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Abstract 
In this paper, we analyse the heavy-tailed behaviour in the dynamics of housing-price returns in the United 

States. We investigate the sources of heavy tails by estimating autoregressive models in which innovations 

can be subject to GARCH effects and/or non-Gaussianity. Using monthly data ranging from January 1954 

to September 2019, the properties of the models are assessed both within- and out-of-sample. We find 

strong evidence in favour of modelling both GARCH effects and non-Gaussianity. Accounting for these 

properties improves within-sample performance as well as point and density forecasts. 
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1. Introduction 
In less than fifteen years, the world has now experienced both a global financial crisis and a virus pandemic 

– both of which have had dire economic consequences. These events have confirmed the fact that large 

swings in economic variables happen more frequently than what is implied by models based on the tradi-

tional assumption of normally distributed disturbances. Put differently, the distributions of many variables 

are characterized by fat tails (Fagiolo et al., 2008; Ascari et al., 2015), that is, they have a higher probability 

mass in the tails of the distribution than a normal distribution does. 

 

The purpose of this paper is to study the topic of fat tails related to a key US variable, namely housing-price 

returns. Not only is this an important financial variable, it is also highly relevant from a macroeconomic 

perspective since housing prices have a close relation with the real economy (Catte et al., 2004; Iacoviello, 

2005; Campbell and Cocco, 2007; Iacoviello and Neri, 2010). There are a number of studies that document 

non-Gaussian behaviour in real-estate price changes; see, for example, Myer and Webb (1994), Young and 

Graff (1995), Graff et al. (1997), Maurer et al. (2004), Young et al. (2006), Pontines (2010) and Chiang et al., 

(2012). However, these studies focus mainly on the unconditional distribution of the returns, which is im-

portant from a portfolio risk-management perspective.  

 

In contrast, our analysis focuses on the dynamic properties of the process. We primarily aim to assess what 

the appropriate distributional features of the innovations are if we want to model the dynamics of the re-

turns. This issue is more relevant from a macroeconomic perspective where we often want to model dy-

namic interactions; see, for example, Ahamada and Diaz Sanchez (2013). To evaluate this issue, we conduct 

within-sample analysis on five different models and validate our findings through an out-of-sample forecast 

exercise.  

 

Our analysis is performed employing monthly data on US housing-price returns from January 1954 to Sep-

tember 2019. Looking at the data, we confirm that the return series is characterised by fat tails and accord-

ingly investigate its sources. Relying on univariate autoregressive time series models, we allow for different 

sources of non-Gaussian tail behaviour. We assess the relevance of time-varying volatility – which can be a 

source of fat tails in the unconditional distribution of the variable – by estimating GARCH models. Whether 

error terms are drawn from distributions with fat tails is addressed by abandoning the assumption of a 

normal distribution for that of a Laplace distribution or a t-distribution. Finally, since the unconditional 

distribution of the data also appears to be somewhat skewed, we also estimate the model under the assump-

tion that error terms are drawn from a Skew-t distribution.1 Summarising our results, we find strong in-

 

1 For a discussion regarding the importance of skewness, see, for example, Neftci (1984), Acemoglu and Scott (1997) and Bekaert 
and Popov (2019). 
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sample evidence for highly persistent, time-varying volatility and heavier-than-Gaussian tails. This translates 

into improved short-term point and density forecasts, with GARCH effects being the most important fea-

ture. Skewness, on the other hand, appears to be a less relevant aspect to consider in modelling. 

 

The rest of this paper is organised as follows: In Section 2, we present the data. The methodological frame-

work is discussed in Section 3 and our empirical findings are shown in Section 4. Finally, Section 5 con-

cludes. 

2. Data 
We base our analysis on Shiller’s (2015) nominal house-price index. Data are monthly and span the period 

January 1953 to September 2019. Returns are calculated as 𝑟𝑟𝑡𝑡 = 𝑃𝑃𝑡𝑡−𝑃𝑃𝑡𝑡−12
𝑃𝑃𝑡𝑡−12

, where 𝑃𝑃𝑡𝑡 is the price index at time 

t. A time-series plot of the return data is given in Figure 1 and a histogram showing the unconditional 

distribution is provided in Figure 2. Some key descriptive statistics are given in Table 1. 

Figure 1. Housing-price return data. 

 

Note: Twelve-month change in percent on vertical axis. 
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Figure 2. Histogram of housing-price return data. 

 

Note: Twelve-month change in percent on horizontal. Relative frequency on vertical axis.  

Table 1. Descriptive statistics and Jarque-Bera test statistic. 

Mean Variance Skewness Kurtosis Jarque-Bera 
4.278 24.390 -0.150 3.813 24.464 

Note: The critical value at the five percent level of the Jarque-Bera test is 5.99. 

 

As both the histogram in Figure 2 and the descriptive statistics in Table 1 suggest, the tails of the distribution 

appear heavier than what is implied by a normal distribution; the kurtosis of the unconditional distribution 

is around 3.8. There is also a slight negative skewness. Taken together, this means that the Jarque-Bera test 

strongly rejects an assumption of normality. 

 

In Table 2, we compare the unconditional house-price returns and a normally distributed variable using the 

kurtosis (𝐾𝐾𝛼𝛼,𝜏𝜏), peakedness (𝑃𝑃𝜂𝜂,𝜏𝜏) and tailness (𝑇𝑇𝛼𝛼,𝜂𝜂) measures proposed by Liu (2019). These measures are 

based on the ratio of interquantile ranges of the variables, using various quantiles of the distribution denoted 
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by 𝛼𝛼, 𝜂𝜂, and 𝜏𝜏 (for example , 𝛼𝛼 = 0.05 means that we use the 5th percentile of the distribution when calcu-

lating kurtosis and tailness).2 Of particular importance are the tails of the return distribution, which are 

heavier than the normal distribution at all levels. There is also some evidence for asymmetry in the uncon-

ditional distribution further out in the tails (α=0.01), but skewness is not a robust feature if we use different 

quantiles (α). 

Table 2. Comparison of quantile-based kurtosis, peakedness and tailness. 

 𝛂𝛂 𝑲𝑲𝜶𝜶,𝝉𝝉 𝑷𝑷𝜼𝜼,𝝉𝝉 𝑻𝑻𝜼𝜼,𝝉𝝉 𝑹𝑹𝑻𝑻𝜼𝜼,𝝉𝝉 𝑳𝑳𝑻𝑻𝜼𝜼,𝝉𝝉 

Normal distribution 0.010 3.449 1.706 2.022 1.011 1.011 

 0.025 2.906 1.706 1.704 0.852 0.852 

 0.050 2.439 1.706 1.430 0.715 0.715 

Unconditional returns 0.010 3.979 1.404 2.834 1.256 1.579 

 0.025 3.317 1.404 2.363 1.141 1.222 

 0.050 2.615 1.404 1.862 1.013 0.850 

Note: Comparison of the quantile-based kurtosis, peakedness and tailness among a normal random variable and the unconditional house-
price returns. The measurements are calculated based on ratios of interquantile ranges with α = (0.01, 0.025, 0.05) and η = 0.125, τ = 
0.25 quantile levels (see Footnote 2 and Liu, 2019). 

3. Methodological framework 
 

We use univariate autoregressive (AR) models to model house return series. Our baseline is the homosce-

dastic AR(p) model: 

 

𝑟𝑟𝑡𝑡 =  𝛾𝛾0 + ∑ 𝛾𝛾𝑗𝑗𝑟𝑟𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + 𝜎𝜎𝜈𝜈𝜈𝜈𝑡𝑡     (1) 

 

with 𝜈𝜈𝑡𝑡  ~ 𝑁𝑁(0,1). The number of lags is determined using the Schwarz (1978) information criterion, which 

suggests a lag length of 𝑝𝑝 =5; for comparability we employ the same number of lags across all model spec-

ifications. 

 

We then allow for a more flexible error term in the model. First, we let the second moment of the series 

vary over time. Doing that, we choose a robust approach – relying on the GARCH(1,1) specification 

(Bollerslev, 1986). Hence, the second model is the AR(p)-GARCH(1,1): 

 

2 The measures are related to each other and the quantiles of the distribution by the formula 

𝐾𝐾𝛼𝛼,𝜏𝜏 = 𝑃𝑃𝜂𝜂,𝜏𝜏𝑇𝑇𝛼𝛼,𝜂𝜂 =
𝑄𝑄1−𝜂𝜂 − 𝑄𝑄𝜂𝜂
𝑄𝑄1−𝜏𝜏 − 𝑄𝑄𝜏𝜏

𝑄𝑄1−𝛼𝛼 − 𝑄𝑄𝛼𝛼
𝑄𝑄1−𝜂𝜂 − 𝑄𝑄𝜂𝜂

, 

where  𝑄𝑄𝑖𝑖 is the 𝑖𝑖-th quantile of the distribution and the quantiles used satisfy 0 < 𝛼𝛼 < 𝜂𝜂 < 𝜏𝜏 < 0.5. Further, the tail (𝑇𝑇) can be 
decomposed to right (𝑅𝑅𝑇𝑇) and left (𝐿𝐿𝑇𝑇) tails according to  

𝑇𝑇𝛼𝛼,𝜂𝜂 = 𝑅𝑅𝑇𝑇𝛼𝛼,𝜂𝜂 + 𝐿𝐿𝑇𝑇𝛼𝛼,𝜂𝜂 =
𝑄𝑄1−𝛼𝛼 − 𝑄𝑄0.5

𝑄𝑄1−𝜂𝜂 − 𝑄𝑄𝜂𝜂
+
𝑄𝑄0.5 − 𝑄𝑄𝛼𝛼
𝑄𝑄1−𝜂𝜂 − 𝑄𝑄𝜂𝜂

. 
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𝑟𝑟𝑡𝑡 =  𝛾𝛾0 + ∑ 𝛾𝛾𝑗𝑗𝑟𝑟𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 + 𝜖𝜖𝑡𝑡     (2) 

𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑣𝑣𝑡𝑡      (3) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 + 𝛼𝛼2𝜎𝜎𝑡𝑡−12      (4) 

 

where 𝑣𝑣𝑡𝑡 is assumed to be an iid error term distributed according 𝜈𝜈𝑡𝑡  ~ 𝑁𝑁(0,1), as above. In the third and 

fourth models, we relax the assumption of normality of the error term, while maintaining symmetry. This is 

done by using 𝜈𝜈𝑡𝑡  ~ 𝐿𝐿𝐿𝐿𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and 𝜈𝜈𝑡𝑡  ~ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑆𝑆 − 𝑆𝑆(𝜅𝜅), where 𝜅𝜅 is the degrees of freedom. Of specific 

interest here is the fact that both the Laplace distribution and the Student-t distribution allow for heavier-

than-Gaussian tails.3 In the fifth model, we finally assume that the error terms are drawn from the Skew-t 

distribution (Hansen, 1994) – that is, 𝜈𝜈𝑡𝑡  ~ 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆 − 𝑆𝑆(𝜆𝜆, 𝜅𝜅), where 𝜅𝜅 is the degrees of freedom and 𝜆𝜆 is the 

skewness parameter. This means that we allow for both heavy tails and asymmetry in the error term.4 

 

Our primary focus is to evaluate which distributional properties are important for modelling the dynamics 

of the housing-price return series. This we evaluate based on both in-sample estimates (using maximum 

likelihood) and an out-of-sample forecasting exercise. We consider both point and density forecasts. The 

point forecasts are evaluated based on the root mean square error (RMSE) of the forecast, accompanied by 

the Diebold-Mariano test (Diebold and Mariano, 1995). We formulate the test such that a positive test value 

implies that the given model outperforms the benchmark.5 

 

In terms of density nowcast evaluation we make use of the probability integral transform (PIT) proposed 

by Diebold et al. (1998). As a first check, we look at the histograms of the PIT and assess visually how close 

they are to the uniform distribution. We also employ more rigorous statistical techniques such as the Kull-

bach-Leibler (KL) divergence (Kullback and Leibler, 1951) of the PIT series from an iid uniform distribution 

and formal statistical tests of uniformity, in particular the Kolmogorov-Smirnov (KS) and the Anderson-

Darling (AD) test (Anderson and Darling, 1952).6 For all these measures, a lower value implies that the 

given model produces a better density forecast.  

 

3 Fagiolo et al. (2008) found the Laplace distribution useful when modelling the fat tails of GDP growth rates. The Student-t distri-
bution has been used more widely in the empirical literature; see, for example, Cúrdia et. al. (2014), Clark and Ravazzolo (2015), 
Cross and Poon (2016) and Kiss and Österholm (2020). 

4 All distributions are parameterized to have a variance of one. The density function of the Skew-t distribution can be found in 
Hansen (1994). 

5 As pointed out by Diebold (2015), the Diebold and Mariano (1995) tests in its standard form is an appropriate choice even if we 
test for nested models, for which the original assumptions of the test do not formally hold. 

6 The KLIC has been used in a number of applications in the context of density forecasts; see, for example, Cogley et al. (2005), 
Robertson et al. (2005), Hall and Mitchell (2007), Diks et al. (2010), and Mitchell and Wallis (2011).  
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4. Empirical analysis 
We start by presenting estimation results based on the full sample for all five specifications.7 Then we turn 

to an out-of-sample forecast exercise where we use recursive estimation to obtain both point and density 

forecasts. We focus on short horizon forecasts (ℎ = 1) for two reasons. First, the one-period-ahead fore-

casting results are most closely related to the in-sample findings, and hence it can be considered as a valida-

tion tool. Second, from a forecasting perspective, the simple univariate forecast is likely to produce a rea-

sonable conditional mean forecast in the short run.8 

4.1 Estimation results 
Table 3 presents the estimation results for the five specifications. Note that the housing-price return series 

is fairly persistent (the sum of the autoregressive coefficients are close to unity). Engle’s (1982) ARCH test 

shows a strong presence of conditional heteroscedasticity for the residuals in the baseline model in column 

1. Also, the Jarque-Bera test suggests that residuals are non-Gaussian in this specification. This is further 

supported by Figure 3, where it is clear that a t-distribution fits the residuals of the baseline specification 

better than a normal distribution. 

 

The GARCH(1,1) specification (column 2) seems to take care of conditional heteroscedasticity quite well. 

However, the variance is very persistent and its parameters are not precisely estimated.9 For the specification 

with Laplace distribution, where no extra parameter is added to capture heavy-tails, the persistence of the 

variance is somewhat lower. However, it seems that the Laplace distribution is not flexible enough to capture 

the behaviour of the standardized residuals, as their transformation imposing a normal distribution still 

shows signs of non-Gaussianity according to the Jarque-Bera test.10 In contrast, the more flexible ap-

proaches, the t and the Skew-t distribution, seem appropriate to capture non-Gaussianity. The skewness 

parameter however is low and non-significant (column 5). 

 
  

 

7 Figure 1 suggests that the time-series behaviour of the return series may have changed around 1975. In fact, the Shiller (2015) 
dataset changes source in January 1975. Therefore we also estimate the model on the shorter subsample, namely January 1975 to 
September 2019. Results, collected in Table A1 in the Appendix, are qualitatively very similar to full sample estimates. 

8 We would like to stress that our aim is to assess how important it is to allow for flexibility in the higher order moments of the 
disturbances when modelling housing-price returns – not to generate the best possible model for the conditional mean from a 
forecasting perspective. 

9 In fact, the parameters 𝛼𝛼1 and 𝛼𝛼2 sum up to unity for the normal-GARCH, Student-t-GARCH and Skew-t-GARCH specifications. 
However, looking at the results using the Laplace distribution and the shorter sample, integrated volatility does not seem to be a 
robust feature of the data, therefore we do not impose it in any of the specifications with conditional heteroscedasticity. 

10 The Jarque-Bera tests are based on 𝑧𝑧𝑡𝑡,  the PIT series of the standardized residuals, for which Φ−1(𝑧𝑧𝑡𝑡) is standard normally 
distributed (where Φ−1 is the inverse cumulative distribution function of the standard normal distribution). We test this by applying 
the Jarque-Bera test on Φ−1(𝑧𝑧𝑡𝑡) . 
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Table 3. Within-sample estimation results  

  (1) (2) (3) (4) (5) 
       

Mean equation [AR(5)] 𝛾𝛾0   0.038    0.033    0.035    0.033    0.032  

    (0.023)    (0.185)    (0.000)    (0.467)    (0.013)  

 𝛾𝛾1   1.564    1.816    1.823    1.820    1.819  

    (0.000)    (0.000)    (0.000)    (0.000)    (0.000)  

 𝛾𝛾2   -0.509    -0.756    -0.743    -0.741    -0.740  

    (0.000)    (0.000)    (0.000)    (0.023)    (0.000)  

 𝛾𝛾3   -0.115    -0.271    -0.321    -0.307    -0.303  

    (0.103)    (0.011)    (0.000)    (0.147)    (0.020)  

 𝛾𝛾4   0.203    0.396    0.415    0.400    0.397  

    (0.003)    (0.209)    (0.000)    (0.000)    (0.006)  

 𝛾𝛾5   -0.152    -0.189    -0.180    -0.178    -0.178  

    (0.000)    (0.263)    (0.000)    (0.001)    (0.003)  

GARCH equation 𝜔𝜔    0.000    0.000    0.001    0.001  

     (0.745)    (0.260)    (0.895)    (0.702)  

 𝛼𝛼1    0.172    0.123    0.175    0.175  

     (0.459)    (0.001)    (0.824)    (0.671)  

 𝛼𝛼2    0.828    0.804    0.825    0.825  

     (0.000)    (0.000)    (0.000)    (0.001)  

Degrees of freedom 𝜈𝜈      7.870    7.941  

       [26.854]    [3.297]  

Skewness parameter 𝜆𝜆       -0.031  

        (0.854) 

ARCH-test  131.592 13.661 14.431 13.440 13.494 

  (0.000) (0.322) (0.274) (0.338) (0.334) 

JB-test  295.989 51.528 15.288a 0.616a 0.070a 

  (0.000) (0.000) (0.000) (0.735) (0.966) 

T  789 789 789 789 789 

 
Note: Model (1) is a homoscedastic model with Gaussian error terms. Model (2) employs a GARCH(1,1) specification with Gaussian error 
terms. Models (3), (4) and (5) employ a GARCH(1,1) specification together with Laplace, t-, and Skew-t-distributed error terms, respec-
tively. The ARCH-test is Engle’s test for conditional heteroscedasticity (Engle, 1982) conducted with twelve lags. The JB-test is the Jarque-
Bera test for conditional heteroscedasticity. “a” indicates that the test is based on the probability integral transform of the (standardized) 
residuals (see footnote 10). p-values are in parentheses (); standard errors for the degrees of freedom of the t-distribution are in brackets 
[].“T” is the number of observations. 
 

Figure 4 shows the estimated conditional volatility of the return series. All GARCH specifications look quite 

similar; the biggest discrepancy is found for the Laplace which – due to its excessively heavy tails – allows 

for a generally lower variance. Volatility also clusters; the series starts out with a higher general level of 

volatility, which falls considerably during between 1980 and 2005, and peaks again during the financial crisis. 

 

Having assessed the different specifications within-sample, we next conduct a recursive out-of-sample fore-

cast exercise to validate our results. If we with this exercise establish that a more complex specification also 

generates better out-of-sample forecasts, we can conclude that that our results are not due to over-fitting 

the data in-sample. 
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Figure 3. Residuals from homoscedastic model.  

 
Note: Density on vertical axis. 

Figure 4. Conditional volatility under different assumptions for the error term. 

 

 

Note: Conditional standard deviation on vertical axis. 
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4.2 Out-of-sample analysis  
We evaluate the one-period-ahead forecasting performance of the models using an expanding window tech-

nique starting in January 1974; this yields a total of 548 forecasts to evaluate.11 Results are collected in Table 

4 for both point and density forecast measures.  

Table 4. Forecast evaluation results. 

 RMSE DM KS AD KL 
      

Normal - Homoscedastic 0.279 - 3.534 25.498 0.179 

Normal - GARCH 0.259 3.491 1.019 1.743 0.013 

Laplace - GARCH 0.258 3.394 2.366 13.141 0.066 

Student-t - GARCH 0.258 3.495 0.844 0.590 0.008 

Skew-t - GARCH 0.258 3.468 0.814 0.521 0.006 

      

 
Note: “RMSE” is the root mean squared error of the point forecasts. “DM” is the Diebold-Mariano test statistic where the model with homosce-
dastic, normally distributed errors is chosen to be the benchmark. “KS” is the Kolmogorov-Smirnov test statistic. “AD” is the Anderson-Darling 
test statistic. “KL” is the Kullback-Leibler divergence of the PIT of the residuals from the uniform distribution on the [0,1] interval. All three 
density nowcast measures are based on the probability integral transform of the density forecasts produced by each model. The results are 
based on 548 out-of-sample forecasts and an expanding window for parameter estimation. The critical value at the five percent level for the 
Kolmogorov-Smirnov test is 0.058 for N=548 and for the Anderson-Darling test it is 2.492. 
 

For point forecasts, the homoscedastic model clearly performs worst. Accounting for time-varying volatility 

statistically significantly improves the forecast, as can be seen from the Diebold-Mariano test. However, 

allowing for non-Gaussian error terms does not provide additional improvement in point forecasts over the 

Gaussian GARCH specification.  

For density forecasts, all features – that is, conditional heteroscedasticity, fat-tails and skewness – seem to 

have some relevance. Comparing results in Table 4, allowing for GARCH effect improves quite a lot on the 

density forecasts; further improvements are generated by employing a t-distributed or a skewed error term, 

with the latter being less important. However, using the Laplace distribution to capture non-Gaussianity 

seems to produce the least favourable results.  

To gain further insight for the out-of-sample results, the histograms of the PIT for each specification are 

presented in Figure A1 in the Appendix. The graph of the homoscedastic model (top left panel in Figure 

A1) is peaked, implying that the homoscedastic, Gaussian model has a too wide predictive density.12 Allow-

ing for GARCH effects – while still assuming a Gaussian error term – eliminates this problem and produces 

 

11 That is, we first estimate the models on the sample January 1953 to January 1974 and make predictions for February 1974. We 
then expand the sample to January 1953 to February 1974, re-estimate the models and predict March 1974. We continue in this 
manner until we reach the end of the sample, where we estimate the models using data from January 1953 to August 2019 and make 
predictions for September 2019.  

12 This finding is concordant with the fact that our within-sample analysis indicates that the unconditional volatility overestimates 
the conditional one in the larger part of the out-of-sample evaluation period; see Figure 4. 
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PITs that are fairly closely uniformly distributed (top right panel in Figure A1). The Laplace distribution is 

less successful at capturing the tail observations (second row, left panel in Figure A1), while the Student-t, 

and Skew-t distributed error terms appear most successful in bringing PITs close to uniformity (bottom left 

and right panels in Figure A1 respectively).  
 

5. Conclusions 
Fat tails in housing-price returns have been established in several studies. We contribute to this literature by 

analysing the heavy-tailed behaviour in the context of modelling and forecasting the return series. We find 

evidence of both conditional heteroscedasticity and non-Gaussian behaviour. Non-Gaussianity mostly takes 

the form of excess kurtosis, while the support for skewed behaviour is weaker. We also find that accounting 

for these features help improve both point and density forecasts. 

 

Our results highlight the importance of underlying distributional assumptions when modelling housing-

price series. In addition, our findings point to the relevance of considering time-varying volatility when 

modelling macroeconomic time series; after all, housing-price returns are not only a financial variable but 

also an important macroeconomic variable. While this aspect of macroeconomic modelling has grown in 

popularity over the last fifteen years – after having been made popular by Cogley and Sargent (2005) and 

Primiceri (2005) – we nevertheless believe that macroeconomists have not quite given it sufficient attention. 
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Appendix 

Figure A1. Histograms of probability integral transform for out-of-sample forecasts. 

  

  

 

 

Note: Relative frequency on vertical axis. 
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Table A1. Within-sample estimation results, January 1975 to September 2019. 

  (1) (2) (3) (4) (5) 
       

Mean equation [AR(5)] 𝛾𝛾0   0.028   0.031    0.033    0.028   0.026  

    (0.032)    (0.003)    (0.000)    (0.004)    (0.010)  

 𝛾𝛾1   1.909    1.970    1.937    1.970    1.970  

    (0.000)    (0.000)    (0.000)    (0.000)    (0.000)  

 𝛾𝛾2   -0.919    -0.897    -0.838    -0.909    -0.915  

    (0.000)    (0.000)    (0.000)    (0.000)    (0.000)  

 𝛾𝛾3   -0.234    -0.469    -0.538    -0.454    -0.438  

    (0.018)    (0.000)    (0.000)    (0.000)    (0.000)  

 𝛾𝛾4   0.430    0.640    0.717    0.638    0.627  

    (0.000)    (0.000)    (0.000)    (0.000)    (0.000)  

 𝛾𝛾5   -0.192    -0.249    -0.284    -0.250    -0.248  

    (0.000)    (0.000)    (0.000)    (0.000)    (0.000)  

GARCH equation 𝜔𝜔    0.001    0.001    0.001    0.001  

     (0.003)    (0.010)    (0.008)    (0.006)  

 𝛼𝛼1    0.215    0.124    0.192    0.188  

     (0.000)    (0.001)    (0.000)    (0.000)  

 𝛼𝛼2    0.742    0.724    0.759    0.762  

     (0.000)    (0.000)    (0.000)    (0.000)  

Degrees of freedom 𝜈𝜈      6.734    6.958  

       [1.948]    [2.020]  

Skewness parameter 𝜆𝜆       -0.065  

        (0.283)  

ARCH-test  115.610 8.634 8.082 8.094 8.032 

  (0.000) (0.734) (0.778) (0.777) (0.783) 

JB-test  1817.200 49.303 9.748a 1.758a 0.201a 

  (0.000) (0.000) (0.008) (0.415) (0.904) 

T  537 537 537 537 537 

 
Note: Model (1) is a homoscedastic model with Gaussian error terms. Model (2) employs a GARCH(1,1) specification with Gaussian error 
terms. Models (3), (4) and (5) employ a GARCH(1,1) specification together with Laplace, t-, and Skew-t-distributed error terms, respec-
tively. The ARCH-test is Engle’s test for conditional heteroscedasticity (Engle, 1982) conducted with twelve lags. The JB-test is the Jarque-
Bera test for conditional heteroscedasticity. “a” indicates that the test is based on the probability integral transform of the (standardized) 
residuals (see footnote 10). p-values are in parentheses (); standard errors for the degrees of freedom of the t-distribution are in brackets 
[].“T” is the number of observations. 
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