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Abstract 
Inflation did not fall as much as many economists expected as the Great Recession hit the US economy. One 

explanation suggested for this phenomenon is that the Phillips curve has become flatter. In this paper we 

investigate the stability of the US Phillips curve, employing Bayesian VARs to quarterly data from 1990Q1 

to 2017Q3. We estimate bivariate models for PCE inflation and the unemployment rate under a number of 

different assumptions concerning the dynamics and covariance matrix. Specifically, we assess the importance 

of time-varying parameters and stochastic volatility. Using new tools for model selection, we find support for 

both time-varying parameters and stochastic volatility. Interpreting the Phillips curve as the inflation equation 

of our Bayesian VAR, we conclude that the US Phillips curve has been unstable. Our results also indicate 

that the Phillips curve may have been somewhat flatter between 2005 and 2013 than in the decade preceding 

that period. However, while the dynamic relations of the model appear to be subject to time variation, we 

note that the effect of a shock to the unemployment rate on inflation is not fundamentally different over 

time. Finally, a conditional forecasting exercise suggests that as far as the models are concerned, inflation may 

not have been unexpectedly high around the Great Recession. 
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1. Introduction 
In association with the Great Recession, the US unemployment rate rose from 4.8 percent in the fourth 

quarter of 2007 to 9.3 percent in the second quarter of 2009. Such a dramatic increase in unemployment 

could be expected to generate substantial downward pressure on inflation. And while the US inflation rate 

certainly fell during that period, the fall was smaller than expected by many economists. Similar developments 

were also found in many other countries, giving rise to a general discussion about the “missing disinflation”.1 

One explanation for this development is that the Phillips curve may have become flatter in recent years; see, 

for example, Bean (2006), Gaiotti (2010), Ihrig et al. (2010) and Kuttner and Robinson (2010).2 The suggestion 

that the Phillips curve has become flatter is not undisputed though. For example, Blanchard et al. (2015) 

suggest that the Phillips curve largely has been stable since the early 1990s.3 While the question of the Phillips 

curve’s stability has generated an intense academic debate, it also matters to policy makers; for decades, dif-

ferent versions of the Phillips curve have been – and are still – widely used by central banks when forecasting 

inflation. 

In this paper we add empirical evidence concerning the properties of the US Phillips curve. This is done in a 

Bayesian VAR framework where we estimate bivariate models using quarterly data of PCE inflation and the 

unemployment rate ranging from 1990Q1 to 2017Q3. The models are estimated under a number of different 

assumptions concerning the dynamics and covariance matrix. The different specifications cover two relevant 

aspects of the time series dynamics which have been discussed in the literature; the time-varying parameters 

is a way to incorporate gradual structural change – thereby allowing for the Phillips curve to evolve over time 

– whereas the stochastic volatilities allow the shocks that hit the economy to be heteroscedastic. This latter 

feature seems important given that we are studying a sample including the Great Recession. Having estimated 

the different models, we then employ recently developed methods for Bayesian model selection in order to 

establish the preferred specification. 

In conducting this analysis, we contribute to the existing literature in several ways. First, by conducting for-

malized model selection in a Bayesian framework to distinguish between the models we provide a statistical 

measure of how important different time-varying features are. This can be contrasted to previous literature 

using time-varying parameters and/or stochastic volatilities where such modelling choices almost exclusively 

have been assumed rather than supported through statistical testing procedures; see, for example, Cogley and 

Sargent (2005) and Bianchi and Civelli (2015). Exceptions exist though, such as Koop et al. (2009). Thanks 

                                                      

1 See, for example, the International Monetary Fund (2013). 

2 Globalisation is commonly suggested as an important reason for such a development. This explanation has, however, been questioned by 
Ball (2006). 

3 Further criticism can be found in Coibion and Gorodnichenko (2015) and Blanchard (2016). 
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to recent developments in Bayesian estimation techniques by Chan and Eisenstat (2018), we can conduct 

these model-selection calculations despite the fairly complicated nature of this issue. Second, by analysing a 

low-dimensional system with observable variables, we offer information on this relevant topic in a fairly 

intuitive framework. In doing this, we move in the direction of Phillips’ (1958) original observation where 

simple correlations were in focus. At a more general level, using sparse specifications is of course not some-

thing new in the literature related to the Phillips curve; see, for example, parts of the analysis in Stock and 

Watson (1999) and Faust and Wright (2013), or the contributions by Clark and McCracken (2006), Dotsey et 

al. (2017) and Knotek and Zaman (2017) in which only small models are used.4 It does however stand in 

contrast to recent literature relying on larger models, such as Laséen and Taheri Sanjani (2016). Third, and 

from a policy perspective, we provide evidence concerning the environment in which monetary policy is 

acting today. For example, a flat Phillips curve means that the unemployment rate may have to become quite 

low in order to build up substantial inflationary pressure. Such information should prove useful to the Federal 

Reserve. 

Briefly mentioning our results, we note that they indicate that both time-varying parameters and stochastic 

volatility appear to be relevant features. We accordingly conclude that the US Phillips curve has not been 

stable. In addition, there are indications that the Phillips curve may have been somewhat flatter between 2005 

and 2013 than in the decade preceding that period. But while we find support for time variation in the relation 

between the unemployment rate and inflation, it is also the case that the effect of a shock to the unemploy-

ment rate is not fundamentally different over time. Taken together, our results suggest that a flatter Phillips 

curve may have contributed to the high inflation around the Great Recession together with a number of large 

positive shocks and high core inflation. Looking at conditional forecasts from the model though, it can be 

questioned whether inflation actually was surprisingly high in association with the Great Recession. 

The remainder of this paper is organised as follows: In Section 2, we describe the methodological framework 

that we rely upon. Apart from presenting the detailed specifications of the Bayesian VARs, we pay special 

attention to the issue of model selection. We present data, conduct the empirical analysis and present our 

results in Section 3. Finally, Section 4 concludes. 

2. Methodological framework 
The Phillips curve is an analytical tool that has reached widespread fame since its introduction in 1958 and it 

is commonly used in both theoretical and empirical work. However, as well as being popular it also comes in 

                                                      

4 The model employed by Knotek and Zaman (2017) is a bivariate BVAR model with time-varying parameters and stochastic volatility and 
accordingly shares the most relevant features of the model used for the main analysis in this paper. Their study has a narrow focus on what 
such a model has to say about future inflation at the end of their sample though. 
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many different forms, where both the specification and variables included can differ.5 It is accordingly not 

completely transparent what one means when referring to “the Phillips curve”. In this paper, we will rely on 

a Bayesian VAR (BVAR) for our analysis. The reason for this is that the inflation equation of the BVAR can 

be seen as what King and Watson (1994, p. 172) referred to as the “dynamic generalization of the Phillips curve”.6 

We will, however, in general focus on the system as a whole and not just the inflation equation. By doing this 

we reduce the risk that important dynamic effects between the two variables are omitted. 

2.1 The Bayesian VAR model 
We initially define 𝒚𝒚𝑡𝑡 = (𝑢𝑢𝑡𝑡 𝜋𝜋𝑡𝑡)′, where 𝑢𝑢𝑡𝑡 is the unemployment rate and 𝜋𝜋𝑡𝑡 is PCE inflation, and then 

follow Chan and Eisenstat (2018) when specifying the most general model which will be used – the BVAR 

with time-varying parameters and stochastic volatility. The model is given as 

𝑩𝑩0𝑡𝑡𝒚𝒚𝑡𝑡 = 𝝁𝝁𝑡𝑡 +𝑩𝑩1𝑡𝑡𝒚𝒚𝑡𝑡−1 + ⋯+ 𝑩𝑩𝑝𝑝𝑝𝑝𝒚𝒚𝑡𝑡−𝑝𝑝 + 𝜺𝜺𝑡𝑡   (1) 

where 𝑩𝑩0𝑡𝑡 is a 2x2 lower triangular matrix with ones on the diagonal;7 𝝁𝝁𝑡𝑡 is a 2x1 vector of time-varying 

intercepts; 𝑩𝑩1𝑡𝑡, … ,𝑩𝑩𝑝𝑝𝑝𝑝 are 2x2 matrices with the parameters describing the dynamics of the BVAR; and 𝜺𝜺𝑡𝑡 

is a 2x1 vector of disturbances, 𝜺𝜺𝑡𝑡~𝑁𝑁(𝟎𝟎,𝜮𝜮𝑡𝑡), where 𝜮𝜮𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑒𝑒𝑒𝑒𝑒𝑒(ℎ1𝑡𝑡), 𝑒𝑒𝑒𝑒𝑒𝑒(ℎ2𝑡𝑡)�. 

The model can be re-written as 

𝒚𝒚𝑡𝑡 = 𝑿𝑿�𝑡𝑡𝜷𝜷𝑡𝑡 + 𝑾𝑾𝑡𝑡𝜸𝜸𝑡𝑡 + 𝜺𝜺𝑡𝑡     (2) 

where 𝑿𝑿�𝑡𝑡 = 𝑰𝑰2⨂�𝟏𝟏,𝒚𝒚′𝑡𝑡−1, … ,𝒚𝒚′𝑡𝑡−𝑝𝑝�, 𝜷𝜷𝑡𝑡 = 𝑣𝑣𝑣𝑣𝑣𝑣 ��𝝁𝝁𝑡𝑡 ,𝑩𝑩1𝑡𝑡 … ,𝑩𝑩𝑝𝑝𝑝𝑝�′�, 𝑾𝑾𝑡𝑡 = (0,−𝑦𝑦1𝑡𝑡)′ and 𝜸𝜸𝑡𝑡, which con-

sists of the free elements of 𝑩𝑩0𝑡𝑡 stacked by rows, in this case becomes the scalar 𝑏𝑏21𝑡𝑡0 ; 𝜺𝜺𝑡𝑡 is defined as above. 

Re-writing the model again, we can cast it as 

𝒚𝒚𝑡𝑡 = 𝑿𝑿𝑡𝑡𝜽𝜽𝑡𝑡 + 𝜺𝜺𝑡𝑡     (3) 

where 𝑿𝑿𝑡𝑡 = �𝑿𝑿�𝑡𝑡,𝑾𝑾𝑡𝑡� and 𝜽𝜽𝑡𝑡 = (𝜷𝜷′𝑡𝑡 ,𝜸𝜸′𝑡𝑡)′; 𝜺𝜺𝑡𝑡 is defined as above. Finally, the processes for the time-varying 

parameters and log-volatilities are specified as random walks: 

𝜽𝜽𝑡𝑡 = 𝜽𝜽𝑡𝑡−1 + 𝜼𝜼𝑡𝑡     (4) 

                                                      

5 Just to mention a few exapmles, it can be noted that Phillips’ (1958) original observation largely consisted of that there was a negative 
relation between (wage) inflation and the unemployment rate. Phelps (1967) and Friedman (1968) augmented the Phillips curve with 
expectations. In the New-Keynesian literature, the Phillips curve is typically derived from micro foundations and often of hybrid type; see, 
for example, Galí and Gertler (1999). 

6 Being non-structural and based on time-series models, our analysis also bears resemblance to analysis relying on simple single-equation 
regressions; see, for example, Svensson (2015). 

7 In line with, for example, Cogley and Sargent (2005) and Primiceri (2005), we accordingly rely on a recursive structure in order to identify 
the orthogonal disturbances to the system. 
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𝒉𝒉𝑡𝑡 = 𝒉𝒉𝑡𝑡−1 + 𝜻𝜻𝑡𝑡     (5) 

where 𝜼𝜼𝑡𝑡~𝑁𝑁(𝟎𝟎,𝜮𝜮𝜽𝜽) and 𝜻𝜻𝑡𝑡~𝑁𝑁(𝟎𝟎,𝜮𝜮𝒉𝒉). The model in equations (3) to (5) now has a generic state-space form. 

Due to this specification of 𝜽𝜽𝑡𝑡, both 𝜷𝜷𝑡𝑡 and 𝜸𝜸𝑡𝑡 can be integrated out analytically and numerical efficiency is 

improved (Eisenstat et al., 2016). 

The model described above – which has both time-varying parameters and stochastic volatility – is the most 

general model we will consider in our analysis. It seems highly relevant to allow for the possibility that both 

of these effects are present as they find support in earlier research. For example, King and Watson (1994, p. 

209) found “important evidence of econometric instability over subsamples” for the Phillips curve. Also Stock and Wat-

son (1999) found evidence of an unstable Phillips curve. Concerning the issue of shock volatility, Sims and 

Zha (2006) have pointed out the importance of allowing this to be time-varying and Stock and Watson (2012) 

found that relatively large shocks were the cause of the Great Recession. By imposing various restrictions on 

the most general model, we can assess how important different features are. For example, by making 𝜽𝜽𝑡𝑡 and 

𝒉𝒉𝑡𝑡 constant, we get a traditional BVAR with time-invariant parameters and covariance matrix. We will in 

what follows estimate and compare models under six different assumptions: 

i) Time-varying 𝜽𝜽𝑡𝑡 and stochastic volatility. 

ii) Time-varying 𝜽𝜽𝑡𝑡 and time-invariant covariance matrix. 

iii) Time-varying 𝜸𝜸𝑡𝑡, time-invariant 𝜷𝜷𝑡𝑡 and stochastic volatility. 

iv) Time-varying 𝜷𝜷𝑡𝑡, time-invariant 𝜸𝜸𝑡𝑡 and stochastic volatility. 

v) Time-invariant 𝜽𝜽𝑡𝑡 and stochastic volatility. 

vi) Time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix. 

To gain some additional insights into the model variations we consider, it is useful to also study the “reduced 

form” VAR 

𝒚𝒚𝑡𝑡 = 𝜹𝜹𝑡𝑡 + 𝑨𝑨1𝑡𝑡𝒚𝒚𝑡𝑡−1 + ⋯+ 𝑨𝑨𝑝𝑝𝑝𝑝𝒚𝒚𝑡𝑡−𝑝𝑝 + 𝒆𝒆𝑡𝑡    (6) 

with 𝜹𝜹𝑡𝑡 = 𝑩𝑩0𝑡𝑡
−1𝝁𝝁𝑡𝑡, 𝑨𝑨𝑖𝑖𝑖𝑖 = 𝑩𝑩0𝑡𝑡

−1𝑩𝑩𝑖𝑖𝑖𝑖 and 𝒆𝒆𝑡𝑡 ∽ 𝑁𝑁(𝟎𝟎,𝛀𝛀𝑡𝑡) for 𝛀𝛀𝑡𝑡 = 𝑩𝑩0𝑡𝑡
−1𝚺𝚺𝑡𝑡𝑩𝑩0𝑡𝑡

−1′. Under model i all reduced form 

parameters, regression coefficients, error variances and covariances, are time varying. Model ii restricts 𝛀𝛀𝑡𝑡 to 

a limited variability mainly affecting the correlation structure through 𝑏𝑏21𝑡𝑡0  while model iii allows for full 

variability in 𝛀𝛀𝑡𝑡 with only limited variability in the regression parameters. In model iv, the regression param-

eters and variances have full variability while the correlation structure is relatively constant and in model v 

only the variances have full variability and the correlation structure only changes as a consequence of the time 

varying variances. 
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2.2 Priors and estimation 
The choice of prior distributions and parameters of the priors can have a substantial effect on model com-

parisons based on marginal likelihoods and the priors must be set up with some care. Starting with the sim-

plest model, the constant parameter VAR, a diffuse prior is specified with 𝜷𝜷~𝑁𝑁(𝟎𝟎, 10𝑰𝑰), 𝜸𝜸~𝑁𝑁(𝟎𝟎, 10𝑰𝑰) and 

the diagonal elements of 𝜮𝜮 are given independent inverse Gamma priors, 𝜎𝜎𝑖𝑖2~𝑖𝑖𝑖𝑖(𝑣𝑣0𝑖𝑖, 𝑆𝑆0𝑖𝑖), with 𝑣𝑣0𝑖𝑖 = 5 and 

𝑆𝑆0𝑖𝑖 is chosen to match the prior mean, 𝐸𝐸�𝜎𝜎𝑖𝑖2� = 𝑆𝑆0𝑖𝑖 (𝑣𝑣0𝑖𝑖 − 1)⁄ , to the residual variance of a univariate AR-

model with the same lag length as the VAR.  

For the models with time-varying parameters, 𝜷𝜷𝑡𝑡 and/or 𝜸𝜸𝑡𝑡, the constant parameter prior is taken as the 

prior for the initial conditions, 𝜷𝜷0~𝑁𝑁(𝟎𝟎, 10𝑰𝑰), 𝜸𝜸0~𝑁𝑁(𝟎𝟎, 10𝑰𝑰). The variance-covariance matrix of the state 

equation (4) is diagonal, 𝜮𝜮𝜃𝜃 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎𝜃𝜃𝜃𝜃2 �, with inverse Gamma priors, 𝜎𝜎𝜃𝜃𝜃𝜃2 ~𝑖𝑖𝑖𝑖(𝑣𝑣𝜃𝜃𝜃𝜃 , 𝑆𝑆𝜃𝜃𝜃𝜃), where we set the 

shape parameters to 𝑣𝑣𝜃𝜃𝜃𝜃 = 5 and adjust the scale parameters to achieve a prior mean for 𝜎𝜎𝜃𝜃𝜃𝜃2  of 0.01 for the 

intercepts and 0.0001 for the other regression parameters. With our sample size of T = 111, the implied prior 

variance of 𝛽𝛽𝑖𝑖𝑖𝑖 is about 11 for intercepts and 10.01 for the other regression parameters. 

For the models with stochastic volatility, the initial state for the log-variance is given a normal prior, 

𝒉𝒉0~𝑁𝑁(𝝁𝝁ℎ , 0.25𝑰𝑰). That is, the initial state for the variance is lognormally distributed and we select the ele-

ments of 𝝁𝝁ℎ to match the mean of the lognormal distribution with the residual variances of univariate AR-

models as with the constant variance models. The variance-covariance of the state equation (5) is diagonal, 

𝜮𝜮ℎ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎ℎ12 ,𝜎𝜎ℎ22 �, with inverse Gamma priors, 𝜎𝜎ℎ𝑖𝑖2 ~𝑖𝑖𝑖𝑖(𝑣𝑣ℎ𝑖𝑖, 𝑆𝑆ℎ𝑖𝑖). The shape parameters are set to 𝑣𝑣ℎ𝑖𝑖 =

5 and the scale parameters to 𝑆𝑆ℎ𝑖𝑖 = 0.04 resulting in a prior mean for 𝜎𝜎ℎ𝑖𝑖2  of 0.01. 

We use the MCMC-sampler developed by Chan and Eisenstat (2018) for posterior inference. In its most 

general form it proceeds by sampling from the full conditional posteriors 

𝑝𝑝(𝜽𝜽|𝒚𝒚,𝒉𝒉,𝜮𝜮𝜃𝜃,𝜮𝜮ℎ,𝜽𝜽0,𝒉𝒉0)     (7) 

𝑝𝑝(𝒉𝒉|𝒚𝒚,𝜽𝜽,𝜮𝜮𝜃𝜃,𝜮𝜮ℎ,𝜽𝜽0,𝒉𝒉0)     (8) 

𝑝𝑝(𝜮𝜮𝜃𝜃,𝜮𝜮ℎ|𝒚𝒚,𝜽𝜽,𝒉𝒉,𝜽𝜽0,𝒉𝒉0)     (9) 

𝑝𝑝(𝜽𝜽0,𝒉𝒉0|𝒚𝒚,𝜽𝜽,𝒉𝒉,𝜮𝜮𝜃𝜃,𝜮𝜮ℎ)     (10) 

Using the model formulation in (3), the full conditional posterior of 𝜽𝜽 = (𝜽𝜽𝟏𝟏′ , … ,𝜽𝜽𝑻𝑻′ )′ is normal and can be 

sampled efficiently using the precision sampler of Chan and Jeliazkov (2009). For models when only 𝜷𝜷𝑡𝑡 or 

𝜸𝜸𝑡𝑡 is time-varying, 𝜷𝜷𝑡𝑡 is sampled conditionally on 𝜸𝜸𝑡𝑡 and  𝜸𝜸𝑡𝑡 is sampled conditionally on 𝜷𝜷𝑡𝑡, both with 

normal updates. In models with stochastic volatility, 𝒉𝒉 is sampled using the auxiliary mixture sampler of Kim 

et al. (1998). The diagonal elements of 𝜮𝜮𝜃𝜃 and 𝜮𝜮ℎ are conditionally independent with inverse Gamma full 
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conditional posteriors. Finally 𝜽𝜽0 and 𝒉𝒉0 are conditionally independent with normal full conditional posteri-

ors. For the models with constant variance, the last three steps are replaced by an update of the diagonal 

elements of 𝜮𝜮 which are conditionally independent with inverse Gamma full conditional posteriors. 

2.3 Model selection 
In order to distinguish between the models and gain insight into the stability over time of the US Phillips 

curve, we assess the fit of the different models using the marginal likelihood. In a Bayesian setting the marginal 

likelihood is the appropriate measure of how well the model (and prior) agrees with the data. A particular 

advantage of the Bayesian framework is that it allows for statistically rigorous and straightforward comparison 

of non-nested models.8 

The marginal likelihood for a model M is obtained by integrating out all unknown quantities from the joint 

distribution with the data 

𝑚𝑚(𝒚𝒚|𝑀𝑀) = ∫𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒉𝒉, 𝝃𝝃,𝑀𝑀)𝑝𝑝(𝜽𝜽|𝝃𝝃,𝑀𝑀)𝑝𝑝(𝒉𝒉|𝝃𝝃,𝑀𝑀)𝑝𝑝(𝝃𝝃,𝑀𝑀)𝑑𝑑 𝜽𝜽𝑑𝑑𝒉𝒉𝑑𝑑𝝃𝝃  (11) 

where 𝝃𝝃 collects the parameters 𝜽𝜽0,𝒉𝒉0,𝚺𝚺θ and 𝚺𝚺ℎ of the state equations (4) and (5). Model choice can then 

be made through direct comparison of marginal likelihoods or Bayes factors 

𝐵𝐵𝑖𝑖𝑖𝑖 = 𝑚𝑚(𝒚𝒚|𝑀𝑀𝑖𝑖)
𝑚𝑚�𝒚𝒚|𝑀𝑀𝑗𝑗�

= 𝑝𝑝(𝑀𝑀𝑖𝑖|𝒚𝒚)
𝑝𝑝�𝑀𝑀𝑗𝑗|𝒚𝒚�

𝑝𝑝(𝑀𝑀𝑖𝑖)
𝑝𝑝�𝑀𝑀𝑗𝑗�
�     (12) 

measuring the relative fit of the models or – if we are willing to assign prior probabilities that the different 

models are correct – how our opinion about the models have changed after viewing the data. As we see no 

strong reason to a priori prefer one model over the other, we opt for a simple comparison of the marginal 

likelihoods. 

Following Chan and Eisenstat (2018) we first obtain the integrated likelihood where 𝜽𝜽 and 𝒉𝒉 are integrated 

out, 

𝑝𝑝(𝒚𝒚|𝝃𝝃,𝑀𝑀) = ∫𝑝𝑝(𝒚𝒚|𝜽𝜽,𝒉𝒉, 𝝃𝝃,𝑀𝑀)𝑝𝑝(𝜽𝜽|𝝃𝝃,𝑀𝑀)𝑝𝑝(𝒉𝒉|𝝃𝝃,𝑀𝑀)𝑑𝑑 𝜽𝜽𝑑𝑑𝒉𝒉 =  

∫𝑝𝑝(𝒚𝒚|𝒉𝒉, 𝝃𝝃,𝑀𝑀)𝑝𝑝(𝒉𝒉|𝝃𝝃,𝑀𝑀)𝑑𝑑𝒉𝒉     (13) 

where the time-varying or constant parameters in 𝜽𝜽 can be integrated out analytically. An estimate of 

𝑝𝑝(𝒚𝒚|𝝃𝝃,𝑀𝑀) is then obtained by importance sampling techniques as 

                                                      

8 Previous literature relying on classical methods have in some cases conducted some tests for structural stability but often not in a framework 
that is directlly designed for the question at hand. Many times the analysis has been ad hoc and/or less formal; see, for example, Bernanke 
and Mihov (1998) who applied the test of Andrews (1993) or Abbate et al. (2016).  
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𝑝𝑝(𝒚𝒚|𝝃𝝃,𝑀𝑀)� = 1
𝑅𝑅
∑ 𝑝𝑝�𝒚𝒚|𝒉𝒉𝑖𝑖,𝝃𝝃,𝑀𝑀�𝑝𝑝�𝒉𝒉𝑖𝑖|𝝃𝝃,𝑀𝑀�

𝑔𝑔�𝒉𝒉𝑖𝑖|𝝃𝝃,𝑀𝑀�
𝑅𝑅
𝑖𝑖=1     (14) 

by sampling 𝒉𝒉𝑖𝑖 from a suitable importance density 𝑔𝑔�𝒉𝒉𝑖𝑖|𝝃𝝃,𝑀𝑀�. The marginal likelihood is then estimated 

using an outer importance sampling loop for 𝝃𝝃 as 

𝑚𝑚(𝒚𝒚|𝑀𝑀)� = 1
𝑃𝑃
∑ 𝑝𝑝(𝒚𝒚|𝝃𝝃𝚤𝚤,𝑀𝑀)� 𝑝𝑝�𝝃𝝃𝑖𝑖,𝑀𝑀�

𝑔𝑔�𝝃𝝃𝒊𝒊,𝑀𝑀�
𝑃𝑃
𝑖𝑖=1     (15) 

using draws of 𝝃𝝃𝑖𝑖 from the importance density 𝑔𝑔�𝝃𝝃𝒊𝒊,𝑀𝑀� constructed using the cross-entropy method of 

Chan and Eisenstat (2015). The inner importance sampling step is omitted for the models with constant 

variances as the integrated likelihood is analytic. Details concerning the implementation can be found in Chan 

and Eisenstat (2018). 

3. Empirical analysis 

3.1 Data 
Data on seasonally adjusted PCE deflator and unemployment rate – ranging from 1990Q1 to 2017Q3 – were 

sourced from the FRED database of the Federal Reserve Bank of St Louis. PCE inflation is calculated as 

𝜋𝜋𝑡𝑡 = 100(𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡−4 − 1⁄ ) where 𝑃𝑃𝑡𝑡 is the PCE deflator at time t. Data are shown in Figure 1. 

Figure 1. Data 

 
Note: Both variables are measured in percent. 

We believe that 1990Q1 is a reasonable starting point for our analysis. Choosing a period which is excessively 

long – for example, if we were to begin in the 1950’s – we argue that it is very unlikely that the Phillips curve 

could have been stable given the changes that the US economy has undergone over time. Using the sample 
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in this paper, we rely on reasonably recent data and hence estimate the model over a period where it would 

not be unrealistic to find stability; as pointed out above, it has been suggested by, for example, Blanchard et 

al. (2015) that the Phillips curve largely has been stable since the beginning of this sample. 

3.2 Is there time variation? 
We next set out to estimate and compare our models. The six different models had the following assumptions: 

i) time-varying 𝜽𝜽𝑡𝑡 and stochastic volatility, ii) time-varying 𝜽𝜽𝑡𝑡 and time-invariant covariance matrix, iii) time-

varying 𝜸𝜸𝑡𝑡, time-invariant 𝜷𝜷𝑡𝑡 and stochastic volatility, iv) time-varying 𝜷𝜷𝑡𝑡, time-invariant 𝜸𝜸𝑡𝑡 and stochastic 

volatility, v) time-invariant 𝜽𝜽𝑡𝑡 and stochastic volatility and vi) time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix. The 

lag length is set to 𝑝𝑝 = 4 in all cases. 

The log marginal likelihoods from the estimation of the models are shown in Table 1. As can be seen, the 

marginal likelihood is highest for the models with stochastic volatility (models i, iii, iv and v). While the dif-

ference is small between these models the Bayes factors favour models with time-varying parameters with 

the best model being the fully flexible model i. Turning to the constant variance models (ii and vi) it is clear 

that they have less support in the data and that allowing for time-varying parameters in model ii leads to a 

considerable improvement of the fit. There is thus support for time-varying parameters in the data. But it is 

also clear that the data prefer stochastic volatility over a time-invariant covariance matrix – a finding that also 

is in line with the criticism of Sims (2001) and Stock (2001) against Cogley and Sargent’s (2001) BVAR model 

which had time-varying parameters but a time-invariant covariance matrix. 

Table 1. Marginal likelihood for the different BVAR specifications. 

Model  ln(p(y|M)) 
   

 i  -101.8 

 ii  -107.7 

 iii  -102.2 

 iv  -101.9 

 v  -102.4 

 vi  -112.3 

Note: The models are the following: i) time-varying 𝜽𝜽𝑡𝑡 and stochastic volatility, ii) time-varying 𝜽𝜽𝑡𝑡 and time-invariant covariance matrix, iii) 
time-varying 𝜸𝜸𝑡𝑡, time-invariant 𝜷𝜷𝑡𝑡 and stochastic volatility, iv) time-varying 𝜷𝜷𝑡𝑡, time-invariant 𝜸𝜸𝑡𝑡 and stochastic volatility, v) time-invariant 
𝜽𝜽𝑡𝑡 and stochastic volatility and vi) time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix. 

Summarising the above results, we have found support for both time-varying parameters and stochastic vol-

atility. The fact that parameters appear to be time varying indicates that the Phillips curve is not stable over 

time. We next illustrate what this time variation looks like by illustrating the dynamic properties of model i in 

more detail. 
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3.3 Impulse-response functions 
As was shown above, model i – that is, the model with time-varying 𝜽𝜽𝑡𝑡 and stochastic volatility – was the 

preferred one according to the marginal likelihood calculations. The impulse-response function from this 

model which describes the effect of a shock to inflation on inflation itself is given in Figure 2. We initially 

discuss this impulse-response function since it clearly shows why both time-varying parameters and stochastic 

volatility are favoured features. 

 

As can be seen from the figure, the estimated standard deviation of the shocks to the inflation equation – 

that is, �𝑒𝑒𝑒𝑒𝑒𝑒�ℎ�2𝑡𝑡��
0.5

 – varies a fair bit over time. In 1997, in what may be described as the peak of the Great 

Moderation, it was as low as 0.14. It then increased almost continuously until 2008Q4 when it reached a value 

of 0.51. Since then, the volatility of the shocks has decreased and it is by the end of the sample estimated to 

be approximately 0.27. 

Figure 2. Impulse-response function for model i: The effect of shocks to inflation on inflation, 
1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 

Figure 2 also illustrates that the dynamic properties of the system has changed. The fairly large variation in 

these impulse-response functions indicate that there is non-negligible time variation in the coefficients of the 

model, which leads us to question the stability of the US Phillips curve. This is also confirmed when looking 
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at the estimated coefficients of the inflation equation from the reduced form VAR in equation (6); see Figure 

A2 in the Appendix. 

Turning to the impulse-response functions which perhaps are of primary interest to us, namely the effect that 

shocks to the unemployment rate have on inflation, these can be found in Figure 3. As is clearly shown in 

the figure, a shock to the unemployment rate has a negative effect on inflation; it lowers it by 0.06 to 0.08 

percentage points at the one-quarter horizon and 0.03 percentage points at the two-quarter horizon. It can 

be noted that this effect is rather stable over time. The same thing can be said about the volatility of the shock 

to the unemployment rate; as can be seen from Figure A1 in the Appendix, the standard deviation of this 

shock has been between 0.11 and 0.14 during the entire sample.9 So while there is time variation also in the 

impulse-response functions shown in Figure 3, it is much less pronounced than what we saw in Figure 2. 

Figure 3. Impulse-response function for model i: The effect of shocks to the unemployment rate on 
inflation, 1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 

The fact that shocks to the unemployment rate has had an effect on inflation that has not varied substantially 

over time seems to contradict the claim of a Phillips curve that has flattened markedly in recent years. How-

ever, the impulse-response functions describe the properties of the full bivariate system. A different way to 

assess the slope of the Phillips curve is to look at the sum of the coefficients on the lagged unemployment 

                                                      

9 For completeness, the impulse-response functions showing the effect of shocks to inflation on the unemployment rate are given in Figure 
A3 in the Appendix. 
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rate in the inflation equation of the VAR in equation (6); see, for example, Knotek and Zaman (2017). We 

next turn to this issue. 

3.4 The slope of the Phillips curve 
The estimated parameters of the inflation equation from the reduced form VAR in equation (6) are given in 

Figure A2 in the Appendix. Being interested in the slope of the Phillips curve, we turn our focus to the sum 

of the coefficients on the unemployment rate which is shown in Figure 4. As can be seen, the point estimate 

indicates a non-negligible amount of variation within the sample. At the beginning of the sample, the slope 

is approximately zero but it then falls and reaches a low of -0.2 in 1998. Between 2005 and 2013, the slope is 

more moderate – hovering around -0.09 – only to once again fall and reach values of -0.18 towards the end 

of the sample. We should of course keep in mind that the point estimate is associated with a fair amount of 

uncertainty as illustrated by the 68 percent credible interval; changes should accordingly not be over-inter-

preted. It is nevertheless our best estimate and therefore interesting to note that the Phillips curve may have 

been flatter around the financial crisis than it typically has been during this sample. It hence seems that a 

flatter Phillips curve may have contributed to the surprisingly high inflation outcomes in the aftermath of the 

financial crisis. 

Figure 4. Estimated slope of the Phillips curve for model i, 1990Q1-2017Q3. 

 

Note: Slope is measured as the sum of the coefficients on the lags of unemployment in the inflation equation in equation (6). Coloured band 
is 68% equal tail credible interval. 

A somewhat flatter than usual Phillips curve was not the only thing that contributed to fairly high inflation 

around the financial crisis though. Within the model, a second explanation is to some extent offered by the 
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shocks that according to the model hit the economy. Figure 5 shows the estimated residuals to inflation. As 

can be seen from the figure, a number of large positive shocks hit the economy between 2007Q4 and 2008Q3. 

This contributed to a higher than expected inflation for the following quarters as shown by the impulse-

response functions above. This is to some extent counteracted by the effect of the several large negative 

shocks that the model has identified in 2008Q4 and 2009Q1.10 

Figure 5. Estimated shocks to inflation from model i, 1990Q1-2017Q3. 

 

Note: Estimated shocks are measures in percentage points. Red line is based on median. Coloured band is 68% equal tail credible interval. 

Before leaving the discussion of the slope of the Phillips curve behind, it also deserves to be pointed out that 

the Phillips curve has not been flatter than usual during the most recent years. Since 2015, the slope has been 

between -0.20 and -0.17 which is actually quite steep relative to the rest of the sample; a steeper curve can 

only be found in the late 1990s. This appears to at least to some extent contradict a claim that a flatter Phillips 

curve has been the cause of the weak inflation outcomes that the Federal Reserve have been struggling with 

during this period. 

3.5 Variance decomposition 
As has been shown above, there appears to have been changes over time to both the coefficients describing 

the dynamics of the system and the volatilities of the shocks. Another way of illustrating this fact is to conduct 

a variance decomposition. 

                                                      

10 Our finding that the transmission of shocks to the unemployment rate is not dramatically different around the financial crisis, and that 
large shocks to inflation appear to have contributed to the surprisingly high inflation, is to some extent also in line with previous literature.               
For example, Stock and Watson (2012) concluded – based on analysis from a high-dimensional dynamic factor model – that relatively large 
shocks, not changes in the transmission, caused the Great Recession. 
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Figure 6 shows the variance decomposition where model i has been used to calculate the share of the forecast 

error variance of inflation which is due to shocks to inflation. Note that since the model is bivariate, the share 

of the forecast error variance of inflation which is due to shocks to the unemployment rate is simply one 

minus the share in Figure 6. As is illustrated in the figure, the share of the forecast error of inflation which is 

due to shocks to inflation itself always is fairly large; regardless of time period or horizon, it never falls below 

0.75. That said, there are substantial differences in this share. During the peak of the Great Moderation – that 

is, around 1997 – shocks to the unemployment rate explained approximately 27 percent of the forecast error 

variance of inflation at the twenty-quarter horizon. Around the Great Recession, on the other hand, almost 

all of the variance was explained by shocks to inflation itself. This result seems reasonable when looking at 

the shocks to inflation that the model has identified (in Figure 5) or their estimated standard deviation (which 

can be seen in Figure 2). It would take very large changes in the parameters in 𝜽𝜽𝑡𝑡 in order to offset the change 

in the volatility of inflation shocks given that the volatility of unemployment rate shocks has varied only 

moderately over time. 

Figure 6. Variance decomposition for model i: Share of forecast error variance of inflation explained 
by shocks to inflation, 1990Q1-2017Q3. 

 
Note: Share of forecast error variance explained by shocks to inflation on vertical axis. Horizon in quarters and time on horizontal axes. 

Turning to the forecast error variance decomposition of the unemployment rate, we can see from Figure 7 

that this varies substantially more over time than that of inflation. For example, at the longest horizon – that 

is, 20 quarters – we find that the share explained by shocks to the unemployment rate varies from 0.95 in 

1997 to only 0.39 in 2009Q1. At a general level the pattern is roughly the opposite of that found for inflation. 
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This is not surprising given that the model is bivariate and the previously noted behaviour of the volatilities 

of the shocks to inflation and the unemployment rate. 

Figure 7. Variance decomposition for model i: Share of forecast error variance of unemployment rate 
explained by shocks to the unemployment rate, 1990Q1-2017Q3. 

 
Note: Share of forecast error variance explained by shocks to the unemployment rate on vertical axis. Horizon in quarters and time on 
horizontal axes. 

3.6 Time-varying parameters and estimated “core inflation” 
The dynamics of the model have above been illustrated in a number of ways, including the traditional tools 

that impulse-response functions and variance decompositions constitute in the VAR literature. This has pro-

vided information concerning a number of features of the model, including the stability of the Phillips curve. 

However, in a model with time-varying parameters, there is information based on the change in parameters 

that occurs over time which is not communicated through these standard tools. Since this can be of im-

portance when it comes to the analysis of the Phillips curve, we now address the issue of the estimated “core 

inflation” from the model. 

Defining “core inflation”, we follow the terminology used by Cogley and Sargent (2001, 2005) and accord-

ingly mean the value to which the inflation forecasts from the model will converge.11 Employing the reduced 

form of the VAR in equation (6), we rewrite it in companion form as 

                                                      

11 This concept is also closely related to what is denoted “trend inflation” in the literature; see, for example, Faust and Wright (2013) and 
Clark and Doh (2014) for discussions. 
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𝒚𝒚�𝑡𝑡 = 𝜹𝜹�𝑡𝑡 + 𝑨𝑨𝑡𝑡𝒚𝒚�𝑡𝑡−1 + 𝒆𝒆�𝑡𝑡     (16) 

with 

𝒚𝒚�𝑡𝑡 = �𝒚𝒚𝑡𝑡′ ,𝒚𝒚𝑡𝑡−1′ , … ,𝒚𝒚𝑡𝑡−𝑝𝑝+1′ �′,     (17) 

𝑨𝑨𝑡𝑡 =

⎝

⎜
⎛

𝑨𝑨1𝑡𝑡 𝑨𝑨2𝑡𝑡 ⋯ 𝑨𝑨𝑝𝑝−1,𝑡𝑡 𝑨𝑨𝑝𝑝𝑝𝑝
𝑰𝑰 𝟎𝟎 ⋯ 𝟎𝟎
𝟎𝟎 ⋱
⋮ ⋱ ⋮
𝟎𝟎 ⋯ 𝟎𝟎 𝑰𝑰 𝟎𝟎 ⎠

⎟
⎞

    (18) 

and  

𝒆𝒆�𝒕𝒕 = (𝒆𝒆𝒕𝒕′ ,𝟎𝟎′, … ,𝟎𝟎′)′     (19) 

and solve for the unconditional mean of inflation as the second element of 𝝓𝝓𝑡𝑡 = (𝑰𝑰 − 𝑨𝑨𝑡𝑡)−1𝜹𝜹�𝑡𝑡. 

The median estimated core inflation at each point in time from the model is shown in Figure 8. This shows 

that core inflation was fairly high when the Great Recession hit the US economy in the second quarter of 

2007, namely 2.6 percent; it had reached this value after drifting up from 1.6 percent in 2003Q2. Core inflation 

also stayed reasonably high until 2008Q2 – when it was 2.4 percent – before falling sharply in 2008Q3. It 

hence seems that part of the high inflation during the Great Recession can be explained by high core inflation 

during its first part. 

Figure 8. Estimated “core inflation” from model i, 1990Q1-2017Q3. 

 
Note: “Core inflation” and inflation are measured in percent. Coloured band is 68% equal tail credible interval. 
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Figure 8 also illustrates the stubbornly low inflation during the last few years of our sample. As can be seen 

from the figure, core inflation has at the same time been low. The low inflationary pressure that we have seen 

over the last few years has hence been reflected in the estimated parameters of the model and caused esti-

mated core inflation to decrease noticeably. For the Federal Reserve this means that while shocks to the 

unemployment rate might have roughly the same effect now as it has historically, there should be scope to 

allow for additional inflationary pressures to build up since such pressures could be needed in order to bring 

core inflation back up to the target level of two percent.12 

Summing up the analysis in Sections 3.3 to 3.6 which describes the properties of the model, we note that 

both the time-varying parameters and the stochastic volatility leave highly visible prints. Both features also 

help explain the (perhaps) surprisingly high inflation around the financial crisis: There is an indication that 

the Phillips curve may have been somewhat flatter around the financial crisis and also that core inflation was 

high; in addition, a number of large positive shocks to inflation hit the system during 2007 and 2008. 

3.7 Conditional forecasts 
One common usage of econometric models of the type investigated above is forecasting. In many cases the 

models are simply employed to generate an endogenous forecast. It is, however, also common – particularly 

at policy institutions – to use the models for conditional forecasting. When generating conditional forecasts, 

one or more variables in the model are associated with paths (or distributions) that are assumed by the fore-

caster whereas the rest of the variables behave in accordance with the dynamics of the model. A common 

choice of variable to condition upon is the policy instrument of the central bank; see, for example, Sims 

(1982) and Leeper and Zha (2003). But applications range widely and practical policy questions include as 

diverse issues as effects of a US recession on Latin American GDP growth (International Monetary Fund, 

2007) and effects on Swedish CPI inflation of a depreciating Swedish Krona (Sveriges Riksbank, 2016).13 

Concerning the US Phillips curve as studied in this paper, we believe that a conditional forecasting exercise 

is of certain interest as it can provide us with information regarding the “missing disinflation” associated with 

Great Recession. In line with the analysis presented above, we conduct this exercise using model i. However, 

we also employ the BVAR with time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix in order to provide a comparison 

with a more traditional specification. 

                                                      

12 It can be noted that the formal inflation target that the Federal Reserve introduced in 2012 can be seen as being at conflict with models 
with time-varying parameters of the type used in this paper. Providing a clear focal point for future inflation, it can be argued that inflation 
forecasts should converge to the target level of two percent and that, for example, models with steady-state priors of the type suggested by 
Villani (2009) or Clark (2011) should be considered. However, we believe that the fact that the Federal Reserve’s formal target has been 
active during only a reasonably small part of our sample is a good reason to eomploy our chosen framework. 

13 Further contributions in the field of conditional forecasting – dealing with methodologcal issues and/or empirical applications – include 
Waggoner and Zha (1999), Hamilton and Herrera (2004), Österholm (2009), Baumeister and Kilian (2013), Clark and McCracken (2014) and 
Giannone et al. (2014). 
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We generate inflation forecasts for the period 2008Q1-2010Q4 conditional upon an assumed path for the 

unemployment rate; more specifically, this path is given by the actual unemployment rate. This will show us 

how the models would have predicted future inflation given perfect foresight regarding the unemployment 

rate. 

Conditional forecasts can be produced in different ways; here we consider two methods that we believe are 

representative of current practice. The first method – employed in, for example, Österholm and Zettelmeyer 

(2008) – is recursive and myopic in the sense that it only looks one time period ahead at a time. It can be 

thought of as the result of a decision maker adjusting the future value of a policy variable to achieve a desired 

outcome in the next time period. Technically we consider restrictions of the form 

𝑹𝑹𝑡𝑡+1𝒚𝒚𝑡𝑡+1 = 𝒓𝒓𝑡𝑡+1 = 𝑹𝑹𝑡𝑡+1�𝒚𝒚�𝑡𝑡+1|𝑡𝑡 + 𝒆𝒆𝑡𝑡+1�    (20) 

or  

𝑹𝑹𝑡𝑡+1𝒆𝒆𝑡𝑡+1 = 𝒓𝒓𝑡𝑡+1 − 𝑹𝑹𝑡𝑡+1𝒚𝒚�𝑡𝑡+1|𝑡𝑡 = 𝒅𝒅𝑡𝑡+1    (21) 

where 𝒚𝒚�𝑡𝑡+1|𝑡𝑡 is the one step-ahead unconditional forecast. Given that 𝒆𝒆𝑡𝑡+1 is unconditionally normally dis-

tributed, 𝒆𝒆𝑡𝑡+1~𝑁𝑁(𝟎𝟎,𝛀𝛀𝑡𝑡+1), the conditional distribution of 𝒆𝒆𝑡𝑡+1 given the restriction is 

𝒆𝒆𝑡𝑡+1|𝑹𝑹𝑡𝑡+1𝒆𝒆𝑡𝑡+1 = 𝒅𝒅𝑡𝑡+1     (22)  

~𝑁𝑁(𝛀𝛀𝑡𝑡+1𝑹𝑹𝑡𝑡+1(𝑹𝑹𝑡𝑡+1𝛀𝛀𝑡𝑡+1𝑹𝑹𝑡𝑡+1′)−1𝒅𝒅𝑡𝑡+1,𝛀𝛀𝑡𝑡+1 − 𝛀𝛀𝑡𝑡+1𝑹𝑹𝑡𝑡+1(𝑹𝑹𝑡𝑡+1𝛀𝛀𝑡𝑡+1𝑹𝑹𝑡𝑡+1′)−1𝛀𝛀𝑡𝑡+1𝑹𝑹𝑡𝑡+1′) 

and a draw from the conditional distribution, 𝒆𝒆𝑡𝑡+1𝑐𝑐 , is fed in to generate the conditional fore-

cast, 𝒚𝒚�𝑡𝑡+1𝑐𝑐 = 𝒚𝒚�𝑡𝑡+1|𝑡𝑡 + 𝒆𝒆𝑡𝑡+1𝑐𝑐 . For time 𝑡𝑡 + 2 a new one step-ahead unconditional forecast is generated, taking 

𝒚𝒚�𝑡𝑡+1𝑐𝑐  as the actual outcome and the process is repeated recursively in this manner until the last forecast 

horizon. 

The second approach – suggested by Waggoner and Zha (1999) – considers the restrictions jointly and is 

concerned with the path of the unconstrained variables over the forecast period. It addresses the question 

“what is the most likely path of the unconstrained variables given the restrictions”. Write the joint restrictions 

as 

𝑹𝑹𝒚𝒚𝑡𝑡+1:𝑡𝑡+ℎ = 𝒓𝒓 =

⎝

⎛

𝑹𝑹𝑡𝑡+1 𝟎𝟎
𝑹𝑹𝑡𝑡+2

⋱
𝟎𝟎 𝑹𝑹𝑡𝑡+ℎ⎠

⎞�

𝒚𝒚𝑡𝑡+1
𝒚𝒚𝑡𝑡+2
⋮

𝒚𝒚𝑡𝑡+ℎ

� = �

𝒓𝒓𝑡𝑡+1
𝒓𝒓𝑡𝑡+2
⋮

𝒓𝒓𝑡𝑡+ℎ

�  (23) 

or 

𝑹𝑹𝒆𝒆�𝑡𝑡+1:𝑡𝑡+ℎ = 𝒓𝒓 − 𝑹𝑹𝒚𝒚�𝑡𝑡+1:𝑡𝑡+ℎ = 𝒅𝒅    (24) 
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for 𝒚𝒚�𝑡𝑡+1:𝑡𝑡+ℎ = �𝒚𝒚�𝑡𝑡+1|𝑡𝑡
′ ,𝒚𝒚�𝑡𝑡+2|𝑡𝑡

′ , … ,𝒚𝒚�𝑡𝑡+ℎ|𝑡𝑡
′ �′ the 1 to ℎ step ahead unconditional forecasts and 𝒆𝒆�𝑡𝑡+1:𝑡𝑡+ℎ =

�𝒆𝒆�𝑡𝑡+1|𝑡𝑡
′ ,𝒆𝒆�𝑡𝑡+2|𝑡𝑡

′ , … , 𝒆𝒆�𝑡𝑡+ℎ|𝑡𝑡
′ �′ the 1 to ℎ step ahead forecast errors. The forecast errors are related to the dis-

turbances 𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ = (𝒆𝒆𝑡𝑡+1′ ,𝒆𝒆𝑡𝑡+2′ , … , 𝒆𝒆𝑡𝑡+ℎ′ )′ through the moving average coefficient matrices, e.g. 𝒆𝒆�′𝑡𝑡+𝑖𝑖:𝑡𝑡 =

∑ 𝑪𝑪𝑗𝑗𝒆𝒆𝑡𝑡+𝑖𝑖−𝑗𝑗𝑖𝑖−1
𝑗𝑗=0  or 𝒆𝒆�𝑡𝑡+1:𝑡𝑡+ℎ = 𝑪𝑪𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ and the restriction can be rewritten as 𝑹𝑹�𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ = 𝑹𝑹𝑹𝑹𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ =

𝒅𝒅. Finally let 𝛀𝛀 be the variance-covariance matrix of 𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ. A draw from the distribution of 𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ 

conditional on 𝑹𝑹�𝒆𝒆𝑡𝑡+1:𝑡𝑡+ℎ = 𝒅𝒅 can then be obtained in an analogous way to (22); see Waggoner and Zha 

(1999) and Jarocinski (2010) for details. 

Figure 9 displays the conditional and unconditional forecasts of inflation based on model i. To obtain more 

precise estimates of the parameter values as of 2007Q4 we estimate the model on the full sample rather than 

data up to 2007Q4 where the estimates would suffer from “end of sample” uncertainty. This does accordingly 

not correspond to how a conditional forecasting exercise would have been conducted in real time; rather, it 

is based on today’s best estimate of the parameters of the model at the beginning of the financial crisis. 

Figure 9. Conditional inflation forecasts using model i and estimation based on the full sample. 

 
Note: Median forecasts. Parameter estimates based on full sample but dated 2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 

As can be seen from Figure 9, the joint conditional forecasts show larger swings than the recursive conditional 

forecasts. This is due to two factors: First, the joint forecasts take account for how shocks to inflation influ-

ences future unemployment whereas the shocks to inflation in the recursive forecast only depends on the 
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current shock to unemployment. Second, the volatility of inflation is much higher than the volatility of un-

employment and shocks to inflation are much “cheaper” when considering the most likely path for the vari-

ables. Judging by the results in Figure 9, it is difficult to claim that there is much evidence of a missing 

disinflation. Admittedly the recursive conditional forecasts are somewhat lower than actual inflation during 

the first three quarters of 2008. However, the differences between the conditional forecasts and actual infla-

tion are typically not very large and generally positive; they do not suggest that the model wanted substantially 

lower inflation than the one that materialized. 

Since the forecasts in Figure 9 were based on parameters using the full sample (1990Q1-2017Q3), we also 

construct forecasts using data only up until 2007Q4 in order to see if this affects our conclusion. Using this 

shorter sample, we provide a better approximation to what the model would have suggested in real time.14 

The results from this exercise are presented in Figure A4 in the Appendix. Some differences relative to the 

results presented in Figure 9 can be found, most importantly that the forecasts generated under joint re-

strictions are not associated with an initial upturn in inflation. Regardless of how the forecasts were made, it 

is clear that the model has no missing disinflation when it is estimated on this sample either. 

Finally, we also generate conditional forecasts from the BVAR with time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix 

based on the estimation sample 1990Q1-2007Q4. These results are presented in Figure A5 in the Appendix. 

As can be seen, there is still a discrepancy between the conditional forecasts generated using the recursive 

method and those based on the joint restrictions. It is utterly clear though that regardless of how the forecasts 

are made, the model does not suggest a sizable drop in inflation in response to the increasing unemployment 

rate. Once again, the model-based analysis suggests that there was no missing disinflation. 

3.8 Sensitivity analysis 
Having conducted the above analysis, we finally want to assess how sensitive our results are with respect to 

some key concepts, namely the inflation measure and our choice of priors. In this section we accordingly first 

conduct analysis using two alternative measures of inflation; we then vary some of our prior parameters (using 

the data employed in the main analysis). 

3.8.1 CORE PCE INFLATION 

When discussing monetary policy, it is common to relate central banks’ actions to “core” measures of infla-

tion, that is, inflation measures that have had some volatile components removed. (Note that this is not 

related to “core inflation” which was discussed in Section 3.6; we can only agree that the terminology is 

                                                      

14 We do not use real-time data though, so this is does not show exactly what the model would have predicted in real-time. However, given 
the purpose of the exercise, we do not believe that this is strictly necessary either. 
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unfortunate and could be confusing.) Since we have used PCE inflation in our analysis above, we here ac-

cordingly investigate if our results are robust to using core PCE inflation instead. In constructing this meas-

ure, food and energy prices have been removed from the PCE deflator. Inflation is calculated as 𝜋𝜋𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

100(𝑃𝑃𝑡𝑡𝑐𝑐 𝑃𝑃𝑡𝑡−4𝑐𝑐 − 1⁄ ) where 𝑃𝑃𝑡𝑡𝑐𝑐 is the core PCE deflator at time t. 

Figures A6 to A11 in the Appendix show selected results from this analysis based on model i. As can be seen 

from Figure A6, the impulse-response function of core PCE inflation with respect to a shock to the unem-

ployment rate is qualitatively similar to what we saw in Figure 3 (when PCE inflation was used) in that there 

is an initial decline in inflation. It can be noted though that there appears to be somewhat more time variation 

in the effect when core PCE inflation is used. Turning to the slope of the Phillips curve in Figure A7, we find 

that using core PCE inflation does not change our findings from above; the results are very similar both 

qualitatively and quantitatively to those discussed in Section 3.4. 

The variance decompositions in Figures A8 and A9, on the other hand, look distinctly different from those 

shown in Figures 6 and 7. We note that they have a much more even profile over time than when PCE 

inflation was used and that shocks to inflation also are found to be much less important. This latter fact is of 

course not particularly surprising as we have employed a less volatile measure of inflation.15 Regarding the 

estimated core inflation shown in Figure A10, we can see that a very similar story is being told as that in 

Figure 8. Core inflation was high leading up to the Great Recession but then fell and for the last few years of 

the sample it has been clearly below two percent. 

Finally, turning to the conditional forecasts (based on estimation using the full sample) shown in Figure A11, 

they also confirm our conclusions from Section 3.7. The model does not suggest that there was any missing 

disinflation. 

3.8.2 QUARTER-ON-QUARTER INFLATION 

When modelling inflation it is also not obvious that it is the annual change in the PCE deflator that we want 

to use as our measure. Another relevant alternative is to use the (annualised) quarterly change, that is, we 

define PCE inflation as 𝜋𝜋𝑡𝑡 = 400(𝑃𝑃𝑡𝑡 𝑃𝑃𝑡𝑡−1 − 1⁄ ). Results based on this inflation measure and model i are 

shown in Figures A12 to A17 in the Appendix. 

As can be seen from Figure A12, the impulse-response function of inflation with respect to the shocks to the 

unemployment rate looks qualitatively similar to that when annual changes were used (shown in Figure 3). 

Also the slope of the Phillips curve – given in Figure A13 – has roughly the same story attached to it as 

before; looking at the point estimate, the curve was flatter around the financial crisis than in the late 1990s or 

near the end of our sample. 

                                                      

15 The standard deviation of the shock to the inflation equation (not reported in detail but available upon request) ranges from approximately 
0.06 to 0.1 over time. 
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Looking at the variance decompositions in Figures A14 and A15, we note that they also show the same 

patterns as in our main analysis. Shocks to inflation are less important for both inflation and the unemploy-

ment rate around the mid-1990s and peak in their contribution to the forecast error variance of both variables 

in 2010Q1. 

As for core inflation, our previous picture is once again confirmed. Figure A16 shows that core inflation was 

above two percent going into the Great Recession and as before, it has been low near the end of the sample. 

The last aspect that we consider is the conditional forecasts (once again based on estimation using the full 

sample). As can be seen from Figure A17, the conditional forecasts based on the recursive method are largely 

in line with the level of actual inflation, even though there is a tendency to under-predict inflation for the first 

three quarters of 2008 and over-predict it thereafter; in particular, the model does not do a good job in 

matching the substantial fall in inflation which took place in 2008Q4. Taken together though, we believe that 

while the model for the first three quarters wants slightly less inflation than what materialised, the overall 

picture is hardly one of missing disinflation. For the conditional forecasts based on the joint method, the 

picture is somewhat different. The model does a fairly good job in replicating the path of actual inflation, 

roughly catching its swings. However, the model tends to under-predict inflation during 2009 and 2010. 

Unlike the previous results, we here finally find something that could be interpreted as model support for the 

claim of missing disinflation. It should of course be kept in mind that this is based on the point forecast and 

while this – as pointed out above – is our best estimate, there is a fair amount of uncertainty associated with 

these forecasts. 

3.8.3 PRIORS 

The choice of prior parameters affects the marginal likelihood and can influence the ranking of the six models 

when comparing marginal likelihoods. As the difference between the models lie in the degree to which they 

allow for time-varying parameters or time-varying volatilities we focus on the prior parameters governing 

these features. More specifically we modify the prior means of the variance of the changes in the parameters 

and log-volatilities (𝜼𝜼𝑡𝑡 and 𝝃𝝃𝑡𝑡 in the state equations (4) and (5)) by halving or doubling 𝑆𝑆𝜃𝜃𝜃𝜃 and 𝑆𝑆ℎ𝑖𝑖. The 

results of this exercise are displayed in Table 2. For ease of comparison we also repeat the results for our 

preferred specification (with 𝑆𝑆𝜃𝜃𝜃𝜃 = 0.0004 for coefficients on the lags of variables and 0.04 for intercepts 

and 𝑆𝑆ℎ𝑖𝑖 = 0.04) in column 2 of the Table. 
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Table 2. Marginal likelihood for different prior specifications. 

Model ln(p(y|M)) 
 𝑆𝑆𝜃𝜃𝜃𝜃, 𝑆𝑆ℎ𝑖𝑖 𝑆𝑆𝜃𝜃𝜃𝜃/2, 𝑆𝑆ℎ𝑖𝑖/2 2 × 𝑆𝑆𝜃𝜃𝜃𝜃, 𝑆𝑆ℎ𝑖𝑖/2 𝑆𝑆𝜃𝜃𝜃𝜃/2,2 × 𝑆𝑆ℎ𝑖𝑖 2 × 𝑆𝑆𝜃𝜃𝜃𝜃, 2 × 𝑆𝑆ℎ𝑖𝑖 𝑆𝑆𝜃𝜃𝜃𝜃, 2 × 𝑆𝑆ℎ𝑖𝑖 

i -101.8 -104.1 -106.0  -100.1 -103.4 -100.0 

ii -107.7 -109.1 -110.2 -109.1 -110.2 -107.7 

iii -102.2 -105.3 -104.0 -100.1 -98.7 -99.6 

iv -101.9 -104.0 -106.5 -100.3 -103.4  -100.1 

v -102.4 -105.0 -105.0 -100.0 -100.0 -100.0 

vi -112.3 -112.3 -112.3 -112.3 -112.3 -112.3 

Note: The models are the following: i) time-varying 𝜽𝜽𝑡𝑡 and stochastic volatility, ii) time-varying 𝜽𝜽𝑡𝑡 and time-invariant covariance matrix, iii) 
time-varying 𝜸𝜸𝑡𝑡, time-invariant 𝜷𝜷𝑡𝑡 and stochastic volatility, iv) time-varying 𝜷𝜷𝑡𝑡, time-invariant 𝜸𝜸𝑡𝑡 and stochastic volatility, v) time-invariant 
𝜽𝜽𝑡𝑡 and stochastic volatility and vi) time-invariant 𝜽𝜽𝑡𝑡 and covariance matrix. 
The log marginal likelihood for the best model is shown in bold and italics, the second best model in bold and the third best in italics. 
 

With the exception of model vi, which does not depend on 𝑆𝑆𝜃𝜃𝜃𝜃 and 𝑆𝑆ℎ𝑖𝑖, decreasing or increasing 𝑆𝑆𝜃𝜃𝜃𝜃 tend to 

lead to a lower marginal likelihood, decreasing 𝑆𝑆ℎ𝑖𝑖 tend to lead to a lower marginal likelihood and increasing 

𝑆𝑆ℎ𝑖𝑖 tend to lead to a higher marginal likelihood. While the ranking of the models change with the prior 

parameters the difference in marginal likelihood between the models with stochastic volatility (models i, iii, 

iv and v) is quite small and does not affect our overall conclusion that there is support for both time-varying 

parameters and time-varying volatility. 

To illustrate the effect of the prior specification on the results reported above Figures A18 to A21 show 

selected results for the prior setting in column 𝑆𝑆𝜃𝜃𝜃𝜃/2,2 ×  𝑆𝑆ℎ𝑖𝑖 of Table 2 that favors time-varying volatility 

and limits variability in the parameters. That is, 𝑆𝑆𝜃𝜃𝜃𝜃 = 0.0002 except for the intercepts where it is set to 0.02 

and 𝑆𝑆ℎ𝑖𝑖 = 0.08. Overall the results are largely unaffected by the change in the prior specification. The shape 

of the impulse responses for inflation (Figures A18 and A19) are quite close although there is more variability 

in the volatilities as is evident from the lag zero response in inflation to a shock to inflation in Figure A18. 

The slope of the Phillips curve in Figure A20 shows less variability than Figure 4 but the overall shape is very 

similar, confirming the conclusions in section 3.4. The conditional forecasts in Figure A21 are also qualita-

tively very similar to Figure 9, confirming the conclusion of Section 3.7 that there was no missing disinflation. 

4. Conclusions 
The Phillips curve is a popular tool in macroeconomics which, among other things, is used to assess infla-

tionary pressure in the economy. However, its usefulness for this purpose depends on having a good econo-

metric specification. In this paper we have added empirical evidence concerning the properties of the US 

Phillips curve by analysing different specifications of BVAR models. Conducting Bayesian model selection 

using recently developed methods for this purpose, we find that that both time-varying parameters and sto-

chastic volatility appear to be features that the BVAR should incorporate. Our results indicate that the Phillips 

curve may have been somewhat flatter between 2005 and 2013 than in the decade preceding that period. This 

fact – together with a number of large positive shocks and high core inflation – can help explain why inflation 

was high around the Great recession. 
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In addition, our findings from the conditional forecasting exercises conducted suggest that as far as the mod-

els are concerned, there may not have been that much of a missing disinflation associated with the Great 

Recession. Conditioning on the increase in the unemployment rate that actually took place, different model 

specifications and restrictions yield somewhat different results. However, the models did not in general pre-

dict that inflation should have been lower than what turned out to be the case. While we believe that all of 

the above information is useful, we also want to point out that it to some extent shows the downside of 

working with small non-structural models. It is after all difficult to give a deep economic interpretation of, 

for example, shocks to the inflation equation and the estimated core inflation. 

From a policy perspective, our results imply two things. First, policy institutions and forecasters need to 

consider the fact that both dynamic relations and the volatility of shocks may be changing over time when 

building econometric models. Since methods for model selection have been improved, it is also the case that 

the econometric modelling choice can stand on firmer ground nowadays; where the econometrician previ-

ously largely had to make an assumption regarding the relevance of different specifications, they can now be 

formally compared. Second, the stubbornly low inflation in the United States the last few years appears, at 

least to some extent, to be due to low inflationary pressures which have affected the estimated core inflation. 

This means that there might be scope for the federal funds rate to be quite low even in light of a low unem-

ployment rate. Such a policy response could be needed in order to let inflationary pressures build up in the 

economy and reliably bring inflation back up to the target level. 
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Appendix 

Figure A1. Impulse-response functions for model i: The effect of shocks to the unemployment rate on 
the unemployment rate, 1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on the unemployment rate in percentage points on vertical axis. Horizon in quarters 
and time on horizontal axes. 

Figure A2. Estimated coefficients of the inflation equation of model i, 1990Q1-2017Q3. 

 
Note: Time on horizontal axes.  
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Figure A3. Impulse-response functions for model i: The effect of shocks to inflation on the 
unemployment rate, 1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on the unemployment rate in percentage points on vertical axis. Horizon in quarters 
and time on horizontal axes. 

Figure A4. Conditional inflation forecasts using model i and estimation based on the sample 1990Q1-
2007Q4. 

 
Note: Median forecasts. Parameter estimates are based on the sample 1990Q1-2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 
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Figure A5. Conditional inflation forecasts using model vi and estimation based on the sample 
1990Q1-2007Q4. 

 
Note: Median forecasts. Parameter estimates are based on the sample 1990Q1-2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 

Figure A6. Impulse-response function for model i using core PCE inflation: The effect of shocks to the 
unemployment rate on core PCE inflation, 1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 
  

2015
2010

2005

  

2000
1995-0.04

-0.03

-0.02

1990

-0.01

0 5

0

10 15

0.01

20

0.02

0.03



30 

Figure A7. Estimated slope of the Phillips curve for model i using core PCE inflation, 1990Q1-2017Q3. 

 

Note: Slope is measured as the sum of the coefficients on the lags of unemployment in the inflation equation in equation (6). Coloured band 
is 68% equal tail credible interval. 

Figure A8. Variance decomposition for model i using core PCE inflation: Share of forecast error 
variance of PCE inflation explained by shocks to PCE inflation, 1990Q1-2017Q3. 

 

Note: Share of forecast error variance explained by shocks to inflation on vertical axis. Horizon in quarters and time on horizontal axes. 
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Figure A9. Variance decomposition for model i using core PCE inflation: Share of forecast error 
variance of unemployment rate explained by shocks to the unemployment rate, 1990Q1-2017Q3. 

 

 
Note: Share of forecast error variance explained by shocks to the unemployment rate on vertical axis. Horizon in quarters and time on 
horizontal axes. 

Figure A10. Estimated “core inflation” from model i using core PCE inflation, 1990Q1-2017Q3. 

 
Note: “Core inflation” and inflation are measured in percent. Coloured band is 68% equal tail credible interval. 
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Figure A11. Conditional inflation forecasts using model i and core PCE inflation; estimation based on 
the full sample. 

 
Note: Median forecasts. Parameter estimates based on full sample but dated 2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 

Figure A12. Impulse-response function for model i using quarter-on-quarter PCE inflation: The effect 
of shocks to the unemployment rate on PCE inflation, 1990Q1-2017Q3. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 
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Figure A13. Estimated slope of the Phillips curve for model i using quarter-on-quarter PCE inflation, 
1990Q1-2017Q3. 

 

Note: Slope is measured as the sum of the coefficients on the lags of unemployment in the inflation equation in equation (6). Coloured band 
is 68% equal tail credible interval. 

Figure A14. Variance decomposition for model i using quarter-on-quarter PCE inflation: Share of 
forecast error variance of PCE inflation explained by shocks to PCE inflation, 1990Q1-2017Q3. 

 

Note: Share of forecast error variance explained by shocks to inflation on vertical axis. Horizon in quarters and time on horizontal axes. 
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Figure A15. Variance decomposition for model i using quarter-on-quarter PCE inflation: Share of 
forecast error variance of unemployment rate explained by shocks to the unemployment rate, 
1990Q1-2017Q3. 

 
Note: Share of forecast error variance explained by shocks to the unemployment rate on vertical axis. Horizon in quarters and time on 
horizontal axes. 

Figure A16. Estimated “core inflation” from model i using quarter-on-quarter PCE inflation, 1990Q1-
2017Q3. 

 

Note: “Core inflation” and inflation are measured in percent. Coloured band is 68% equal tail credible interval. 
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Figure A17. Conditional inflation forecasts using model i and quarter-on-quarter PCE inflation; 
estimation based on the full sample. 

 
Note: Median forecasts. Parameter estimates based on full sample but dated 2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 

Figure A18. Impulse-response function for model i: The effect of shocks to inflation on inflation, 
1990Q1-2017Q3. Alternative prior with 𝑺𝑺𝜽𝜽𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎,𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and 𝑺𝑺𝒉𝒉𝒉𝒉 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 
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Figure A19. Impulse-response function for model i: The effect of shocks to the unemployment rate on 
PCE inflation, 1990Q1-2017Q3. Alternative prior with 𝑺𝑺𝜽𝜽𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎,𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and 𝑺𝑺𝒉𝒉𝒉𝒉 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 

 

Note: Size of impulse is one standard deviation. Effect on inflation in percentage points on vertical axis. Horizon in quarters and time on 
horizontal axes. 

Figure A20. Estimated slope of the Phillips curve for model i, 1990Q1-2017Q3. Alternative prior with 
𝑺𝑺𝜽𝜽𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎,𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and 𝑺𝑺𝒉𝒉𝒉𝒉 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 

 
Note: Slope is measured as the sum of the coefficients on the lags of unemployment in the inflation equation in equation (6). Coloured band 
is 68% equal tail credible interval. 
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Figure A21. Conditional inflation forecasts using model i; estimation based on the full sample. 
Alternative prior with 𝑺𝑺𝜽𝜽𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎,𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 and 𝑺𝑺𝒉𝒉𝒉𝒉 = 𝟎𝟎.𝟎𝟎𝟎𝟎. 

 
Note: Median forecasts. Parameter estimates based on full sample but dated 2007Q4. “Recursive forecast” refers to conditional forecasts 
having been generated based on the restrictions in equation (21). “Joint forecast” refers to conditional forecasts having been generated 
based on the restrictions in equation (24). 
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