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Abstract

Covariance matrix of the asset returns plays an important role in the portfolio

selection. A number of papers is focused on the case when the covariance matrix

is positive definite. In this paper, we consider portfolio selection with a singu-

lar covariance matrix. We describe an iterative method based on a second order

damped dynamical systems that solves the linear rank-deficient problem approxi-

mately. Since the solution is not unique, we suggest one numerical solution that can

be chosen from the iterates that balances the size of portfolio and the risk. The nu-

merical study confirms that the method has good convergence properties and gives

a solution as good as or better than the constrained least norm Moore-Penrose solu-

tion. Finally, we complement our result with an empirical study where we analyze

a portfolio with actual returns listed in S&P 500 index.
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1 Introduction

Modern portfolio theory has drawn much attention in the academic literature starting from

1952 when Harry Max Markowitz published his seminal paper about portfolio selection

(see Markowitz (1952)). He proposed efficient way of portfolio allocation that guarantees

the lowest risk for a given level of the expected return.

A number of papers are devoted to questions like, e.g., how can an optimal portfolio be

constructed, monitored, and/or estimated by using historical data (see, e.g., Alexander

& Baptista (2004), Golosnoy & Okhrin (2009), Bodnar (2009), Bodnar et al. (2017a),

Bauder et al. (2018)), what is the influence of parameter uncertainty on the portfolio

performance (cf., Okhrin & Schmid (2006), Bodnar & Schmid (2008)), how do the asset

returns influence the portfolio choice (see, e.g., Jondeau & Rockinger (2006), Mencia &

Sentana (2009), Adcock (2010), Harvey et al. (2010), Amenguala & Sentana (2010)), how

is it possible to estimate the characteristics of the distribution of the asset returns (see,

e.g., Jorion (1986), Wang (2005), Frahm & Memmel (2010)), how can the structure of

optimal portfolio be statistically justified (Gibbons et al. (1989), Britten-Jones (1999),

Bodnar & Schmid (2009)). Björk et al. (2014) studied the mean-variance portfolio opti-

mization in continuous time, whereas Liesiö & Salo (2012) developed a portfolio selection

framework which uses the set inclusion to capture incomplete information about scenario

probabilities and utility functions. Chiarawongse et al. (2012) formulated a mean-variance

portfolio selection problem that accommodates qualitative input about expected returns

and provided an algorithm that solves the problem, while Levy & Levy (2014) analyzed

the parameter estimation error in portfolio optimization.

All above discussed papers are focused on the case when the covariance matrix of the

asset returns is positive definite. In practice, covariance matrix is unknown, therefore,

it needs to be estimated using historical data. Most common estimators are sample

and maximum likelihood estimators. If the number of observations is greater than the

number of assets in the portfolio then both estimators of the covariance matrix are positive

definite. However, if the number of observations is less than the number of assets in

the portfolio then both estimators of the covariance matrix are singular. Since optimal

portfolio weights depend on the inverse of the covariance matrix, the original optimization

problem formulated by Markowitz (1952) will have an infinite number of solutions. In

Pappas et al. (2010), the solution to the optimization problem with singular covariance

matrix is obtained by replacing the inverse with the Moore-Penrose inverse. It leads

us to the unique solution with the minimal Euclidean norm. Statistical properties of the

optimal portfolio weights for small sample and singular covariance matrix are well studied

by Bodnar et al. (2016, 2017b) and Bodnar et al. (2018).

The main aim of the present paper is to deliver an alternative approach that works

better than Moore-Penrose inverse. In particular, we employ an iterative method that

solves the linear ill-posed problem approximately. Iterative methods for linear ill-posed
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problems are certainly not new and include classical methods like Landweber iteration

with Nesterov acceleration and Conjugate gradient methods, see Neubauer (2000, 2017).

Very recently a new approach has been developed based on second order damped dy-

namical systems, see Zhang & Hofmann (2018) for the ill-posed linear case. In Zhang

& Hofmann (2018) it is shown that the method is a regularization method, i.e., loosely

speaking for an ill-posed linear problem there exists a unique solution when the number of

iterations tend to infinity and the error tends to zero. We have applied and extended this

method to the rank-deficient and linearly constrained portfolio selection problem consid-

ered here. Specifically, we show that the method is convergent and how to choose optimal

parameters (time step and damping). As seen in Sections 3.1, 3.2 the iterative method

generally performs better in the sense of giving a smaller risk and smaller weights of the

optimal portfolio.

The rest of the paper is structured as follows. In Section 2, an iterative approach

to ill-conditioned optimal portfolio selection is discussed. The results of numerical and

empirical studies are discussed in details in Section 3, while Section 4 summarizes the

paper.

2 Main Results

We consider a portfolio of k assets and let xi = (x1i, . . . , xki)
T be the k-dimensional

vector of log-returns of these assets at time i = 1, . . . , N . We assume that the second

moment of xi is finite. Let the mean vector of the asset returns be denoted by µ and the

covariance matrix by Σ such that rank(Σ) = r ≤ k, i.e. Σ can also be singular matrix.

Let w = (w1, . . . , wk)
T be the vector of portfolio weights, where wj denotes the weight of

the jth asset, and let 1 be the vector of ones while I be the identity matrix. In general

we allow for short sales and therefore for negative weights.

The classical problem of portfolio selection is defined as

min
w

wTΣw s.t. wT1 = 1, wTµ = q (1)

where q is the expected rate of return that is required on the portfolio. If Σ is a positive

definite matrix then the optimization problem (1) has unique solution which is given by

w =
C − qB
AC −B2

Σ−11 +
qA−B
AC −B2

Σ−1µ (2)

where A = 1TΣ−11, B = 1TΣ−1µ, C = µTΣ−1µ. However, if Σ is singular then

the optimization problem (1) has an infinite number of solutions. Pappas et al. (2010)

suggested the solution that appears to be unique with the minimal Euclidean norm and
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is obtained by replacing the inverse with the Moore-Penrose inverse

w =
C − qB
AC −B2

Σ+1 +
qA−B
AC −B2

Σ+µ (3)

with A = 1TΣ+1, B = 1TΣ+µ, C = µTΣ+µ.

In practice, both µ and Σ are unknown parameters and the investor cannot determine

w. Consequently, she/he should estimate µ and Σ using previous observations. The most

common estimators of µ and Σ are given by

µ̂ =
1

N

N∑
i=1

xi =
1

N
X1, and Σ̂ =

1

N − 1

N∑
i=1

(xi − µ̂)(xi − µ̂)T =
1

N − 1
XVXT , (4)

where X = (x1, . . . ,xN), and V = I− 1
N

11T is a symmetric and idempotent matrix, i.e.,

V = VT and V2 = V. If N ≥ k then sample covariance matrix Σ̂ is positive definite,

but Σ̂ is singular when N < k. Hence, we can get the case when portfolio size is larger

the sample size and, therefore, sample covariance matrix will be singular. Then one can

use the solution with smallest Euclidean norm that is defined in (3). Alternatively, one

can use an iterative approach that is discussed in the next section.

Here we will derive a new unconstrained problem by projecting w to the subspace of

the constraints. Define

B =

[
1T

µT

]
, c =

[
1

q

]
,

then the constraints can be written as Bw = c and the solution is w = Zu + g where

Z spans the null space of B and g is any solution to Bw = c. After some algebra the

minimization problem (1) can be written as

min
u

uTZTΣZu + 2gTΣZu + gTΣg = Φ(u). (5)

The solution will be uniquely defined if M = ZTΣZ is invertible. In the following we

always choose g = B+c where B+ is the Moore-Penrose inverse of B, i.e., g is the least

norm solution to the constraint equations.

2.1 The Discrete Functional Particle Method

Let us first consider the minimization problem

min
u∈Rn

V (u), (6)

where V : Rn → R is at least a twice continuously differentiable convex function giving a

unique solution u∗. We use the conventional notation for inner-product in Rn and norm

as (·, ·) and ‖ · ‖, respectively, with subindices added to specify the underlying norm if
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needed.

The main idea for solving (6) is to utilize the fact that the solution u∗ to (6) is also a

stationary solution to the second order damped dynamical system

ü(t) + ηu̇(t) = −∇V (u(t)), η > 0, (7)

and this solution is unique and globally exponentially stable, see, e.g., references in Bégout

et al. (2015). The problem (7) naturally appears in modelling mechanical systems where

a relevant example is the heavy ball with friction system (HBF). In this case (7) describes

the motion of a material point with positive mass (equal to 1 in (7)). The optimization

properties for HBF with different friction have been studied in detail in Attouch et al.

(2000); Attouch & Alvarez (2000); Alvarez (2000), and references therein. Throughout

the whole chapter we reserve the dot notation for the derivatives with respect to the

fictious time t.

After the problem has been formulated as (7), it is necessary to choose a numerical

method for solving (7) that is efficient and fast enough. The key observation to make this

choice is to recognize that the dynamical system (7) is Hamiltonian with the total energy

E(u(t), u̇(t)) = V (u(t)) +
1

2
‖u̇(t)‖2, (8)

which, in fact, is also a Lyapunov function to (7) (and, as stated before, therefore guar-

antees convergence). It is easy to see that the energy will decrease exponentially in time

resulting in an exponential decay of ‖u(t)−u∗‖, Bégout et al. (2015). Symplectic methods,

such as symplectic Runge-Kutta, Störmer-Verlet, and etc., are tailor-made for Hamilto-

nian systems and preserve the energy (Bhatt et al. (2016)). This serves as the motivation

for our choice of numerical method.

Let us rewrite (7) as the first order system

u̇ = v

v̇ = −ηv −∇V (u).
(9)

Then, we apply a one step symplectic explicit method, such as symplectic Euler or

Störmer-Verlet Hairer et al. (2006), which give us an iterative map on the form

wk+1 = F (wk,∆tk, ηk),wk = (uk,vk), k = 1, 2, . . . , (10)

where the time step ∆tk, damping ηk may be independent of k. The choice of parameters

∆tk and ηk can be aimed to optimize the performance of the numerical method, which

generally is a non-trivial task.

We call the approach of finding the solution to (6) by solving (7) with a symplectic

method as the dynamical functional particle method (DFPM) (see Gulliksson et al. (2013)).
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We would like to emphasize that it is the combination of the damped dynamical system

together with an efficient (fast, stable, accurate) symplectic solver that makes DFPM a

very competitive method.

Let us now return to our main optimization problem (1) and assume that we have

eliminated the constraints as in (5). If we define M = ZTΣZ,d = ZTΣg we get the

unconstrained problem

min
u∈Rn×n−2

1

2
uTMu− uTd, M ∈ Rn×n−2, d ∈ Rn, (11)

where we will assume that M is positive semidefinite. In the general setting of the

minimization problem (6) we can define

V (u) =
1

2
uTMu− uTd (12)

and it is straightforward to formulate DFPM for V (u) in (12) as

ü + ηu̇ = d−Mu. (13)

or the first order system

u̇ = v

v̇ = −ηv + (d−Mu).
(14)

Additionally we need intial conditions, say, u(0) = u0, u̇(0) = v0. Using symplectic Euler

on (14) we get {
vk+1 = (I −∆t η)vk −∆t(d−Muk)

uk+1 = uk + ∆tvk+1

(15)

or, equivalently,

wk+1 = Gwk + c, G =

[
I−∆t2 M ∆t(1−∆t η) I

∆t I (1−∆t η) I

]
, g =

[
−∆t2d

−∆td

]
, (16)

where wk = [uk, vk]
T .

It has been shown, see, e.g., Edvardsson et al. (2015) that DFPM based on (15)

clearly outperforms classical iterative methods such as Gauss-Seidel, Jacobi, as well as

the method based on a first order ODE. Conjugate gradient methods can in some cases

compete in efficiency with DFPM but do not have the regularization properties that we

need here, see Zhang & Hofmann (2018) for details.
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2.2 Convergence analysis and choice of parameters

When M in (11) has full rank u(t) will converge to the unique solution u = M−1d.

Turning to the the rank-deficient case we consider the SVD of M = UΣMUT and tranform

(13) to

ÿ + ηẏ = f −ΣMy,ΣM = diag(s1, . . . , srM , 0, . . . , 0), si > 0, (17)

where rM is the rank of M. Since the system now is decoupled we can by partitioning

f =
[
fT1 , f

T
2

]T
write the solution of (17) as

yi(t) =
1

si
f 1
i + α11

i e
−γ1i t + α12

i e
−γ2i t, i = 1, . . . , rM ,

yi(t) = α21
i + α12

i e
−η∗t +

1

η
f 2
i t, i = rM + 1, . . . , n,

where γji = η/2±
√
η2/4− si and αji are given by the initial conditions. We conclude that

the solution is unbounded and grows linearly with t. However, that does not mean that

the dynamical system (17) can not be used for getting one, of infinitely many, solutions to

(1). Indeed, by iteratively solving (17) and carefully choosing when to stop the iterations

we attain a, hopefully useful, regularized solution. This is called iterative regularization

in the literature of ill-posed problems and is an alternative to the least norm solution

Vogel (2002).

In order to ensure fast convergence of the iterative scheme (15) one must choose the

time step and damping such that for convergence ‖G‖ < 1 and for efficiency ‖G‖ is as

small as possible. The otpimal choice of parameters can be summarized in the following

theorem, see Gulliksson (2017) and references therein.

Theorem 1. Consider symplectic Euler (15) where λi = λi(M) > 0 are the eigenvalues

of M. Then the parameters

∆t =
2√

λmin +
√
λmax

, η =
2
√
λmin
√
λmax√

λmin +
√
λmax

, (18)

where λmin = mini λi and λmax = maxi λi are the solution to the problem

min
∆t,η

max
1≤i≤2n

|µi(G)|,

where µi(G) are the eigenvalues of G.

However, the result in Theorem 1 is not applicable for the case when M does not have

full rank since the smallest eigenvalue will be zero and the damping will in turn be zero

giving an oscillating solution that does not converge to a solution of the underdetermined

system. Therefore, we choose the parameters only in the subspace defined by the nonzero

eigenvalues of M.
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Theorem 2. Assume that λi(M) > 0, i = 1, . . . , rM are the nonzero eigenvalues of M

and the rest of the eigenvalues are zero. Then symplectic Euler (15) with parameters

∆t =
2√

λrM +
√
λmax

, η =
2
√
λrM
√
λmax√

λrM +
√
λmax

, (19)

where λrM = minλi>0 λi and λmax = maxi λi is convergent.

Proof. The time step is smaller and the damping is larger than the parameters given by

Theorem 1 and therefore the method is stable and convergent.

3 Numerical and Empirical Studies

3.1 Numerical Study

In this section we examine the iterative approach which is proposed by us. In particular,

we evaluate optimal portfolio weights, its norm and variance of portfolio return. All

results are compared with the optimal portfolio weights which are obtained by using

Moore-Penrose inverse.

In the simulation study, we take q = 10. Each element of µ is uniformly distributed

on [0,1]. We also take Σ = UTΛU, where Λ is the k × k diagonal matrix with the first

r non-zero elements which are uniformly distributed on (0, 1] and multiplied by 10, while

the rest of the diagonal elements of Λ are taken to be 0, U is the k×k orthogonal matrix

that is formed from the orthonormal eigenvectors of Λ. The results are compared for

several values of k ∈ {10, 50, 100, 150, 300} and r ∈ {0.1k, 0.4k, 0.6k, 0.9k}.
The solution is not unique but one numerical solution can be chosen from the iterates

that balances the size of the portfolio and the risk, see Figure 1. Therefore, the choice of

convergence criteria is important in order to stop the iterations at a satisfactory solution.

We have chosen to use a relative convergence criterion based on the projected objective

function, i.e., we stop the iterations when

εk < tolerance, εk = ‖∇Φ(uk)‖/Φ(uk)

where uk is the approximation of the solution of (5) at iteration k and Φ(u) is defined in

(5). The tolerance is set to 10−12 in order to get a small risk. Again refering to Figure 1,

we note that a higher tolerance will give a higher risk but smaller size of portfolio (norm

of w). Maximum number of iterations is taken to be 104 but in the presented tables this

is not achieved.

In Figures 2-6, we present optimal portfolio weights that are obtained by using DFPM

approach and Moore-Penrose inverse. We observe that behaviour of the weights is quite

different. In particular, for k ∈ {100, 150, 300} we can observe that absolute values of
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r = 0.1k r = 0.4k r = 0.6k r = 0.9k

k = 10 1.9054e+01 1.7855e+01 1.2845e+01 1.0683e+01
(1.2339e+01) (8.9739e+01) (1.3443e+01) (1.1076e+01)

k = 50 2.1670e+01 1.7561e+01 1.7440e+01 1.3007e+01
(2.0385e+01) (8.4677e+00) (1.2035e+01) (1.3529e+01)

k = 100 2.8944e+01 2.6371e+01 2.4013e+01 1.0808e+01
(1.3737e+01) (1.0171e+01) (7.2916e+00) (5.5681e+00)

k = 150 3.3765e+01 2.6818e+01 2.3927e+01 1.5123e+01
(1.0464e+01) (1.1532e+01) (5.1976e+00) (1.2805e+01)

k = 300 4.8978e+01 3.8724e+01 3.0789e+01 1.4582e+01
(4.3182e+01) (1.1921e+01) (5.2208e+00) (5.2424e+00)

Table 1: Norm of the optimal portfolio weights obtained by using DFPM approach
and Moore-Penrose inverse (in parentheses) for k ∈ {10, 50, 100, 150, 300} and r ∈
{0.1k, 0.4k, 0.6k, 0.9k}.

r = 0.1k r = 0.4k r = 0.6k r = 0.9k

k = 10 1.5248e+00 1.3861e+01 3.9043e+02 6.1116e+02
(1.9118e+02) (2.8239e+04) (7.7022e+02) (6.4385e+02)

k = 50 1.9047e–10 2.6400e+01 2.4803e–03 2.8018e+01
(2.0215e+03) (2.5573e+02) (6.6129e+00) (3.7443e+01)

k = 100 1.5568e–03 1.1609e–01 2.2761e+00 1.6548e+01
(7.5202e+02) (9.1053e+01) (2.7120e+01) (4.1219e+01)

k = 150 2.6065e–02 9.9835e–04 5.7977e–03 3.5722e+00
(3.8750e+02) (7.1027e+01) (6.0913e+01) (1.1957e+01)

k = 300 6.4618e–05 1.5064e–04 3.8282e–02 4.5099e+00
(3.4047e+01) (1.5929e+01) (1.3888e+01) (7.1193e+00)

Table 2: Variance of portfolio return obtained by using DFPM approach and
Moore-Penrose inverse (in parentheses) for k ∈ {10, 50, 100, 150, 300} and r ∈
{0.1k, 0.4k, 0.6k, 0.9k}.

almost all weights obtained by DFMP approach are much larger than the ones obtained

by using Moore-Penrose inverse.

In Table 1, we present the norm of the optimal portfolio weights. For k = 10 and

r ∈ {4, 6, 9}, we can observe that the norm of the weights from DFMP approach is

smaller than the one obtained from the Moore-Penrose inverse. For k = 50 our method

gives smaller norm when r = 45 only, while Moore-Penrose inverse delivers smaller norm

in all other cases.

In Table 2, we compare the variance of portfolio returns for both methods. In all

considered cases, we can observe that DFMP approach shows better performance than

Moore-Penrose inverse. So, we can conclude that DFMP approach delivers smaller the

variance of portfolio returns, while the norm of the weights can be larger than the one

obtained by using Moore-Penrose inverse.
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3.2 Empirical Study

In this section the results of an empirical study are presented. It is shown how one can

apply the theory from the previous sections to real data. We use weekly S&P 500 log

returns of 440 stocks for the period from the 4th of May, 2007 to the 25th of January,

2013 resulting in 300 observations. Expected rate of return is taken to be 10, i.e. q = 10.

In DFMP approach, the convergence criterion, the tolerance and the maximum number

of iterations are taken as in Section 3.1.

First of all, we estimate mean vector and covariance matrix by using their empirical

counterparts that are defined in (4). Since the number of stocks k = 440 is greater than

the sample size N = 300, sample estimator of the covariance matrix Σ will be singular

matrix with rank(Σ) = N − 1 = 299, i.e. r = 299. In Figure 7, we present eigenvalues

of the sample covariance matrix. We can observe that the first 299 eigenvalues and much

larger than the rest of the eigenvalues. It confirms that the rank of the sample covariance

matrix is 299.

Since we have estimated both mean vector and covariance matrix, we are able to

construct optimal portfolio weights by using DFMP approach and Moore-Penrose inverse.

In Figure 8, we deliver the plot of optimal portfolio weights obtained by both methods.

We can observe quite different behaviour of the weights. Consequently, we can see that

both methods suggest completely different investment strategies. We also get that the

norm of optimal portfolio weights from the DFMP approach is 8.6291e+02, while the

norm from the Moore-Penrose inverse is 8.9725e+02. Moreover, the variance of portfolio

return obtained by using DFMP approach is 4.4371e–02 and it is much smaller than

the variance obtained from the Moore-Penrose inverse that is 3.2392e+01. Consequently,

DFMP approach delivers better objective function as well as the norm of the portfolio

weights.

4 Summary

Modern portfolio theory plays an important role in economics and suggests an investment

strategy that give the lowest risk for a given level of expected return. If covariance matrix

of the asset returns is positive definite, then Markowitz’ optimization problem has unique

solution that depends on the mean vector and covariance matrix of the asset returns. In

practice, both mean vector and covariance matrix need to be estimated. Hence, one can

get an estimator of the covariance matrix which is singular and, therefore, optimization

problem will not have a unique solution. In our paper, we delivered a new iterative ap-

proach (DFPM) that solves the constrained and rank-deficient portfolio selection problem

approximately. The method is based on using symplectic solvers for a damped dynamical

system that solves the optimization problem but the solution is generally different from

the least norm Moore-Penrose solution. We showed how to determine the optimal time
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step and damping for symplectic Euler that give fast convergence using only matrix-vector

multiplications in each iteration step. In the numerical study we examined DFMP and

compared it with analytical solution that is based on the Moore-Penrose inverse. The

results are compared for several values of the portfolio size and the rank of the covari-

ance matrix. We observed that iterative and analytical approaches deliver quite different

investment strategies. We also found that the norm of the weights in DFMP approach

is smaller than the one obtained from Moore-Penrose inverse in some cases only, while

the variance of portfolio return is always smaller in all considered cases. In the empiri-

cal study, we analyzed weekly S&P 500 log returns of 440 stocks with 300 observations.

It is shown that DFMP approach guarantees smaller variance of portfolio return than

analytical solution based on the Moore-Penrose inverse.
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Liesiö, J. & Salo, A. (2012). Scenario-based portfolio selection of investment projects

with incomplete probability and utility information. European Journal of Operational

Research, 217(1), 162–172.

Markowitz, H. (1952). Mean-variance analysis in portfolio choice and capital markets.

Journal of Finance, 7, 77–91.

Mencia, J. & Sentana, E. (2009). Multivariate location-scale mixtures of normals and

mean-variance-skewness portfolio allocation. Journal of Econometrics, 153, 105–121.

Neubauer, A. (2000). On Landweber iteration for nonlinear ill-posed problems in Hilbert

scales. Numerische Mathematik, 85, 309–328.

Neubauer, A. (2017). On Nesterov acceleration for Landweber iteration of linear ill-posed

problems. Journal of Inverse and Ill-Posed Problems, 25, 381–390.

Okhrin, Y. & Schmid, W. (2006). Distributional properties of portfolio weights. Journal

of Econometrics, 134, 235–256.

Pappas, D., Kiriakopoulos, K., & Kaimakamis, G. (2010). Optimal portfolio selection

with singular covariance matrix. International Mathematical Forum, 5(47), 2305–2318.

Vogel, C. R. (2002). Computational Methods for Inverse Problems. Philadelphia, PA,

USA: Society for Industrial and Applied Mathematics.

Wang, Z. (2005). A shrinkage approach to model uncertainty and asset allocation. Review

of Financial Studies, 18, 673–705.

Zhang, Y. & Hofmann, B. (2018). On the second order asymptotical regularization of

linear ill-posed inverse problems. ArXiv e-prints.

14



Figure 1: Plot of the risk as a function of size of portfolio weights (norm of w) for k = 100
and r = 40.
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(a) k = 10, r = 1 (b) k = 10, r = 4

(c) k = 10, r = 6 (d) k = 10, r = 9

Figure 2: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 10 and r ∈ {1, 4, 6, 9}.
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(a) k = 50, r = 5 (b) k = 50, r = 20

(c) k = 50, r = 30 (d) k = 50, r = 45

Figure 3: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 50 and r ∈ {5, 20, 30, 45}.
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(a) k = 100, r = 10 (b) k = 100, r = 40

(c) k = 100, r = 60 (d) k = 100, r = 90

Figure 4: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 100 and r ∈ {10, 40, 60, 90}.
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(a) k = 150, r = 15 (b) k = 150, r = 60

(c) k = 150, r = 90 (d) k = 150, r = 135

Figure 5: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 150 and r ∈ {15, 60, 90, 135}.
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(a) k = 300, r = 30 (b) k = 300, r = 120

(c) k = 300, r = 180 (d) k = 300, r = 270

Figure 6: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 300 and r ∈ {30, 120, 180, 270}.
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Figure 7: Eigenvalues of the sample covariance matrix for 440 stocks and 300 observations.

Figure 8: Optimal portfolio weights obtained by using DFPM approach and Moore-
Penrose inverse for k = 440 and r = 299.
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