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Abstract

In this paper we consider the estimation of the weights of tangent portfolios

from the Bayesian point of view assuming normal conditional distributions of the

logarithmic returns. For di↵use and conjugate priors for the mean vector and the

covariance matrix, we derive stochastic representations for the posterior distribu-

tions of the weights of tangent portfolio and their linear combinations. Separately

we provide the mean and variance of the posterior distributions, which are of key

importance for portfolio selection. The analytic results are evaluated within a sim-

ulation study, where the precision of coverage intervals is assessed.
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1 Introduction

The seminal paper of Markowitz (1952) suggests a simple and intuitive approach for

determining the optimal portfolios of risky assets. It allows us to determine the optimal

portfolio weights which lead to the lowest risk for a given expected portfolio return. If

the asset returns are assumed to follow normal distribution, then this task is equivalent

to minimizing the expected quadratic utility of the future wealth. Depending on the

level of the risk aversion or on the expected targeted portfolio return, all the resulting

portfolios will lie on a hyperbolic e�cient frontier in the µ-�-space. Taking the risk-free

asset into account changes the paradigm of the classical Markowitz approach. In this case

the e�cient portfolios lie on straight line which crosses the vertical axis at the level of

the risk-free rate and is tangent to the mean-variance e�cient frontier of Markowitz. The

line is usually referred to as the capital market line and the tangent point is the tangent

portfolio. Every investor holds a portfolio which consists of the tangent portfolio and the

risk-free asset, while the proportions are determined by the risk aversion.

In practice, however, the tagency and other portfolios frequently lead to investment

strategies with modest profits and high risk. Several approaches were developed to im-

prove the performance. The first strand of research analyses the estimation risk in portfo-

lio weights, which arises if we replace the unknown parameters of the distribution of asset

returns with their sample counterparts. If the estimation risk is properly quantified it can

be taken into account when constructing estimation-risk-adjusted portfolios. Alterna-

tively one can shrink the optimal portfolio weights to constant target weights. Typically

one takes equally weighted portfolio for this purpose. The objective is to minimize an

appropriate objective function, usually the utility function of the investor.

The second strand of research uses the Bayesian framework. The Bayesian setting re-

sembles the human way of information utilization. The investors use the past experiences

or additional information for decisions at a given time point. These subjective beliefs are

reflected in a Bayesian setup using specific prior distributions. The first applications of

Bayesian statistics in portfolio analysis were completely based on uninformative or data-

based priors, see Winkler (1973), Winkler and Barry (1975). Bawa et al. (1979) provided

an excellent review on early examples of Bayesian studies on portfolio choice. These con-

tributions stimulated a steady growth of interest in Bayesian tools for asset allocation

problems. Jorion (1986), Kandel and Stambaugh (1996), Barberis (2000), Pastor (2000)

used the Bayesian framework to analyze the impact of the underlying asset pricing or

predictive model for asset returns on the optimal portfolio choice. Wang (2005), Kan and

Zhou (2007), Golosnoy and Okhrin (2007), Golosnoy and Okhrin (2008), Bodnar et al.

(2015) concentrated on shrinkage estimation, which allows to shift the portfolio weights

to prespecified values, which reflect the prior beliefs of investors. Brandt (2010) gives a

state of the art review of the modern portfolio selection techniques, paying a particular

attention to Bayesian approaches.
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In this paper we consider di↵use and conjugate priors for the parameters of asset

returns. In both cases we derive stochastic representation of the posterior distribution

of the tangent portfolio and the corresponding first two moments. These results simplify

numerical computation of the optimal portfolios and their analysis, since random sampling

is required only for simple and standard distribution such as t, N and F . Additionally

we provide the asymptotic distribution, which is Gaussian with a simple expression for

the covariance matrix. The established results are evaluated within a simulation study,

which assesses the coverage probabilities of credible intervals.

The rest of the paper is structured as follows. Bayesian estimation of the tangent

portfolio and main theoretical results are summarized in Section 2. The results of numer-

ical study are given in Section 3, while Section 4 summarizes the paper. The appendix

(Section 5) contains proofs and additional technical results.

2 Bayesian estimation of tangent portfolio

We consider a portfolio consisting of k assets. The k-dimensional vector of the asset (log-

arithmic) returns taken at time point t is denoted by xt. Let wi be the i-th weight in

the portfolio and let w = (w1, . . . , wk)> be the vector of weights. Throughout the paper

it is assumed that data drawn from the random vector of asset returns consist of con-

ditionally independent observations which are conditionally normally distributed. That

is we assume that x1, . . . ,xn are independent given µ and ⌃ with xi|µ,⌃ ⇠ Nk(µ,⌃)

where µ is a mean vector, ⌃ is a positive definite covariance matrix, and x1, . . . ,xn are

independent given µ and ⌃. It is remarkable that only the conditional distribution of the

asset returns is assumed to be normal, while the unconditional distribution depends on

the priors assigned to µ and ⌃ and it is usually a heavy-tailed distribution. Moreover,

the observation vectors are unconditionally dependent. These two features, namely heavy

tails and time dependence, are, usually, observed in the stochastic behavior of the asset

returns.

The aim of this section is to provide a Bayesian analysis of the tangent portfolio (TP)

which is an optimal portfolio when the investment into a risk-free asset with return rf

is possible. In the mean-variance space this type of optimal portfolios is determined by

a tangent line drawn from the portfolio which consists of the risk-free asset only to the

set of optimal portfolios, the so-called e�cient frontier, constructed in the case without a

risk-free asset. The tangent portfolio weights are calculated by

wTP = ↵
�1
⌃

�1(µ� rf1k), (1)

where ↵ is the coe�cient of risk aversion which describes the investor’s attitude towards

risk and 1k stands for the k-dimensional vector of ones. If the sum of the weights in (1)
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is not equal to one, what is usually observed in practice, then the rest of the investor’s

wealth is invested into the risk-free rate whose weight is w0 = 1 � 1
>
k wTP . Otherwise,

if it is normalized so that 1>
k wTP = 1, then the TP portfolio coincides with the optimal

portfolio that maximizes the Sharpe ratio and it is also known as the market portfolio.

This portfolio lies on the intersection of the mean-variance e�cient frontier and the capital

market line constructed with a risk-free asset.

Obviously the TP weights cannot be calculated since both the parameters µ and

⌃ of the asset return distribution are unknown quantities. They have to be replaced

by corresponding estimators using the historical data on asset returns x = (x1, ...,xn)

observed at time points 1, ..., n. Using these data, the sample estimators for µ and ⌃,

namely the sample mean vector and the sample covariance matrix, are constructed and

they are given by

x =
1

n

nX

i=1

xi and S =
1

n� 1

nX

i=1

(xi � x)(xi � x)>, (2)

respectively. Replacing µ and ⌃ by x and S in (1) we obtain the sample estimator for

the TP weights expressed as

ŵTP = ↵
�1
S
�1(x� rf1k). (3)

In this section we deal with a more general problem. Namely, the aim is to estimate

arbitrary linear combinations of the TP weights. Let L be a p ⇥ k matrix of constants

such that rank(L) = p < k, and define

✓ = LwTP = ↵
�1
L⌃

�1(µ� rf1k) (4)

The sample estimator of ✓ is then given by

✓̂ = LŵTP = ↵
�1
LS

�1(x� rf1k). (5)

The frequentist distribution of the TP weight and of ✓̂ as well as test theory on the TP

weights were derived by Bodnar and Okhrin (2011) for n > k, whereas Bodnar et al.

(2016b) extended these results to the case n < k.

Here, we deal with the problem of estimating the TP portfolio from the viewpoint of

Bayesian statistics. The distributional properties of the TP weights and/or their linear

combinations will be presented in terms of the posterior distribution. Thus we obtain not

only the point estimator of the weights but the whole distribution. Using the posterior

distribution the Bayesian estimate of the TP weights are derived as the posterior mean

vector along with their uncertainties which are characterized by the posterior covariance

matrix.
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The starting point of the Bayesian analysis is the Bayes theorem which relates the

posterior distribution of the parameter to the prior distribution and the likelihood func-

tion. The latter contains the knowledge about the parameter before the sample is taken.

Since the distribution of the asset returns does not directly depend on the TP weights,

the posterior distribution of wTP as well as of ✓ is derived from the posterior obtained

for µ and ⌃ expressed as

⇡(µ,⌃|x) / L(x|µ,⌃)⇡(µ,⌃), (6)

with the likelihood function given by

L(x|µ,⌃) = L(x1, . . . ,xn|µ,⌃) / |⌃|�n/2 exp

(
�1

2

nX

i=1

(xi � µ)>⌃�1(xi � µ)

)

/ |⌃|�n/2 exp

⇢
�n

2
(x� µ)>⌃�1(x� µ)� n� 1

2
tr[S⌃�1]

�
. (7)

There are several approaches how the prior for µ and ⌃ could be chosen with the

di↵use prior and the conjugate prior being the most widely used priors. The di↵use prior

belongs to non-informative priors, i.e., it does not incorporate any information for µ and

⌃. The di↵use prior is also known as Je↵reys’ prior and it is given by

⇡d(µ,⌃) / |⌃|�
k+1
2 . (8)

The second considered prior is the conjugate prior which is an informative one with a

normal prior for µ (conditional on ⌃) and an inverse Wishart prior for ⌃. It is expressed

as

⇡c(µ|⌃) / |⌃|�1/2 exp
n
�c

2
(µ� µc)

>
⌃

�1(µ� µc)
o
,

⇡c(⌃) / |⌃|�⌫c/2 exp

⇢
�1

2
tr[Vc⌃

�1]

�
,

where µc is the prior mean, c is the parameter reflecting the prior precision of µc, ⌫c is

a prior precision on ⌃, and Vc is a known prior matrix of ⌃. The joint prior for µ and

⌃ is then given by

⇡c(µ,⌃) / |⌃|�(⌫c+1)/2 exp

⇢
�c

2
(µ� µc)

>
⌃

�1(µ� µc)�
1

2
tr[Vc⌃

�1]

�
. (9)

Both the di↵use and the conjugate priors are successfully applied in finance by Barry

(1974), Brown (1976), Klein and Bawa (1976), Frost and Savarino (1986), Rachev et al.

(2008), Avramov and Zhou (2010), Sekerke (2015), Bodnar et al. (2016a) among others.

The di↵use prior mimics the situation, when the investor has no additional information
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about the model parameters. The conjugate prior, however, reflects the prior beliefs

trough the additional information with the expectations µc and ⌃c.

In Theorem 1, we derive the stochastic representations of the posterior distributions

for ✓ under the di↵use prior and the conjugate prior. The stochastic representation is a

very powerful tool in multivariate statistics. It plays an important role in the theory of

elliptically contoured distributions (c.f., Gupta et al. (2013)) and in Bayesian statistics

(see, e.g., Bodnar et al. (2016a)) as well as it is widely used in Monte Carlo studies. In

particular, the simulation of the values of the weights is considerably simplified if we use

the stochastic representation.

Theorem 1. Let x1, . . . ,xn|µ,⌃ be conditionally independently and identically distributed

with xt|µ,⌃ ⇠ Nk(µ,⌃). Let L be a p ⇥ k matrix of constants of rank p < k, and 1k

denotes the vector of ones. We define

a1 = x� rf1k, a2 = µc � rf1k, and a12 =
1

n+ c
(na1 + ca2) .

Then the stochastic representation of the posterior distribution for ✓ = LwTP

(a) under the di↵use prior ⇡d(µ,⌃) is given by

✓d
d
=

⌘d

↵
· LS�1

d µ̆d +

p
⌘d

↵

�
µ̆T

d S
�1
d µ̆d · LS�1

d L
> � LS

�1
d µ̆dµ̆

T
d S

�1
d L

>�1/2
z0, (10)

with

Sd = Sd(µ̆d) = (n� 1)S+ n(µ̆d � a1)(µ̆d � a1)
>
,

where ⌘d ⇠ �
2
n, µ̆d|x ⇠ tk

⇣
n� k, a1,

n�1
n(n�k)S

⌘
, and z0 ⇠ Np(0, Ip); moreover, ⌘d,

µ̆d, and z0 are mutually independent.

(b) under the conjugate prior ⇡c(µ,⌃) is given by

✓c
d
=

⌘c

↵
· LS�1

c µ̆c +

p
⌘c

↵

�
µ̆T

c S
�1
c µ̆c · LS�1

c L
> � LS

�1
c µ̆cµ̆

T
c S

�1
c L

>�1/2
z0, (11)

with

Sc = Sc(µ̆c) = S̃+ (n+ c) (µ̆c � a12) (µ̆c � a12)
>
,

S̃ = (n� 1)S+Vc � (n+ c)a12a
>
12 + (na1a

>
1 + ca2a

>
2 ),

where ⌘c ⇠ �
2
⌫c+n�k, µ̆c|x ⇠ tk

⇣
⌫c + n� 2k, a12,

1
(n+c)(⌫c+n�2k) S̃

⌘
, and z0 ⇠ Np(0, Ip);

moreover, ⌘c, µ̆c, and z0 are mutually independent.

The proof of the theorem is given in the appendix. It is noted that the distribution

of the weights is given in terms of a �
2 random variable, a t-distributed random vector

and a standard multivariate normal random vector which are independently distributed.
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Moreover, only the distribution of µ̆d (and µ̆c) in both stochastic representations depends

on data.

To enhance computational e�ciency in applications, we rewrite S�1
d using the Sherman-

Morrison formula (see, for example, Meyer (2000, p. 125))

S
�1
d = S

�1
d (µ̆d) =

1

n� 1
S
�1 � n

(n� 1)2
S
�1(µ̆d � a1)(µ̆d � a1)>S�1

1 + n
n�1(µ̆d � a1)>S�1(µ̆d � a1)

.

Similarly, we obtain that

S
�1
c = S

�1
c (µ̆c) = S̃

�1
c � (n+ c)

S̃
�1
c (µ̆c � a12)(µ̆c � a12)>S̃�1

c

1 + (n+ c)(µ̆c � a12)>S̃�1
c (µ̆c � a12)

.

The application of these equalities leads to more computationally e�cient stochastic rep-

resentations of ✓ which are stated in Corollary 1.

Corollary 1. Under the assumptions of Theorem 1, the stochastic representation of ✓

(a) under the di↵use prior ⇡d(µ,⌃) is given by

✓d
d
=

⌘d

↵
· L⇣d +

p
⌘d

↵

�
✏d · L⌥dL

> � L⇣d⇣
>
d L

>�1/2
z0, (12)

with

✏d = ✏d(Qd,U) =
1

n� 1
a
>
1 S

�1
a1 +

2p
n� 1

q
k

n(n�k)Qd

1 + k
n�kQd

a
>
1 S

�1/2
U

+
k

n(n�k)Qd

1 + k
n�kQd

�
k

n�kQd

1 + k
n�kQd

1

n� 1

�
a
>
1 S

�1/2
U
�2

,

⇣d = ⇣d(Qd,U) =
1

n� 1
S
�1
a1 +

q
k

n(n�k)Qd

1 + k
n�kQd

1p
n� 1

S
�1/2

U

�
k

n�kQd

1 + k
n�kQd

1

n� 1
S
�1/2

UU
>
S
�1/2

a1,

⌥d = ⌥d(Qd,U) =
1

n� 1
S
�1 �

k
n�kQd

1 + k
n�kQd

1

n� 1
S
�1/2

UU
>
S
�1/2

,

where ⌘d ⇠ �
2
n, z0 ⇠ Np(0, Ip), Qd ⇠ F(k, n � k), and U is uniformly distributed

on the unit sphere in Rk; moreover, ⌘d, z0, Qd, and U are mutually independent.

(b) under the conjugate prior ⇡c(µ,⌃) is given by

✓c
d
=

⌘c

↵
· L⇣c +

p
⌘c

↵

�
✏c · L⌥cL

> � L⇣c⇣
>
c L

>�1/2
z0, (13)
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with

✏c = ✏c(Qc,U) = a
>
12S̃

�1
a12 + 2

q
k

(c+n)(⌫c+n�2k)Qc

1 + k
⌫c+n�2kQc

a
>
12S̃

�1/2
U

+
k

(c+n)(⌫c+n�2k)Qc

1 + k
⌫c+n�2kQc

�
k

⌫c+n�2kQc

1 + k
⌫c+n�2kQc

⇣
a
>
12S̃

�1/2
U

⌘2
,

⇣c = ⇣c(Qc,U) = S̃
�1
a12 +

q
k

(c+n)(⌫c+n�2k)Qc

1 + k
⌫c+n�2kQc

S̃
�1/2

U

�
k

⌫c+n�2kQc

1 + k
⌫c+n�2kQc

S̃
�1/2

UU
>
S̃
�1/2

a12,

⌥c = ⌥c(Qc,U) = S̃
�1 �

k
⌫c+n�2kQc

1 + k
⌫c+n�2kQc

S̃
�1/2

UU
>
S̃
�1/2

,

where ⌘c ⇠ �
2
⌫c+n�k, z0 ⇠ Np(0, Ip), Qc ⇠ F(k, ⌫c + n � 2k), and U is uniformly

distributed on the unit sphere in Rk; moreover, ⌘c, z0, Qc, and U are mutually

independent.

In contrast to the stochastic representations given in Theorem 1, the random variables

in (12) and (13) do not depend on data. Consequently, the inverses of the matrices S

and S̃ have to be calculated only once within the simulation study for a given draw. This

would surely speed up the generation of realizations of ✓. To this end, it has to be noted

that the uniform distribution on a unit sphere in Rk is not a standard distribution in

many statistical packages. However, realizations of U can easily be obtained from the

k-dimensional standard normal vector Z by using U = Z/

p
Z>Z.

In Theorem 2 we derive the analytical expressions of the Bayesian estimates for ✓

calculated under the di↵use prior and the conjugate prior. These expressions are derived

as posterior means of ✓ which can be calculated by using the results of Corollary 1.

Theorem 2. Under the assumptions of Theorem 1 the Bayesian estimate for wTP

(a) under the di↵use prior (8) is given by

ŵTP ;d = E(wTP |x) =
1

↵
S
�1(x� rf1k);

(b) under the conjugate prior (9) is given by

ŵTP ;c = E(wTP |x) =
⌫c + n� k � 1

↵
S̃
�1
a12,

where S̃ and a12 are given in Theorem 1.
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The proof is given in the appendix. From Theorem 2 we observe that the point esti-

mator based on the di↵use prior coincides with the classical estimator. This is consistent

with our expectations, since the di↵use prior adds no information, but merely reflect the

uncertainty. The conjugate prior is an informative prior. This leads to a new point es-

timator that is obtained in Theorem 2, which reflects the additional information. The

structure of the estimator is of shrinkage-type. The mean vector of excess returns is re-

placed by the weighted sum of the sample mean return and the prior mean. The weights

reflect the precision of both sources of information. The covariance matrix is similarly a

weighted sum of the sample and prior information. Thus we shrink the sample parameters

towards the priors.

The formulas for the covariance matrix of wTP under both priors are summarized in

Theorem 3 whose proof is given in the appendix.

Theorem 3. Under the assumptions of Theorem 1 the covariance matrix for wTP

(a) under the di↵use prior (8) is given by

V ar(wTP |x) =
1

n� 1
↵
�2
S
�1(x� rf1k)(x� rf1k)

>
S
�1

+ ↵
�2


n
2 + k � 2

(n� 1)n(n+ 2)
+

n

(n� 1)2
k � 1

k
bd

�
S
�1

with bd = (x� rf1k)>S�1(x� rf1k);

(b) under the conjugate prior (9) is given by

V ar(wTP |x) = (⌫c + n� k � 1)↵�2
S̃
�1
a12a

>
12S̃

�1

+ ↵
�2


(⌫c + n� k)2 + k � 2

(n+ c)(⌫c + n� k + 2)
+ (⌫c + n� k)

k � 1

k
bc

�
S̃
�1

with bc = a
>
12S̃

�1
a12 where S̃ and a12 are given in Theorem 1.

Finally, in Theorem 4 we proof that both posterior distributions converge to the same

normal distribution as the sample size increases. This results is not surprising and is in

line with Bernstein-von-Mises theorem.

Theorem 4. Under the assumptions of Theorem 1 it holds that

p
n(wTP � ↵

�1
S
�1(x� rf1k))|x

d�! Nk(0,F) (14)

as n ! 1 under both the di↵use prior (8) and the conjugate prior (9) where

F = ↵
�2
S̆
�1(x̆� rf1k)(x̆� rf1k)

>
S̆
�1 + ↵

�2


1 +

k � 1

k
(x̆� rf1k)

>
S̆
�1(x̆� rf1k)

�
S̆
�1

9



where

x̆ = lim
n�!1

x and S̆ = lim
n�!1

S.

The proof of the theorem is given in the appendix. In practice, the asymptotic covari-

ance matrix of wTP is computed by using x and S instead of x̆ and S̆.

3 Simulation Study

In this section we assess the performance of the suggested within a simulation study. We

compute the coverage probabilities of credible intervals for the portfolio weights based

on the di↵use and conjugate priors suggested in the previous section and compare it to

the coverage probability stemming from the asymptotic distribution. Since the posterior

distribution cannot be determined explicitly, the quantiles are computed via simulations

using the respective stochastic representation. The number of repetitions is set to 10000.

To speed up the computations we use the representation in Corollary 1.

The setup of the simulation study is as follows. Without loss of generality we restrict

the discussion to the first portfolio weight, i.e. p = 1, L = e
T
1 . The riskless rate of return

is 0.001. The true expected returns µ are taken as a unform grid of length k between

�0.01 + rf and 0.01 + rf . For the covariance matrix we opt for the AR(1)-type structure

⌃ = (⇢|i�j|)i,j=1,..,k, where ⇢ takes values between -1 and 1. Since the dimension of the

portfolio is of particular interest we consider k 2 {5, 10, 20, 30}. The sample size n is

set to 60, which is a typical value in financial literature and corresponds to roughly two

months of daily data or a year of weekly data, respectively. In all considered cases we take

the following parameters for the conjugate prior ⌫c = c = n/2. µc is set equal a uniform

grid between 0 and 0.003. Sc is an identity matrix of a corresponding size. Specifically,

the boundaries of the credible intervals are computed using the following procedure:

1. Generate independently

• Di↵use: ⌘d ⇠ �
2
n, conjugate: ⌘c ⇠ �

2
⌫c+n�k

• z0 ⇠ Np(0, Ip)

• Di↵use: Qd ⇠ F(k, n� k), conjugate: Qc ⇠ F(k, ⌫c + n� 2k)

• Z ⇠ Nk(0, Ik) ! u = Z/
p
Z0Z

2. Compute the vector of weights using (12) for the di↵use prior and (13) for the

conjugate prior and using true parameters.

3. Repeat steps (1) and (2) B = 10000 times.

4. Compute the credible intervals bounded by the sample quantiles.

10
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Figure 1: Coverage probabilities for k =5, 10 (top) and k =20, 30 (bottom) and 95% level
of significance.

To determine the coverage probabilities we sample the asset returns from the original

distribution, estimate the portfolio weights and count the fraction of times the weights

are covered by the credible intervals. The results for di↵erent dimensions and values of ⇢

are illustrated in Figure 1. We conclude that the di↵use prior leads to the coverage prob-

abilities almost identical to the ones based on the asymptotic distribution and does not

depend on the strength of correlation between the assets. The conjugate prior, however,

show much higher coverage probabilities especially at the boundaries of ⇢. This is reason-

able, since higher ⇢ values induce covariance matrices which are close to singularity. This

leads to wider intervals and higher coverage probabilities. Other forms of the correlation

structure or other parameters of the conjugate prior might obviously deteriorate these

conclusions.

4 Summary

In this paper we analyze the tangent portfolio within a Bayesian framework. The sug-

gested approach allows us to incorporate uncertainty about the model parameters quan-

tified as prior beliefs of the investors and to incorporate these into the portfolio decisions.

11



Assuming di↵erent priors for the asset returns, we derive the stochastic representation of

the posterior distributions of linear combinations of tangent portfolio weights. In particu-

lar, we consider non-informative di↵use and informative conjugate priors. Additionally we

derive the mean and the variance of the posterior distribution. The results are evaluated

within a numerical study, where we assess the coverage probabilities of credible intervals.

5 Appendix

First, we present an important lemma that is used in the proof of Theorem 1.

Lemma 1. Assume

⌅|⌫,x ⇠ IWk(⌧0,V0),

⌫|x ⇠ f(·|x),

where V0 = V0(⌫) and the symbol f(·|x) stands for the posterior distribution of ⌫. Let

M be a p ⇥ k matrix of constants such that rank(M) = p  k. Then the stochastic

representation of M⌅
�1⌫ is given by

M⌅
�1⌫

d
= ⌘ ·MV

�1
0 ⌫ +

p
⌘
�
⌫>

V
�1
0 ⌫ ·MV

�1
0 M

> �MV
�1
0 ⌫⌫>

V
�1
0 M

>�1/2
z0,

where ⌘ ⇠ �
2
⌧0�k�1, z0 ⇠ Np(0, Ip), and ⌫|x ⇠ f(·|x); moreover, ⌘, z0 and ⌫ are mutually

independent.

Proof. From Theorem 3.4.1 of Gupta and Nagar (2000) we obtain that

⌅
�1|⌫,x ⇠ Wk(⌧0 � k � 1,V�1

0 ).

Next, we fix ⌫ = ⌫⇤ and define M̃ = (M>
,⌫⇤)>, Ĥ = M̃⌅

�1
M̃

> =
n
Ĥij

o

i,j=1,2
with

Ĥ11 = M⌅
�1
M

>, Ĥ12 = M⌅
�1⌫⇤, Ĥ21 = ⌫⇤T

⌅
�1
M

>, and Ĥ22 = ⌫⇤T
⌅

�1⌫⇤ as well as

H = M̃Ṽ
�1
0 M̃

> = {Hij}i,j=1,2 with Ṽ0 = V0(⌫⇤), H11 = MṼ
�1
M

>, H12 = MṼ
�1⌫⇤,

H21 = ⌫⇤T
Ṽ

�1
M

>, and H22 = ⌫⇤T
Ṽ

�1⌫⇤.

Since

⌅
�1|⌫ = ⌫⇤

,x ⇠ Wk(⌧0 � k � 1, Ṽ�1)

and rank(M̃) = p+ 1  k, we get from Theorem 3.2.5 in Muirhead (1982) that

Ĥ|⌫ = ⌫⇤
,x ⇠ Wp+1(⌧0 � k � 1,H).

Moreover, from Theorem 3.2.10 of Muirhead (1982) we obtain that

Ĥ12|Ĥ22,⌫ = ⌫⇤
,x ⇠ Np(H12H

�1
22 Ĥ22,H11·2Ĥ22),

12



where H11·2 = H11 �H12H
�1
22 H21 is the Schur complement.

Let ⌘ = Ĥ22/H22. Then the application of Theorem 3.2.8 of Muirhead (1982) leads to

⌘|⌫ = ⌫⇤
,x ⇠ �

2
⌧0�k�1.

Moreover, since the conditional distribution of ⌘ given ⌫ = ⌫⇤ and x does not depend

on ⌫⇤ and x, it is also the unconditional one as well as ⌘ and ⌫ are independent, i.e.

⌘ ⇠ �
2
⌧0�k�1. Thus, the stochastic representation of M⌅

�1⌫ is given by

M⌅
�1⌫

d
= ⌘ ·MV

�1
0 ⌫ +

p
⌘
�
⌫>

V
�1
0 ⌫ ·MV

�1
0 M

> �MV
�1
0 ⌫⌫>

V
�1
0 M

>�1/2
z0,

where ⌘ ⇠ �
2
⌧0�k�1, z0 ⇠ Np(0, Ip), and ⌫|x ⇠ f(·|x); moreover, ⌘, z0 and ⌫ are mutually

independent. This completes the proof of the lemma.

Proof of Theorem 1. a) Using the expression of the likelihood function (7) and the di↵use

prior ⇡d(µ,⌃) as in (8), the posterior distribution of (µ,⌃) is given by

⇡d(µ,⌃|x) / L(x|µ,⌃)⇡d(µ,⌃)

/ |⌃|�(n+k+1)/2 exp

⇢
�n

2
(x� µ)>⌃�1(x� µ)� n� 1

2
tr[S⌃�1]

�
.(15)

Integrating out ⌃ we obtain the marginal posterior for µ expressed as

⇡d(µ|x) /
Z

⌃>0

|⌃|�(n+k+1)/2 exp

⇢
�1

2
tr
⇥
(n(x� µ)(x� µ)> + (n� 1)S)⌃�1

⇤�
d⌃

/ |n(x� µ)(x� µ)> + (n� 1)S|�n
2 ,

where the last equality follows by observing that the function under the integral is the

density function of the inverse Wishart distribution with n+k+1 degrees of freedom and

parameter matrix n(x�µ)(x�µ)>+(n�1)S. The application of Silvester’s determinant

theorem leads to

⇡d(µ|x) /
✓
1 +

n

n� 1
(x� µ)>S�1(x� µ)

◆�n
2

which shows that µ|x ⇠ tk

⇣
n� k,x,

n�1
n(n�k)S

⌘
. Using the properties of the multivariate

t-distribution we then get with µ̆d = (µ� rf1k) that

µ̆d|x ⇠ tk

✓
n� k, a1,

n� 1

n(n� k)
S

◆
with a1 = x� rf1k.

Furthermore, from (15) we obtained that⌃|µ̆d,x ⇠ IWk(n+k+1,Sd) with Sd = Sd(µ̆) =

(n� 1)S+ n(µ̆d � a1)(µ̆d � a1)>.

13



Finally, the application of Lemma 1 with ⌧0 = n+ k + 1 and V0 = Sd leads to

✓
d
= ⌘d · LS�1

d µ̆d +
p
⌘
�
µ̆>

d S
�1
d µ̆d · LS�1

d L
> � LS

�1
d µ̆dµ̆

>
d S

�1
d L

>�1/2
z0,

where ⌘d ⇠ �
2
n, z0 ⇠ Np(0, Ip), and µ̆d|x ⇠ tk

⇣
n� k, a1,

n�1
n(n�k)S

⌘
; moreover, ⌘, z0 and

µ̆d are mutually independent.

b) The joint posterior for µ and ⌃ under the conjugate prior (9) is given by

⇡c(µ,⌃|x) / |⌃|�(⌫c+n+1)/2 exp

⇢
�1

2
tr[Sc⌃

�1]

�
,

where µ̆c = µ� rf1k, a1 and a2 as in the statement of the theorem and

Sc = Sc(µ̆c) = (n� 1)S+Vc + n(µ̆c � a1)(µ̆c � a1)
> + c(µ̆c � a2)(µ̆c � a2)

>
,

= S̃+ (n+ c) [µ̆c � a12] [µ̆c � a12]
>
,

with a12 given in the statement of the theorem and

S̃ = (n� 1)S+Vc � (n+ c)a12a
>
12 + (na1a

>
1 + ca2a

>
2 ).

Following the proof of part a) of the theorem we get

⌃|µ̆c,x ⇠ IWk(⌫c + n+ 1,Sc),

µ̆c ⇠ tk

✓
⌫c + n� 2k, a12,

1

(n+ c)(⌫c + n� 2k)
S̃

◆
.

Finally, the application of Lemma 1 with ⌧0 = ⌫c + n + 1 and V0 = Sc leads to the

statement of the theorem.

In the proof of Corollary 1 we use the following lemma.

Lemma 2. Assume that the stochastic representation of M⌅
�1⌫ is given by

M⌅
�1⌫

d
= ⌘ ·MV

�1
0 ⌫ +

p
⌘
�
⌫>

V
�1
0 ⌫ ·MV

�1
0 M

> �MV
�1
0 ⌫⌫>

V
�1
0 M

>�1/2
z0,

with V0 = V0(⌫) = S0+n0(⌫�b0)(⌫�b0)> and M a p⇥k matrix of constants such that

rank(M) = p  k where ⌘ ⇠ �
2
⌧0, z0 ⇠ Np(0, Ip), and ⌫|x ⇠ tk(d0,b0,�0S0); moreover,

⌘, z0 and ⌫ are mutually independent. Then

M⌅
�1⌫

d
= ⌘ ·M⇣ +

p
⌘
�
✏ ·M⌥M

> �M⇣⇣>
M

>�1/2
z0
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with

✏ = ✏(Q,U) = b
>
0 S

�1
0 b0 + 2

p
�0kQ

1 + n0�0kQ
b
>
0 S

�1/2
0 U+

�0kQ

1 + n0�0kQ
� n0�0kQ

1 + n0�0kQ

⇣
b
>
0 S

�1/2
0 U

⌘2
,

⇣ = ⇣(Q,U) = S
�1
0 b0 +

p
�0kQ

1 + n0�0kQ
S
�1/2
0 U� n0�0kQ

1 + n0�0kQ
S
�1/2
0 UU

>
S
�1/2
0 b0,

⌥ = ⌥(Q,U) = S
�1
0 � n0�0kQ

1 + n0�0kQ
S
�1/2
0 UU

>
S
�1/2
0 ,

where ⌘ ⇠ �
2
⌧0, z0 ⇠ Np(0, Ip), Q ⇠ F(k, d0), and U uniformly distributed on the unit

sphere in Rk; moreover, ⌘, z0, Q, and U are mutually independent.

Proof. Using the Sherman-Morrison formula (see p.125 of Meyer (2000)) we obtain

V
�1
0 = S

�1
0 � n0

S
�1
0 (⌫ � b0)(⌫ � b0)>S

�1
0

1 + n0(⌫ � b0)>S
�1
0 (⌫ � b0)

(16)

Let

U =
S
�1/2
0 (⌫ � b0)p

(⌫ � b0)>S
�1
0 (⌫ � b0)

and Q = �
�1
0 (⌫ � b0)

>
S
�1
0 (⌫ � b0)/k. (17)

Using the facts that ⌫|x ⇠ tk(d0,b0,�0S0) and that the multivariate t-distribution

belongs to the class of the elliptically contoured distributions, we obtain that U and Q are

independent, and U is uniformly distributed on the unit sphere in Rk (see Theorem 2.15

of Gupta et al. (2013)). Moreover, from the properties of the multivariate t-distribution

(see p. 19 of Kotz and Nadarajah (2004)), we get that Q ⇠ F(k, d0), i.e., Q has an

F -distribution with k and d0 degrees of freedom.

Hence, the application of the (16) and (17) leads to

V
�1
0 = S

�1
0 � n0�0kQ

1 + n0�0kQ
S
�1/2
0 UU

>
S
�1/2
0 ,

V
�1
0 ⌫ = S

�1
0 ⌫ � n0

S
�1
0 (⌫ � b0)(⌫ � b0)>S

�1
0 (⌫ � b0 + b0)

1 + n0(⌫ � b0)>S
�1
0 (⌫ � b0)

= S
�1
0 b0 +

S
�1
0 (⌫ � b0)

1 + n0(⌫ � b0)>S
�1
0 (⌫ � b0)

� n0
S
�1
0 (⌫ � b0)(⌫ � b0)>S

�1
0 b0

1 + n0(⌫ � b0)>S
�1
0 (⌫ � b0)

= S
�1
0 b0 +

p
�0kQ

1 + n0�0kQ
S
�1/2
0 U� n0�0kQ

1 + n0�0kQ
S
�1/2
0 UU

>
S
�1/2
0 b0,

and

⌫>
V

�1
0 ⌫ = b

>
0 S

�1
0 b0 + 2

b
>
0 S

�1/2
0 U

p
�0kQ

1 + n0�0kQ
+

�0kQ

1 + n0�0kQ
� n0�0kQ

1 + n0�0kQ

⇣
b
>
0 S

�1/2
0 U

⌘2
.

Putting all above together we obtain the statement of the lemma.

Proof of Corollary 1. The statement of the corollary follows directly from Lemma 2 with
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⌧0 = n, n0 = n, d0 = n�k, �0 =
1

n(n�k) , b0 = a1, S0 = (n�1)S, M = 1
↵L in the case of the

di↵use prior and with ⌧0 = ⌫c + n� k, n0 = n+ c, d0 = ⌫c + n� 2k, �0 =
1

(n+c)(⌫c+n�2k) ,

b0 = a12, S0 = S̃, M = 1
↵L for the conjugate prior.

Lemma 3. Under the assumption of Lemma 2 with n0�0 = 1/d0 we get that

E(M⌅
�1⌫|x) = ⌧0

✓
1� 1

k + d0

◆
M

>
S
�1
0 b0.

Proof. Since ⌘, z0, Q, and U are independent with E(z0) = 0, E(U) = 0 and E(UU
>) =

1
kIk, we get

E(M⌅
�1⌫|x) = E(⌘M⇣|x) = ⌧0

✓
MS

�1
0 b0 � E

✓
n0�0kQ

1 + n0�0kQ

◆
1

k
MS

�1
0 b0

◆
.

Since Q ⇠ F(k, d0), then from the properties of the F -distribution, we obtain that

k
d0
Q

1 + k
d0
Q

⇠ Beta

✓
k

2
,
d0

2

◆
.

Hence, E

✓
k
d0

Q

1+ k
d0

Q

◆
= k

k+d0
which leads to

E(M⌅
�1⌫|x) = ⌧0

✓
1� 1

k + d0

◆
MS

�1
0 b0.

Proof of Theorem 2. The application of Lemma 3 with ⌧0 = n, d0 = n�k, b0 = (x�rf1k),

S0 = (n� 1)S, M = 1
↵ l

> for the di↵use prior and with ⌧0 = ⌫c + n� k, d0 = ⌫c + n� 2k,

b0 = a12, S0 = S̃, M = 1
↵ l

> in the case of the conjugate prior for an arbitrary vector l

leads to

E(l>wTP |x) =
1

↵
l
>
S
�1(x� rf1k)

and

E(l>wTP |x) =
⌫c + n� k � 1

↵
l
>
S̃
�1
c a12,

respectively. Since the vector l is arbitrary chosen, we get the statement of the theorem.

In the proof of Theorem 3 we use the following lemma.
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Lemma 4. Under the assumption of Lemma 2 with n0�0 = 1/d0 and M = m
> : 1 ⇥ k,

we get that

V ar(m>
⌅

�1⌫|x) = ⌧0(1 + ⌧0)

"✓
1� 2

k + d0
+

2

(k + d0)(k + d0 + 2)

◆
c
2
12

+

✓
d0

n0(k + d0)(k + d0 + 2)
+

1

(k + d0)(k + d0 + 2)
c2

◆
c1

#

+ ⌧0

"✓
k � 1

n0(k + d0)
+

✓
1� 1

k
� 1

k + d0
+

1

(k + d0)(k + d0 + 2)

◆
c2

◆
c1

+
2

(k + d0)(k + d0 + 2)
c
2
12

#
� ⌧

2
0

✓
1� 1

k + d0

◆2

c
2
12,

where c1 = m
>
S
�1
0 m, c2 = b

>
0 S

�1
0 b0, and c12 = m

>
S
�1
0 b0.

Proof. It holds that

V ar(m⌅
�1⌫|x) = E(m>

⌅
�1⌫⌫>

⌅
�1
m|x)� E(m>

⌅
�1⌫|x)2,

where E(m⌅
�1⌫|x) is given in Lemma 3.

The application of Lemma 2 together with E(z0) = 0, E(z0z>0 ) = Ip and the indepen-

dence of ⌘, z0, Q, and U leads to

E(m>
⌅

�1⌫⌫>
⌅

�1
m|x) = E(⌘2)E(m>⇣⇣>

m|x) + E(⌘)E
�
✏m

>
⌥m�m

>⇣⇣>
m|x

�

= ⌧0(1 + ⌧0)E(m>⇣⇣>
m|x) + ⌧0E

�
✏m

>
⌥m|x

�
,

where we use that E(⌘) = ⌧0 and E(⌘2)� E(⌘) = ⌧0(1 + ⌧0).

Using that E(UU
>) = 1

kIk and all odd mixed moments of the elements of U are zero,

we get

E(m>⇣⇣>
m|x) = (m>

S
�1
0 b0)

2 +
1

k
E

✓
�0kQ

(1 + n0�0kQ)2

◆
m

>
S
�1
0 m

� 2

k
E

✓
n0�0kQ

1 + n0�0kQ

◆
(mS

�1
0 b0)

2

+ E

 ✓
n0�0kQ

1 + n0�0kQ

◆2
!
E

⇣
(mS

�1/2
0 U)2(b>

0 S
�1/2
0 U)2|x

⌘
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and

E
�
✏m

>
⌥m|x

�
= b

>
0 S

�1
0 b0m

>
S
�1
0 m+ E

✓
�0kQ

1 + n0�0kQ

◆
m

>
S
�1
0 m

� 1

k
E

✓
n0�0kQ

1 + n0�0kQ

◆
b
>
0 S

�1
0 b0m

>
S
�1
0 m

� 1

k
b
>
0 S

�1
0 b0m

>
S
�1
0 m� 1

k
E

✓
�0kQ

1 + n0�0kQ

◆
m

>
S
�1
0 m

+ E

 ✓
n0�0kQ

1 + n0�0kQ

◆2
!
E

⇣
(mS

�1/2
0 U)2(b>

0 S
�1/2
0 U)2|x

⌘
.

Since n0�0kQ
1+n0�0kQ

has a beta distribution with k/2 and d0/2 degrees of freedom (see the

end of the proof of Lemma 3), we obtain

E

✓
n0�0kQ

1 + n0�0kQ

◆
=

k

k + d0
,

E

✓
n0�0kQ

1 + n0�0kQ

◆2

=
2kd0 + k

2(k + d0 + 2)

(k + d0)2(k + d0 + 2)
=

k(k + 2)

(k + d0)(k + d0 + 2)
.

Furthermore, using Q ⇠ F(k, d0), we get

E


�0kQ

(1 + n0�0kQ)2

�
=

1

n0

Z 1

0

kt/d0

(1 + kt/d0)2
1

B
�
k
2 ,

d0
2

�
✓

k

d0

◆k/2

t
k/2�1

✓
1 +

k

d0
t

◆�(k+d0)/2

dt

=
1

n0

1

B
�
k
2 ,

d0
2

�
Z 1

0

✓
k

d0

◆(k+2)/2

t
(k+2)/2�1

✓
1 +

k

d0
t

◆�(k+d0+4)/2

dt

=
1

n0

B
�
k+2
2 ,

d0+2
2

�

B
�
k
2 ,

d0
2

� =
kd0

n0(k + d0)(k + d0 + 2)
,

where B(·, ·) stands for the beta function (see, Mathai and Provost (1992, p. 256)).

Let QN ⇠ �
2
k be independent of U. Then

p
QNU has a multivariate standard normal

distribution, i.e.

 
m

>
S
�1/2
0

b
>
0 S

�1/2
0

!
p
QNU|x ⇠ N2

 
0,

 
m

>
S
�1
0 m m

>
S
�1
0 b0

b
>
0 S

�1
0 m b

>
0 S

�1
0 b0

!!
= N2

 
0,

 
c1 c12

c12 c2

!!
,

where c1, c2, and c12 are defined in the statement of Lemma 4. Hence,

E

⇣
(mS

�1/2
0 U)2(b>

0 S
�1/2
0 U)2|x

⌘
= E

⇣
m

>
S
�1/2
0 U

⌘2 ⇣
b
>
0 S

�1/2
0 U

⌘2
|x
�
E(Q2

N)

E(Q2
N)

=

E

⇣
m

>
S
�1/2
0

p
QNU

⌘2 ⇣
b
>
0

p
QNS

�1/2
0 U

⌘2
|x
�

E(Q2
N)

=
c1c2 + 2c212
k(k + 2)

,
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where the last equality follows from the Isserlis’ theorem (c.f., Isserlis (1918)).

Thus, we get

E(m>⇣⇣>
m|x) = c

2
12 +

1

k

kd0
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E
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k
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k
� 1

k + d0
+

1

(k + d0)(k + d0 + 2)

◆
c2

◆
c1 .

Proof of Theorem 3. For the fixed arbitrary chosen vector l we apply the results of Lemma

4 with ⌧0 = n, n0 = n, d0 = n� k, b0 = (x� rf1k), S0 = (n� 1)S, m = 1
↵ l for the di↵use

prior and with ⌧0 = ⌫c + n� k,n0 = n + c, d0 = ⌫c + n� 2k, b0 = a12, S0 = S̃, m = 1
↵ l

in the case of the conjugate prior. This leads to
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with c1 = l
>
S
�1
l/↵

2, c2 = (x � rf1k)>S�1(x � rf1k), c12 = l
>
S
�1(x � rf1k)/↵ and,

similarly,

V ar(l>wTP |x) = (⌫c + n� k � 1)c212

+


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>
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�1
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Using the structure of both the variances and the fact that l is arbitrary chosen, we

get the statement of the theorem.

Proof of Theorem 4. The application of Theorem 1 leads to

✓
d
=

⌘d

↵
· LS�1

d µ̆d +

p
⌘d

↵

�
µ̆T

d S
�1
d µ̆d · LS�1
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�1
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T
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�1
d L
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z0,

under the di↵use prior, where ⌘d ⇠ �
2
n, µ̆d|x ⇠ tk
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n� k, a1,
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n(n�k)S

⌘
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which are mutually independent, and
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⇣
⌫c + n� 2k, a12,

1
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⌘
, and z0 ⇠ Np(0, Ip)

which are mutually independent.

Consequently, we get that

p
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and
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as n �! 1.

The application of the delta method (c.f., (DasGupta, 2008, Theorem 3.7)) proves that

p
n(wTP � ↵

�1
S
�1(x� rf1k))|x

d.�! Nk(0,Fd)

and p
n(wTP � ↵

�1
S
�1(x� rf1k))|x

d.�! Nk(0,Fc),

as n �! 1 under the di↵use prior and the conjugate prior, respectively.

Finally, using the results of Theorem 3 we get

Fd = lim
n�!1

V ar(
p
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where b̆d = (x̆�rf1k)>S̆�1(x̆�rf1k) with x̆ and S̆ defined in the statement of the theorem.

Similarly,

Fc = ↵
�2
S̆
�1(x̆� rf1k)(x̆� rf1k)

>
S̆
�1 + ↵

�2


1 +

k � 1

k
b̆d

�
S̆
�1 = Fd,

which completes the proof of the theorem.
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