We next show that mTΣz and zTΣz are jointly asymptotically normally distributed

under the high-dimensional asymptotic regime. For any a1 ∈ R and a2 ∈ R, we consider

a1z
TΣz+2a2m

TΣz = a1

(
z +

a2
a1

m

)T
Σ

(
z +

a2
a1

m

)
−a

2
2

a1
mTΣm = a1z̃

TΣz̃−a
2
2

a1
mTΣm

where z̃ ∼ Nk(µa, κΣ) with µa = µ + a2
a1

m. By [19] the random variable z̃TΣz̃ can be

expressed as

z̃TΣz̃
d
= κ

r∑
i=1

λ2i ζi with ζi
d∼ χ2

1(δ
2
i ), δ

2
i = κ−1λ−1i

(
uTi µa

)2
,

where the symbol χ2
d(δ) denotes the non-central chi-squared distribution with d degrees

of freedom and non-centrality parameter δ.

Next, we apply the Linderberg central limit theorem to the i.i.d random variables

Vi = κλ2i ζi. Let σ2
i = V(Vi) and s2n = V(

∑r
i=1 Vi). It holds that

s2n = V

(
r∑
i=1

Vi

)
= κ2

r∑
i=1

λ4iV(ζi) = κ2
r∑
i=1

λ4i 2(1 + 2δ2i )

= κ2
r∑
i=1

(
2λ4i + 4κ−1λ3i (u

T
i µa)

2
)

= κ2
[
2tr(Σ4) + 4κ−1µTaΣ3µa

]
.
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In order to verify the Linderberg’s condition, we need to check if for any small ε > 0

it holds that

lim
r→∞

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]

= 0, (4)

where

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]

Cauchy−Schwarz
≤

r∑
i=1

√
E [(Vi − E(Vi))4]

√
E
[
1{|Vi−E(Vi)|>εσn}

]
=

r∑
i=1

√
E [(Vi − E(Vi))4]

√
P [|Vi − E(Vi)| > εσn]

Chebychev

≤
r∑
i=1

√
E [(Vi − E(Vi))4]

σi
εsn

= 2
√

3
κ2

ε

r∑
i=1

λ4i

√
(1 + 2δ2i )

2 + 4(1 + 4δ2i )
σi
sn
.

In using

(1 + 2δ2i )
2 + 4(1 + 4δ2i ) = (5 + 2δ2i )

2 − 20 ≤ (5 + 2δ2i )
2

we get with σmax = supi σi the following inequality

1

s2n

r∑
i=1

E
[
(Vi − E(Vi))

21{|Vi−E(Vi)|>εsn}
]
≤ 2
√

3
κ2

ε

σmax

sn

1

s2n

r∑
i=1

λ4i (5 + 2δ2i )

=

√
3

ε

σmax

sn

5tr(Σ4) + 2κ−1µTaΣ3µa
tr(Σ4) + 2κ−1µTaΣ3µa

≤ 5
√

3

ε

σmax

sn
.

Using

(uTi µa)
2 =

(
uTi µ+

a2
a1
uTi m

)2

= 2(uTi µ)2 + 2

(
a2
a1
uTi m

)2

= 2L2
2

(
1 +

(
a2
a1

)2
)
<∞

and Assumptions (A1) and (A2), we get

σ2
max

σ2
n

=
supi(λ

4
i (1 + 2δ2i ))

tr(Σ4) + 2κ−1µTaΣ3µa
=

supi(λ
4
i + 2κ−1λ3i (u

T
i µa)

2)

tr(Σ4) + 2κ−1µTaΣ3µa
−→ 0

which verifies the Linderberg condition.
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Since

r∑
i=1

E(Vi) = κ

r∑
i=1

λ2iE (ζi) = κ
r∑
i=1

λ2i
(
1 + δ2i

)
= κtr(Σ2) + µTaΣµa

we obtain by using the Linderberg’s central limit theorem that√
1

κ

z̃TΣz̃− κtr(Σ2)− µTaΣµa√
2κtr(Σ4) + 4µTaΣ3µa

d−→ N (0, 1)

Let a = (a1, 2a2)
T . Then the last identity leads to

√
n

[
aT

(
zTΣz

mTΣz

)
− aT

(
κtr(Σ2) + µTΣµ

mTΣµ

) ]
d−→ N

(
0, aT

κ

c

(
2κtr(Σ4) + 4µΣ3µ 2mTΣ3µ

2mTΣ3µ mTΣ3m

)
a

)
(5)

which implies that the vector
(
zTΣz,mTΣz

)T
is asymptotically multivariate normally

distributed because a is an arbitrary fixed vector.

Taking into account to (3),(5) and the fact that ζ, z0, and z are mutually independent

we get the following asymptotic result

√
n




ζ
n

zTΣz

mTΣz
z0√
n

 −


1

κtr(Σ2) + µTΣµ

mTΣµ

0




d−→ N

0,


2 0 0 0

0 2κ
2

c
tr(Σ4) + 4κ

c
µTΣ3µ 2κ

c
mTΣ3µ 0

0 2κ
c
mTΣ3µ κ

c
mTΣ3m 0

0 0 0 1




Finally, the application of the delta method leads to

√
nσ−1

(
1

n
mTAz−mTΣµ

)
d−→ N (0, 1) ,

11



where

σ2 =

(
mTΣµ 0 1

[[
κtr(Σ2) + µTΣµ

]
mTΣm−

(
mTΣµ

)2] 1
2

)

×


2 0 0 0

0 2κ
2

c
tr(Σ4) + 4κ

c
µTΣ3µ 2κ

c
mTΣ3µ 0

0 2κ
c
mTΣ3µ κ

c
mTΣ3m 0

0 0 0 1



×


mTΣµ

0

1[[
κtr(Σ2) + µTΣµ

]
mTΣm−

(
mTΣµ

)2] 1
2


=

(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

Finally, we extend the results of Theorem 3 to the case of finite number of linear

combinations of the elements of Az. The results are summarised in the following theorem.

Theorem 4. Let A ∼ Wk(n,Σ) with rank(Σ) = r < p and let z ∼ Nk(µ, κΣ),κ > 0.

Assume r
n

= c+o(n−1/2), c ∈ [0,+∞) and κr = O(1) as n→∞.Let M = (m1, . . . ,mp)
T :

p × k be a matrix of constants of rank p < r ≤ n with probability one and let |uTi mj| ≤
L2 for all i = 1, . . . , r and j = 1, . . . , p uniformly on k. Assume that A and z are

independently distributed. Then under (A1) and (A2) the asymptotic distribution of MAz

under the double asymptotic regime is given by

√
nΩ−1/2

(
1

n
MAz−MΣz

)
d−→ Np (0, Ip)

where

Ω = MΣµµTΣMT + MΣMT
[
κtr(Σ2) + µTΣµ

]
+
κ

c
MΣ3MT . (6)

Proof. For all l ∈ Rp-fixed we consider lTMAz. The rest of the proof follows from

Theorem 3 with m = MT l and the fact that l is an arbitrary vector.

4 Finite sample performance

In this section we present the results of a Monte Carlo simulation study where the per-

formance of the obtained asymptotic distribution for the product of a singular Wishart

matrix and a singular Gaussian vector is investigated.

12



In our simulation we fix m = 1/k where 1 denotes the k-dimensional vector of ones

and generated each element of µ from the uniform distribution on [−1, 1]. The population

covariance matrix was drawn in the following way:

• r non-zero eigenvalues of Σ were generated from the uniform distribution on (0, 1)

and the rest were set to be zero;

• the eigenvectors were generated form the Haar distribution by simulating a Wishart

matrix with identity covariance matrix and calculating its eigenvectors.

Both the mean vector and the population covariance matrix obtained by such setting

satisfy the assumptions (A1) and (A2).

We compare the asymptotic density of the standardized random variable mTAz with

its finite-sample one which is obtained by applying the stochastic representation of Corol-

lary 2. More precisely, we draw N = 104 independent realizations of the standardized

random variable mTAz by using the following algorithm

a) generate mTAz by using stochastic representation (2) of Corollary 2 expressed as

mTAz
d
= ζmTΣz +

√
ζ
[
zTΣz ·mTΣm− (mTΣz)2

]1/2
z0,

where ζ ∼ χ2
n, z0 ∼ N (0, 1), z ∼ Nk(µ, κΣ); ζ, z0, and z are mutually independent.

b) compute

√
nσ−1

(
1

n
mTAz−mTΣµ

)
where

σ2 =
(
mTΣµ

)2
+ mTΣm

[
κtr(Σ2) + µTΣµ

]
+
κ

c
mTΣ3m.

c) repeat a)-b) N times.

Then, the elements of the generated sample are used to construct a kernel density estima-

tor which is compared to the asymptotic distribution, i.e. to the density of the standard

normal distribution. As a kernel, we make use of Epanechnikov kernel with the bandwidth

chosen by applying the Silverman’s rule of thumb.

The results of the simulation study are summarized in Figure 1 for n = 500 and in

Figure 2 for n = 1000. In both cases we set κ = 1/n. Finally, k = 750 is chosen for

n = 500 and k ∈ {750, 990} for n = 1000. Furthermore, several values of r are considered

such that c = {0.1, 0.5, 0.8, 0.95}. The finite sample distributions are shown as dashed

line, while the asymptotic distributions are solid lines. All obtained results show a good

performance of the asymptotic approximation which is almost indistinguishable from the

corresponding finite sample density. This result continues to be true even in the extreme

case of c = 0.95.
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(a) n = 500, c = 0.1, k = 750
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(b) n = 500, c = 0.5, k = 750
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(c) n = 500, c = 0.8, k = 750
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(d) n = 500, c = 0.95, k = 750

Figure 1: Asymptotic distribution and the kernel density estimator of the finite sample
distribution calculated for the product of a singular Wishart matrix and a singular normal
vector (n = 500).
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(a) n = 1000, c = 0.1, k = 750
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(b) n = 1000, c = 0.5, k = 750
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(c) n = 1000, c = 0.8, k = 990
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(d) n = 1000, c = 0.95, k = 990

Figure 2: Asymptotic distribution and the kernel density estimator of the finite sample
distribution calculated for the product of a singular Wishart matrix and a singular normal
vector (n = 1000).
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5 Summary

Wishart distribution and normal distribution are widely spread in both statistics and

probability theory with numerous and useful applications in finance, economics, envi-

ronmental sceinces, biology, etc. Different functions involving a Wishart matrix and a

normal vector have been studied in statistical literature recently. However, to the best of

our knowledge, combinations of a singular Wishart matrix and a singular normal vector

have not been investigated up to now.

In this paper we analyse the product of a singular Wishart matrix and a singular

Gaussian vector. A very useful stochastic representation of this product is obtained,

which is later used to derive its characteristic function as well as to provide an efficient

way how the elements of the product could be simulated in practice. With the use of

the derived stochastic representation there is no need in generating a large dimensional

Wishart matrix. Its application speeds up simulation studies where the product of a

singular Wishart matix and a singular normal vector is present. Furthermore, we prove the

asymptotic normality of the product under the double asymptotic regime. In a numerical

study, a good performance of the obtained asymptotic distribution is documented. Even

in the extreme case of c = 0.95 it produces a very good approximation of the corresponding

finite sample distribution obtained by applying the derived stochastic representation.
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