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Abstract 
The game Pass the Pigs® offers students in statistics to practice a lot of statistical concepts and 
methods in a coherent way. In this paper a probability model is derived based on assumptions 
of the data generating process. A previously suggested strategy of maximizing the expected 
score in each round is adapted to the model. Adopting this strategy requires estimating the score 
of accumulated points, where to stop rolling the pigs and pass them on to the next player, as a 
function of unknown parameters in the model. Point and interval estimators for the mentioned 
accumulated score are derived using the maximum likelihood method as well as the Delta 
method and Bootstrap methods. Data from an experiment is used to testing model assumptions 
and to get point and interval estimates.  
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1. Introduction 
In the game Pass the Pigs® created by David Moffat players are to roll two small plastic pigs 
that land in different configurations. The player earns or loses points depending on the way the 
pigs land. A player’s turn, or round, ends, and the pigs are passed on to the next player, when 
either the player gets certain configurations or when the player himself or herself decides to 
stop. The probabilities of the various configurations are unknown due to the shape of the pigs. 
In order for the player to make strategic decisions on when to stop, knowledge of these 
probabilities are required. 

In this paper data is generated from an experiment of 5000 rolls of the two plastic pigs and 
used in a proposed model to make inference on the score where to stop rolling the pigs in a 
given round in order to maximize the expected score.  

There is a literature on games as motivating tools for probability and statistics learning. Wilson 
et al. (2009) discusses a probability project using the game Yahtzee in a probability course to 
help students transition from theory to application. In order to illustrate inferences on 
proportions and discrete probability distributions Stephenson et al. (2009) make use of the dice-
based golf game GOLO. Bohan and Schultz (1996) and Feldman and Morgan (2003) suggest 
the game HOG as a pedagogical tool for illustrating areas including analytical concepts. 

Two research articles discuss the game Pass the Pigs®. Kern (2006) adopts a Bayesian 
approach to make inference about the configuration probabilities and predictive posterior 
simulations are used to compare different game strategies. This presentation is intended for 
students of Bayesian inference at an advanced undergraduate or first year graduate level. 
Another approach is taken by Gorman (2012). He describes how a classroom exercise can be 
structured to train business students in various topics such as data collection and preparation, 
model framing, probability, optimization, expected value decision making and simulation.  
 
There are three more articles written about a similar game Pig, where the plastic pigs are 
replaced by dice and the probabilities of the outcomes are, therefore, known. In all three articles 
the pedagogical value of the game is at focus. Shi (2000) helps teachers to show students how 
a winning strategy might be developed based on mathematical thinking, while Neller and 
Presser (2004) use the algorithm value iteration to solve for an optimal winning strategy. Neller 
at al. (2006) describe the game’s historical uses in mathematics and discuss ways in which the 
game can be instructional in teaching concepts in computer science courses as well as in 
introductory artificial intelligence, networking, and scientific visualization courses.  
 
Thus, five research articles use the game Pass the Pigs® and the related game Pig for 
illustrating topics in probability and statistics. Is there really a need for adding yet another article 
to this collection? Yes, it is. This paper focus foremost on inferential aspects related to the 
game, while the other articles have another focus, except for Kern (2006). However, although 
he also concentrates on inference, his approach is Bayesian while this paper makes use of 
classical inference methods.  
 
The analysis in this paper is intended for advanced undergraduate or first year graduate students 
taking a course in Statistical theory. The problem might serve as a comprehensive home 
assignment at the end of the course to tie together all the topics covered. Another approach is 
to split up the problem into several parts, given as smaller home assignments as concepts and 
methods are introduced during the course.  
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The rest of the paper is organized as follows: Section 2 contains a brief description of the game. 
The data is presented in section 3. A model based on certain assumptions of the data generating 
process is developed in section 4 and the strategy of maximizing the expected score in a given 
round adapted to the model is also accounted for here. In section 5, using this strategy, point 
and interval estimators for the score of accumulated points, where to stop rolling the pigs and 
pass them on to the next player, are derived using the maximum likelihood method as well as 
the Delta method and Bootstrap methods. This section also includes a proposed test for model 
assumptions. Section 6 contains estimation and testing results, while the paper ends with a 
discussion in section 7. 

 
 
2. Description of the Game 
Two or more people can participate in the game Pass the Pigs®, where the first player to reach 
100 points win the game. One player is randomly chosen to go first. Play then goes on in a 
certain order on a turn-by-turn basis. Points earned by a player in a particular round is added to 
previous rounds. On a player’s turn he or she rolls both the pigs together on a smooth surface 
and note the score, where the score is determined according to the configuration, the way the 
pigs land. If the score is positive the player may continue to roll the pair of pigs trying to get 
more points to add to the score. This accumulation of points in a player’s round is possible if 
the previous roll results in a positive-scoring configuration. The round ends when the player 
passes the pigs onto the next player. This happens with the occurrence of one of the following 
three events: 

• The roll is positive-scoring and the player decides to stop rolling and score the 
accumulated points earned in this round. 

• The roll results in a configuration where the pigs land on opposite sides. In this case all 
the accumulated points in this round are lost and the score from this round is therefore 
zero. 

• The roll results in an event where the pigs land and touch each other at rest in any 
position. All points earned in the game so far is lost, that is, all points in this particular 
round as well as all the accumulated points in previous rounds. 

In Table 1 below the seven possible positions for one pig, in a roll with both pigs, are described 
and named. The names are the same as given in Kern (2006), except for the seventh position, 
which is included here.  

Table 1. Possible positions for one pig in a roll with both pigs. 

Position Name Description 
1 Dot up Pig lies on its left side 
2 Dot down Pig lies on its right side 
3 Trotter Pig lands on all four feet 
4 Razorback Pig lies on its back 
5 Snouter Pig balances on its snout and two front-feet 
6 Leaning Jowler Pig balances on a front foot, ear and snout 
7 Touch Pig touches the other pig 
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The Dot up and Dot down labels come from the fact that each pig is marked with a black dot 
on the right side of the body. Note that only one position can occur at the time, since position 7 
is superior to the other positions. For example, if one pig lies on the left side, while touching 
the other pig, the position is not 1, rather 7.  

Different combinations of the positions given above for the two pigs rolled together result in 
different points given to or taken from the player. In Table 2 gain in points of one more roll for 
different pig positions is shown, where T is the accumulated score in the ongoing round, while 
S is the accumulated score from previous rounds.  

Table 2. Gain in scores of one more roll for different pig positions.  

 Position of Pig 2 
 

Position of Pig 1 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

1 1 -T 5 5 10 15  
2 -T 1 5 5 10 15  
3 5 5 20 10 15 20  
4 5 5 10 20 15 20  
5 10 10 15 15 40 25  
6 15 15 20 20 25 60  
7       -(S+T) 

 

Thus, for all but three combinations the gain is positive, where the highest gain is attained for 
the pair of combination (6, 6) when both pigs land on their jowls, supported by a snout, an ear 
and a front foot. 

 

3. The Data 
The data was generated by one person who rolled the pair of pigs 5000 times on a wooden table 
with a smooth surface.  

Table 3. Frequencies of pig positions based on the experiment of rolling the pair of pigs 5000 
times. 

 Position of Pig 2 
 

Position of Pig 1 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

1 445 527 147 318 33 8  
2 519 581 164 420 47 5  
3 136 156 49 130 8 1  
4 325 381 95 262 37 4  
5 59 45 16 34 2 1  
6 9 9 5 3 0 0  
7       19 
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The pigs were shaken three times before dropping them onto the table from a height of 
approximately 20 centimeters from the surface of the table. After each roll the positions of the 
pigs were recorded. Following Kern (2006) one pig was randomly selected and marked, here 
with a blue dot, in order to allow for any dissimilarity between the pigs. Table 3 on the previous 
page shows frequencies of pig positions based on the 5000 rolls, where Pig 1 refers to the pig 
with a blue dot, and Pig 2 therefore is the unmarked pig. 

The data will be used to estimate the probabilities of different combinations of pig positions 
yielding different scores with the ultimate purpose of making inference on the accumulated 
score, where to stop rolling the pigs in order to maximize the expected score in a given round. 

 

4. The Model 
4.1 A Joint probability Model 

The pair of pigs, denoted by Pig 1 and Pig 2, are rolled and for each pig one out of the seven 
possible outcomes described in the previous section is observed. To this random experiment we 
associate the joint discrete random variables 𝑋𝑋1 and 𝑋𝑋2, indicating the outcome of each pig. To 
be more specific, 𝑋𝑋1 takes the value 𝑖𝑖 if the outcome of the first pig is 𝑖𝑖 and, in a similar way, 
𝑋𝑋2 takes the value 𝑗𝑗 if the outcome of the second pig is 𝑗𝑗. The simultaneous probabilities are 
denoted by 𝑝𝑝𝑖𝑖𝑖𝑖, while we denote the marginal probabilities by 𝑝𝑝𝑖𝑖. and 𝑝𝑝.𝑗𝑗. From the description 
of the rules of the game it is evident that 𝑝𝑝𝑖𝑖7 = 𝑝𝑝7𝑗𝑗 = 0 for 𝑖𝑖 = 1, … , 6  and 𝑗𝑗 = 1, … , 6, 
respectively. Moreover, 𝑝𝑝7. = 𝑝𝑝.7 = 𝑝𝑝7 and 𝑝𝑝77 = 𝑝𝑝7. Thus, we get a joint probability 
distribution for 𝑋𝑋1 and 𝑋𝑋2 as 

 𝑃𝑃(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗) = �
𝑝𝑝𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1, … , 6, 𝑗𝑗 = 1, … , 6,
𝑝𝑝𝑖𝑖, 𝑖𝑖 = 𝑗𝑗 = 7.  

(1) 
 
 

The marginal distributions are given by 

𝑃𝑃(𝑋𝑋1 = 𝑖𝑖) = �𝑝𝑝𝑖𝑖., 𝑖𝑖 = 1, … , 6,
𝑝𝑝𝑖𝑖, 𝑖𝑖 = 7.  

𝑃𝑃( 𝑋𝑋2 = 𝑗𝑗) = �
𝑝𝑝.𝑗𝑗,  𝑗𝑗 = 1, … , 6,
𝑝𝑝𝑗𝑗 , 𝑗𝑗 = 7.  

4.2 Model Assumptions 

Is it possible to express the joint probabilities for 𝑖𝑖 = 1, … , 6  and 𝑗𝑗 = 1, … , 6, in terms of the 
marginal probabilities, thereby reducing the number of parameters to be estimated to get an 
estimate of the joint probability distribution of 𝑋𝑋1 and 𝑋𝑋2? Yes, by making two assumptions. 
The random variables 𝑋𝑋1 and 𝑋𝑋2 are obviously dependent. However, in this setting a certain 
conditional independence assumption seems reasonable. Therefore, our first assumption is, for 
𝑖𝑖 = 1, … , 6  and 𝑗𝑗 = 1, … , 6, that  

𝑃𝑃(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6) 

= 𝑃𝑃(𝑋𝑋1 = 𝑖𝑖|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6)𝑃𝑃( 𝑋𝑋2 = 𝑗𝑗|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6) 

or, equivalently, 
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𝑃𝑃( 𝑋𝑋2 = 𝑗𝑗| 𝑋𝑋2 ≤ 6) =  𝑃𝑃( 𝑋𝑋2 = 𝑗𝑗|𝑋𝑋1 = 𝑖𝑖,  𝑋𝑋2 ≤ 6). 

Thus, given that the pigs are not in physical contact with each other the probabilities of the 
outcomes of the second pig are not affected by the outcome of the first pig. The second 
assumption we make regards the marginal distributions of 𝑋𝑋1 and 𝑋𝑋2. We have already 
concluded that 𝑝𝑝7. = 𝑝𝑝.7 = 𝑝𝑝7. We also assume, for 𝑖𝑖 = 𝑗𝑗 = 1, … , 6, that 

𝑝𝑝𝑖𝑖. = 𝑝𝑝.𝑗𝑗 = 𝑝𝑝𝑖𝑖.         

Thus, the marginal distributions are assumed to be equal. In a practical sense we assume the 
pigs are identical.  

Now, from (1) and the assumptions made on conditional independence and equal marginal 
distributions, the joint probability distribution of 𝑋𝑋1 and 𝑋𝑋2 can be written as 

 

𝑃𝑃(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗) = 𝑝𝑝𝑖𝑖𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗/�𝑝𝑝𝑘𝑘,
6

𝑘𝑘=1

𝑖𝑖 = 1, … , 6, 𝑗𝑗 = 1, … , 6,

𝑝𝑝𝑖𝑖, 𝑖𝑖 = 𝑗𝑗 = 7.

 

 

 
 

(2) 

To prove this result, we need to show that 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗/∑ 𝑝𝑝𝑘𝑘,6
𝑘𝑘=1  for 𝑖𝑖 = 1, … , 6, 𝑗𝑗 = 1, … , 6. We 

have that 

   
𝑃𝑃(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗) 

= 𝑃𝑃(𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6)𝑃𝑃(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6) 

= 𝑃𝑃(𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6)𝑃𝑃(𝑋𝑋1 = 𝑖𝑖|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6)𝑃𝑃( 𝑋𝑋2 = 𝑗𝑗|𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6) 

= 𝑃𝑃(𝑋𝑋1 = 𝑖𝑖)𝑃𝑃(𝑋𝑋2 = 𝑗𝑗| 𝑋𝑋2 ≤ 6) 

= 𝑃𝑃(𝑋𝑋1 = 𝑖𝑖)𝑃𝑃(𝑋𝑋2 = 𝑗𝑗)/𝑃𝑃(𝑋𝑋2 ≤ 6) 

= 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗/�𝑝𝑝𝑘𝑘

6

𝑘𝑘=1

, 

where the first step follows from the multiplication law of probability and the fact that {𝑋𝑋1 =
𝑖𝑖,𝑋𝑋2 = 𝑗𝑗} is a subset of {𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6}. In the second step we impose the conditional 
independence assumption, while the third step is valid, once again using the multiplication law 
of probability, since {𝑋𝑋1 = 𝑖𝑖} is a subset of {𝑋𝑋1 ≤ 6,  𝑋𝑋2 ≤ 6} and using the fact that 𝑋𝑋1 ≤ 6 
with certainty if 𝑋𝑋2 ≤ 6. The fourth step follows from the definition of conditional probability, 
at the same time noting {𝑋𝑋2 = 𝑖𝑖} is a subset of {𝑋𝑋2 ≤ 6}. Finally, in the fifth step we make use 
of the assumption of equal marginal distributions.  

 

4.3 A Strategy of Maximizing Expected Score in a Round 

As mentioned, there are strategies developed for the non-commercial game analogue Pig, see 
Neller and Presser (2004), and Shi (2000). In this paper, as in Kern (2006) and Gorman (2012), 
a strategy analysis inspired by Shi (2000) is conducted and adjusted for the game Pass the 
Pigs®. The strategy is to maximize the expected score in a round. Although this strategy does 
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not fully capture the complexity of the game, the strategy proposed by Neller and Presser (2004) 
is even better if the objective is to win the game, it is a simple strategy that works pretty well 
and is easy to implement.  

Since the expected score from the next roll decreases with the number of rolls, the strategy of 
maximizing the expected score in a round is equivalent to the strategy of going on rolling the 
pigs as long as the expected gain in score from the next roll is positive. Let 𝑉𝑉 be the gain in 
score from rolling the pigs one more time and let 𝑞𝑞−(𝑆𝑆+𝑇𝑇), 𝑞𝑞−𝑇𝑇 , … , 𝑞𝑞60 be the probabilities of the 
possible scores outlined in Table 2. We get the expected gain in score as 

𝐸𝐸(𝑉𝑉) = −(𝑆𝑆 + 𝑇𝑇)𝑞𝑞−(𝑆𝑆+𝑇𝑇) − 𝑇𝑇𝑞𝑞−𝑇𝑇 + 𝑞𝑞1 + 5𝑞𝑞5 + 10𝑞𝑞10 + 15𝑞𝑞15 + 20𝑞𝑞20 

+25𝑞𝑞25 + 40𝑞𝑞40 + 60𝑞𝑞60. 

 

As proposed above we use the strategy of continue rolling the pigs as long as 

𝐸𝐸(𝑉𝑉) > 0. 

Solving for 𝑇𝑇 yields 

 𝑇𝑇 <
𝑞𝑞1 + 5𝑞𝑞5 + 10𝑞𝑞10 + 15𝑞𝑞15 + 20𝑞𝑞20 + 25𝑞𝑞25 + 40𝑞𝑞40 + 60𝑞𝑞60 − 𝑆𝑆𝑞𝑞−(𝑆𝑆+𝑇𝑇)

𝑞𝑞−(𝑆𝑆+𝑇𝑇) + 𝑞𝑞−𝑇𝑇
. 

 

(3) 

Thus, in maximizing the expected score in a round keep rolling the pigs as long as the 
accumulated score in the round is smaller than the right-hand side of (3). For further analysis 
we would like to express this rule in terms of the elements of 𝒑𝒑. From Table 2 and (2) we can 
write the elements of 𝒒𝒒 as 

 𝑞𝑞−(𝑆𝑆+𝑇𝑇) = 𝑝𝑝7, 
 

(4) 

 𝑞𝑞−𝑇𝑇 = 2𝑝𝑝1𝑝𝑝2/(1− 𝑝𝑝7), 
 

(5) 

 𝑞𝑞1 = (𝑝𝑝12 + 𝑝𝑝22)/(1 − 𝑝𝑝7), 
 

(6) 

 𝑞𝑞5 = (2𝑝𝑝1𝑝𝑝3 + 2𝑝𝑝1𝑝𝑝4 + 2𝑝𝑝2𝑝𝑝3 + 10𝑝𝑝2𝑝𝑝4)/(1 − 𝑝𝑝7), 
 

(7) 

 𝑞𝑞10 = (2𝑝𝑝1𝑝𝑝5 + 2𝑝𝑝2𝑝𝑝5 + 2𝑝𝑝3𝑝𝑝4)/(1 − 𝑝𝑝7), 
 

(8) 

 𝑞𝑞15 = (2𝑝𝑝1𝑝𝑝6 + 2𝑝𝑝2𝑝𝑝6 + 2𝑝𝑝3𝑝𝑝5 + 2𝑝𝑝4𝑝𝑝5)/(1 − 𝑝𝑝7), 
 

(9) 

 𝑞𝑞20 = (𝑝𝑝32 + 𝑝𝑝42 + 2𝑝𝑝3𝑝𝑝6 + 2𝑝𝑝4𝑝𝑝6)/(1 − 𝑝𝑝7), 
 

(10) 

 𝑞𝑞25 = 2𝑝𝑝5𝑝𝑝6/(1− 𝑝𝑝7), 
 

(11) 

 𝑞𝑞40 = 𝑝𝑝52/(1 − 𝑝𝑝7), 
 

(12) 

 𝑞𝑞60 = 𝑝𝑝62/(1 − 𝑝𝑝7), 
 

(13) 

where we have made use of the constraint ∑ 𝑝𝑝𝑖𝑖7
𝑖𝑖=1 = 1 and the addition law of probability. 

Denote the right-hand side in (3) by 𝜃𝜃. Substitution of (4) - (13) yields, after rearranging terms 
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𝜃𝜃 = ℎ(𝒑𝒑) =

𝑓𝑓(𝒑𝒑)
𝑔𝑔(𝒑𝒑), 

 

(14) 

where 

𝑓𝑓(𝒑𝒑) = 𝑝𝑝12 + 𝑝𝑝22 + 20𝑝𝑝32 + 20𝑝𝑝42 + 40𝑝𝑝52 + 60𝑝𝑝62 + 𝑆𝑆𝑝𝑝72 + 10𝑝𝑝1𝑝𝑝3 + 10𝑝𝑝1𝑝𝑝4 + 20𝑝𝑝1𝑝𝑝5 

+30𝑝𝑝1𝑝𝑝6 + 10𝑝𝑝2𝑝𝑝3 + 10𝑝𝑝2𝑝𝑝4 + 20𝑝𝑝2𝑝𝑝5 + 30𝑝𝑝2𝑝𝑝6 + 20𝑝𝑝3𝑝𝑝4 + 30𝑝𝑝3𝑝𝑝5 + 40𝑝𝑝3𝑝𝑝6 

+30𝑝𝑝4𝑝𝑝5 + 40𝑝𝑝4𝑝𝑝6 + 50𝑝𝑝5𝑝𝑝6 − 𝑆𝑆𝑝𝑝7 

and  

𝑔𝑔(𝒑𝒑) = 𝑝𝑝7 − 𝑝𝑝72 + 2𝑝𝑝1𝑝𝑝2 − 2𝑝𝑝1𝑝𝑝2𝑝𝑝7 

The interpretation of (14) is as follows: The integer part of 𝜃𝜃  is the accumulated score where 
to stop rolling the pigs in order to maximize the expected score in a round as a function of 𝑆𝑆 
and the probabilities of a pig´s landing outcomes, unknown probabilities that have to be 
estimated in order to estimate 𝜃𝜃. However, for simplicity, henceforth the parameter 𝜃𝜃 is referred 
to this accumulated score, although the integer part of 𝜃𝜃 is a more accurate description. 

 

5. Inference for the Model 
In this section we start by deriving point estimators for the probabilities of the seven landing 
outcomes based on the model given in (2). Certain properties of these estimators are derived, 
properties needed for the Delta method, which is used to get an interval estimator for 𝜃𝜃. The 
Delta method is described, and it is also shown how the Delta method can be applied in our 
context. An alternative method, a Bootstrap method used for inference for 𝜃𝜃  is also described. 
A test for model assumptions is also provided. 

 

5.1 Maximum Likelihood Estimation of the Joint Probability Model 

In order to get data to estimate the parameters in the model set out in the previous section, the 
pair of pigs are rolled 𝑛𝑛 times. To this experiment consisting of 𝑛𝑛 identical and independent 
trials we can associate the 37 random variables (𝑁𝑁11,𝑁𝑁12, … ,𝑁𝑁66,𝑁𝑁77), where 𝑁𝑁𝑖𝑖𝑖𝑖 takes the 
value 𝑛𝑛𝑖𝑖𝑖𝑖 if the number of times a roll results in {𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗} is 𝑛𝑛𝑖𝑖𝑖𝑖. Clearly, 
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖6

𝑗𝑗=1
6
𝑖𝑖=1 + 𝑛𝑛77 = 𝑛𝑛 and the joint distribution of (𝑁𝑁11,𝑁𝑁12, … ,𝑁𝑁66,𝑁𝑁77) is multinomial 

with parameters 𝑛𝑛 and (𝑝𝑝11,𝑝𝑝12, … ,𝑝𝑝66,𝑝𝑝77), where ∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖6
𝑗𝑗=1

6
𝑖𝑖=1 + 𝑝𝑝77 = 1 and 𝑝𝑝𝑖𝑖𝑖𝑖 is defined 

by (2). We can write the likelihood as a function of the parameter vector 𝒑𝒑 =
(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4,𝑝𝑝5,𝑝𝑝6,𝑝𝑝7) as 

𝐿𝐿(𝒑𝒑) = ��(𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗/�𝑝𝑝𝑘𝑘)𝑛𝑛𝑖𝑖𝑖𝑖
6

𝑘𝑘=1

𝑝𝑝7
𝑛𝑛77

6

𝑗𝑗=1

6

𝑖𝑖=1

. 

The log-likelihood function, defined by 𝑙𝑙(𝒑𝒑) = ln (𝐿𝐿(𝒑𝒑)), is given by 

𝑙𝑙(𝒑𝒑) = ∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖[ln(𝑝𝑝𝑖𝑖) + ln�𝑝𝑝𝑗𝑗� − ln (6
𝑗𝑗=1

6
𝑖𝑖=1 ∑ 𝑝𝑝𝑘𝑘6

𝑘𝑘=1 )] + 𝑛𝑛77ln (𝑝𝑝7). 
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Taking the constraint ∑ 𝑝𝑝𝑖𝑖 = 17
𝑖𝑖=1  into account when maximizing the log-likelihood with 

respect to 𝒑𝒑 calls for the method of Lagrange multipliers. The Lagrangean function is written 
as 

ℒ(𝒑𝒑,𝜆𝜆) =  𝑙𝑙(𝒑𝒑) + 𝜆𝜆(1 − ∑ 𝑝𝑝𝑖𝑖7
𝑖𝑖=1 ). 

In finding the maximum likelihood estimators for the parameters in the vector 𝒑𝒑 we take the 
partial derivatives of ℒ(𝒑𝒑,𝜆𝜆) with respect to 𝒑𝒑 and 𝜆𝜆. We obtain 

𝜕𝜕ℒ(𝒑𝒑,𝜆𝜆)
𝜕𝜕𝑝𝑝𝑖𝑖

=
∑ (𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

𝑝𝑝𝑖𝑖
−
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖6

𝑗𝑗=1
6
𝑘𝑘=1

∑ 𝑝𝑝𝑘𝑘6
𝑘𝑘=1

− 𝜆𝜆,                𝑖𝑖 = 1, … , 6, 

𝜕𝜕ℒ(𝒑𝒑, 𝜆𝜆)
𝜕𝜕𝑝𝑝7

=
𝑛𝑛77
𝑝𝑝7

− 𝜆𝜆 

and 

𝜕𝜕ℒ(𝒑𝒑, 𝜆𝜆)
𝜕𝜕𝜕𝜕

= 1 −�𝑝𝑝𝑖𝑖

7

𝑖𝑖=1

 

Setting the derivatives equal to zero we obtain  

 ∑ (𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

𝑝̂𝑝𝑖𝑖
−
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖6

𝑗𝑗=1
6
𝑘𝑘=1

∑ 𝑝̂𝑝𝑘𝑘6
𝑘𝑘=1

= 𝜆𝜆,                𝑖𝑖 = 1, … , 6, 

 

 
(15)-(20) 

 𝑛𝑛77
𝑝̂𝑝7

= 𝜆𝜆 

 

 
(21) 

 
1 −�𝑝̂𝑝𝑖𝑖

7

𝑖𝑖=1

= 0, 

 

 
(22) 

where 𝑝̂𝑝𝑖𝑖, 𝑖𝑖 = 1, … , 7, is the maximum likelihood estimate of 𝑝𝑝𝑖𝑖. To solve for these estimates 
we subtract, one at the time, the equations (16) to (20)  from (15) and solve for 𝑝̂𝑝𝑖𝑖, 𝑖𝑖 = 2, … , 6, 
in terms of 𝑝̂𝑝1. This gives 

 
𝑝̂𝑝𝑖𝑖 = 𝑝̂𝑝1

∑ (𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

∑ (𝑛𝑛1𝑗𝑗 + 𝑛𝑛𝑗𝑗1)6
𝑗𝑗=1

.             𝑖𝑖 = 2, … , 6. 

 

 
(23)-(27) 

Now, subtracting (21)  from (15) and substituting 1 − 𝑝̂𝑝7 for ∑ 𝑝̂𝑝𝑘𝑘6
𝑘𝑘=1  we can solve for 𝑝̂𝑝7 in 

terms of 𝑝̂𝑝1. We get 

 
𝑝̂𝑝7 = 𝑝̂𝑝1

2𝑛𝑛77
∑ (𝑛𝑛1𝑗𝑗 + 𝑛𝑛𝑗𝑗1)6
𝑗𝑗=1

. 

 

(28) 

Now, substitute (23) to (28) into (22), i.e. the constraint, to solve for 𝑝̂𝑝1. This gives, using the 
constraint ∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖6

𝑗𝑗=1
6
𝑖𝑖=1 + 𝑛𝑛77 = 𝑛𝑛, 

 
𝑝̂𝑝1 =

∑ (𝑛𝑛1𝑗𝑗 + 𝑛𝑛𝑗𝑗1)6
𝑗𝑗=1

2𝑛𝑛
. 

(29) 
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Finally, to solve for 𝑝̂𝑝𝑖𝑖, 𝑖𝑖 = 2, … , 7, substitution of (29) into (23) to (28) yields 

𝑝̂𝑝𝑖𝑖 =
∑ (𝑛𝑛𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

2𝑛𝑛
,            𝑖𝑖 = 1, … , 6 

and 

𝑝̂𝑝7 =
𝑛𝑛77
𝑛𝑛

. 

Thus, the maximum likelihood estimators 𝒑𝒑� = (𝑝̂𝑝1, 𝑝̂𝑝2, 𝑝̂𝑝3, 𝑝̂𝑝4, 𝑝̂𝑝5, 𝑝̂𝑝6, 𝑝̂𝑝7) of the marginal 
probabilities are given by  

 
𝑝̂𝑝𝑖𝑖 =

∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

2𝑛𝑛
,            𝑖𝑖 = 1, … , 6 

 

(30) 

and 

 
𝑝̂𝑝7 =

𝑁𝑁77
𝑛𝑛

. 
 

(31) 

The interpretation of the estimators is straightforward and intuitively appealing. To estimate the 
probability of the outcome that a pig is in physical contact with the other pig we simply calculate 
the proportion of times this outcome occurs out of the n trials. For a nice interpretation of how 
to estimate the probabilities of the other six outcomes we rewrite (30) as 

 
𝑝̂𝑝𝑖𝑖 =

2𝑁𝑁𝑖𝑖𝑖𝑖+∑ (𝑁𝑁𝑖𝑖𝑖𝑖+𝑁𝑁𝑗𝑗𝑗𝑗)6
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

2𝑛𝑛
,            𝑖𝑖 = 1, … , 6, 

 

(32) 

where the last term in the numerator is the number of times, we get outcome 𝑖𝑖 exactly once in 
the 𝑛𝑛 rolls. Thus, the numerator is the number of times outcome 𝑖𝑖 occurs summed over both 
pigs, that is, out of 2𝑛𝑛 times. The interpretation of 𝑝̂𝑝𝑖𝑖 as a proportion is now obvious. Yet another 
interpretation is possible rewriting (30) as 

 

𝑝̂𝑝𝑖𝑖 = (
∑ 𝑁𝑁𝑖𝑖𝑖𝑖6
𝑗𝑗=1

𝑛𝑛
+
∑ 𝑁𝑁𝑗𝑗𝑗𝑗6
𝑗𝑗=1

𝑛𝑛
)/2,            𝑖𝑖 = 1, … , 6 

Clearly, to estimate the probability of one of the other six outcomes we calculate the average 
of the proportion of times this particular outcome occurs for the two pigs. 

Due to the invariance property, the maximum likelihood estimators 𝒑𝒑�′ = (𝑝̂𝑝11, 𝑝̂𝑝12, … , 𝑝̂𝑝66, 𝑝̂𝑝77) 
of the joint probabilities 𝒑𝒑′ = (𝑝𝑝11,𝑝𝑝12, … ,𝑝𝑝66,𝑝𝑝77) are 

𝑝̂𝑝𝑖𝑖𝑖𝑖 = �𝑝̂𝑝𝑖𝑖𝑝̂𝑝𝑗𝑗/�𝑝̂𝑝𝑘𝑘,
6

𝑘𝑘=1

𝑖𝑖 = 1, … , 6, 𝑗𝑗 = 1, … , 6,

𝑝̂𝑝𝑖𝑖, 𝑖𝑖 = 𝑗𝑗 = 7.

 

These estimators are used in a goodness-of-fit test, presented later. 
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5.2 Some Properties of 𝒑𝒑� 

In this section we show that 𝐸𝐸(𝒑𝒑�) = 𝒑𝒑 and derive the covariance matrix 𝑽𝑽(𝒑𝒑�𝑛𝑛) = 1
𝑛𝑛
𝑽𝑽, where 𝑽𝑽 

is a symmetric 7 × 7 matrix with elements denoted by 𝜎𝜎𝑖𝑖𝑖𝑖. In doing that we make use of three 
properties of the multinomial probability distribution. It can be found in many texts, see for 
example Wackerly et al. (2008), that if the random vector (𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑘𝑘) follows a multinomial 
distribution with parameters 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘 and 𝑛𝑛, it holds that 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝑛𝑛𝑝𝑝𝑖𝑖, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝑛𝑛𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖), and 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖,𝑌𝑌𝑗𝑗� = −𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗  if 𝑖𝑖 ≠ 𝑗𝑗.  

Thus, in our context, we have 

 𝐸𝐸�𝑁𝑁𝑖𝑖𝑖𝑖� = 𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖, 
 

(33) 

 𝑉𝑉𝑉𝑉𝑉𝑉�𝑁𝑁𝑖𝑖𝑖𝑖� = 𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖�1 − 𝑝𝑝𝑖𝑖𝑖𝑖� 
 

(34) 

and 

 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖, 𝑁𝑁𝑠𝑠𝑠𝑠� = −𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠  if (𝑖𝑖, 𝑗𝑗) ≠ (𝑠𝑠, 𝑡𝑡), 
 

(35) 

Starting with the proof of unbiasedness we get from (30), making use of (33), where 𝑝𝑝𝑖𝑖𝑖𝑖 is 
given by (2), and well-known rules for handling the expectation operator,  

𝐸𝐸(𝑝̂𝑝𝑖𝑖) = 𝐸𝐸(
∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6
𝑗𝑗=1

2𝑛𝑛
) 

=
1

2𝑛𝑛
𝐸𝐸�(𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)

6

𝑗𝑗=1

 

=
1

2𝑛𝑛
�(𝐸𝐸(𝑁𝑁𝑖𝑖𝑖𝑖) + 𝐸𝐸(𝑁𝑁𝑗𝑗𝑗𝑗))
6

𝑗𝑗=1

 

=
1

2𝑛𝑛
�(𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑛𝑛𝑝𝑝𝑗𝑗𝑗𝑗)
6

𝑗𝑗=1

 

=
1
2
�(

𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
∑ 𝑝𝑝𝑘𝑘6
𝑘𝑘=1

+
𝑝𝑝𝑗𝑗𝑝𝑝𝑖𝑖

∑ 𝑝𝑝𝑘𝑘6
𝑘𝑘=1

)
6

𝑗𝑗=1

 

=
1
2
�

2𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
∑ 𝑝𝑝𝑘𝑘6
𝑘𝑘=1

6

𝑗𝑗=1

 

= 𝑝𝑝𝑖𝑖. 

From (31) we have  

𝐸𝐸(𝑝̂𝑝7) = 𝐸𝐸(
𝑁𝑁77
𝑛𝑛

) 
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=
1
𝑛𝑛
𝐸𝐸(𝑁𝑁77) 

=
1
𝑛𝑛
𝑛𝑛𝑝𝑝7 

= 𝑝𝑝7. 

Turning to the elements of the covariance matrix, we start with the diagonal elements. In 
deriving the diagonal elements 1

𝑛𝑛
𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑉𝑉(𝑝̂𝑝𝑖𝑖) for 𝑖𝑖 = 1, … , 6, to simplify the calculations, we 

consider the way 𝑝̂𝑝𝑖𝑖 is expressed in (32). Define 𝑁𝑁∗𝑖𝑖 = ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

, where, as mentioned 

before, 𝑁𝑁∗𝑖𝑖 is the number of times we get outcome 𝑖𝑖 exactly once out of the 𝑛𝑛 rolls. From (2) 
and the properties of the multinomial distribution given previously, i.e. (34) and (35), it 
follows that  

 𝑉𝑉(𝑁𝑁𝑖𝑖𝑖𝑖) = 𝑛𝑛 𝑝𝑝𝑖𝑖
2

1−𝑝𝑝7
(1 − 𝑝𝑝𝑖𝑖

2

1−𝑝𝑝7
), 

 

(36) 

 𝑉𝑉(𝑁𝑁∗𝑖𝑖) = 𝑛𝑛 2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖−𝑝𝑝7)
1−𝑝𝑝7

(1 − 2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖−𝑝𝑝7)
1−𝑝𝑝7

), 
 

(37) 

and 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁∗𝑖𝑖) = −𝑛𝑛 𝑝𝑝𝑖𝑖
2

1−𝑝𝑝7

2𝑝𝑝𝑖𝑖(1−𝑝𝑝𝑖𝑖−𝑝𝑝7)
1−𝑝𝑝7

. 
 

(38) 

Now, using the notation for ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

 introduced in this section as well as well-known 

rules for the variance operator, we get 

 

𝑉𝑉(𝑝̂𝑝𝑖𝑖) = 𝑉𝑉�
2𝑁𝑁𝑖𝑖𝑖𝑖 + ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

2𝑛𝑛
� 

= 𝑉𝑉 �
2𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁∗𝑖𝑖

2𝑛𝑛
� 

=
1

4𝑛𝑛2
(4𝑉𝑉(𝑁𝑁𝑖𝑖𝑖𝑖) + 𝑉𝑉(𝑁𝑁∗𝑖𝑖) + 4𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁∗𝑖𝑖)) 

 

 
 
 
 

(39) 

Substitution of (36) to (38)  into (39), and simplifying, yields 

 1
𝑛𝑛
𝜎𝜎𝑖𝑖𝑖𝑖 = 𝑉𝑉(𝑝̂𝑝𝑖𝑖) =

1
𝑛𝑛
𝑝𝑝𝑖𝑖(2𝑝𝑝𝑖𝑖 − 1)𝑝𝑝7 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)

2(1 − 𝑝𝑝7)
,     𝑖𝑖 = 1, … , 6. 

 

(40) 

Substituting 𝑉𝑉(𝑁𝑁77) = 𝑛𝑛𝑝𝑝7(1− 𝑝𝑝7), we get the final diagonal element 1
𝑛𝑛
𝜎𝜎77 as 

 
𝑉𝑉(𝑝̂𝑝7) = 𝑉𝑉 �

𝑁𝑁77
𝑛𝑛
� 

=
1
𝑛𝑛2
𝑉𝑉(𝑁𝑁77) 

 
 

(41) 
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=
𝑝𝑝7(1 − 𝑝𝑝7)

𝑛𝑛
 

 
The off-diagonal elements 1

𝑛𝑛
𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝𝑗𝑗� for 𝑖𝑖 = 1, … , 6, and 𝑗𝑗 = 1, … , 6, where 𝑖𝑖 ≠ 𝑗𝑗, is 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝𝑗𝑗� = 𝐶𝐶𝐶𝐶𝐶𝐶 �
2𝑁𝑁𝑖𝑖𝑖𝑖 + ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

2𝑛𝑛
,
2𝑁𝑁𝑗𝑗𝑗𝑗 + ∑ (𝑁𝑁𝑗𝑗𝑗𝑗 + 𝑁𝑁𝑖𝑖𝑖𝑖)6

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗

2𝑛𝑛
� 

 
= 𝐶𝐶𝐶𝐶𝐶𝐶(

2𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁∗𝑖𝑖
2𝑛𝑛

,
2𝑁𝑁𝑗𝑗𝑗𝑗 + 𝑁𝑁∗𝑗𝑗

2𝑛𝑛
) 

 

(42) 

=
1

4𝑛𝑛2
(4𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁𝑗𝑗𝑗𝑗� + 2𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁∗𝑗𝑗� + 2𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑗𝑗𝑗𝑗 ,𝑁𝑁∗𝑖𝑖� + 2𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖,𝑁𝑁∗𝑗𝑗�) 

where rules for the covariance operator have been used in the last step. Once again, from the 
properties of the multinomial distribution we have  

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁𝑗𝑗𝑗𝑗� = −𝑛𝑛

𝑝𝑝𝑖𝑖2

1 − 𝑝𝑝7

𝑝𝑝𝑗𝑗2

1 − 𝑝𝑝7
, 

 

(43) 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁∗𝑗𝑗� = −𝑛𝑛

𝑝𝑝𝑖𝑖2

1 − 𝑝𝑝7
2𝑝𝑝𝑗𝑗�1 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7�

1 − 𝑝𝑝7
, 

 

(44) 

and, reversing the subscripts, we get 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑗𝑗𝑗𝑗 ,𝑁𝑁∗𝑖𝑖� = −𝑛𝑛

𝑝𝑝𝑗𝑗2

1 − 𝑝𝑝7
2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝7)

1 − 𝑝𝑝7
. 

 

(45) 

However, these properties of the multinomial distribution cannot directly be used to get an 
expression for the last covariance term 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖,𝑁𝑁∗𝑗𝑗�, since the two outcomes (𝑖𝑖, 𝑗𝑗) and (𝑗𝑗, 𝑖𝑖) 
are used to calculate 𝑁𝑁∗𝑖𝑖 as well 𝑁𝑁∗𝑗𝑗. Therefore, we define 𝑁𝑁∗𝑖𝑖𝑖𝑖 = ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6

𝑘𝑘=1
𝑘𝑘≠𝑖𝑖,𝑘𝑘≠𝑗𝑗

 and 

𝑁𝑁∗∗𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗. We note that 𝑁𝑁∗𝑖𝑖 = 𝑁𝑁∗𝑖𝑖𝑖𝑖 + 𝑁𝑁∗∗𝑖𝑖𝑗𝑗 and the interpretation of 𝑁𝑁∗𝑖𝑖𝑖𝑖 and 𝑁𝑁∗∗𝑖𝑖𝑖𝑖 
should be clear. 𝑁𝑁∗𝑖𝑖𝑖𝑖 is the number of times outcome 𝑖𝑖 occurs exactly once without outcome 𝑗𝑗 
occurs, while 𝑁𝑁∗∗𝑖𝑖𝑖𝑖 is the number of times outcomes 𝑖𝑖 and 𝑗𝑗 occur at the same time. Now, using 
properties of the covariance operator, we get 

 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖 ,𝑁𝑁∗𝑗𝑗� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖𝑖𝑖 + 𝑁𝑁∗∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗𝑗𝑗𝑗𝑗 + 𝑁𝑁∗∗𝑗𝑗𝑗𝑗� 
= 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗𝑗𝑗𝑗𝑗� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗∗𝑗𝑗𝑗𝑗� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗𝑗𝑗𝑗𝑗� + 𝑉𝑉�𝑁𝑁∗∗𝑖𝑖𝑖𝑖�, 

 

(46) 

where the last term is valid, since the fact that 𝑁𝑁∗∗𝑖𝑖𝑖𝑖 =  𝑁𝑁∗∗𝑗𝑗𝑗𝑗 implies 𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗∗𝑗𝑗𝑗𝑗� =
𝑉𝑉(𝑁𝑁∗∗𝑖𝑖𝑖𝑖).  By using properties of the multinomial distribution, in a similar way we have made 
before by using (34) and (35), we have 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗𝑗𝑗𝑗𝑗� = −𝑛𝑛

2𝑝𝑝𝑖𝑖�1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7�
1 − 𝑝𝑝7

2𝑝𝑝𝑗𝑗�1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7�
1 − 𝑝𝑝7

, 

 

(47) 
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𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖𝑖𝑖,𝑁𝑁∗∗𝑗𝑗𝑗𝑗� = −𝑛𝑛

2𝑝𝑝𝑖𝑖�1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7�
1 − 𝑝𝑝7

2𝑝𝑝𝑗𝑗𝑝𝑝𝑖𝑖
1 − 𝑝𝑝7

, 

 

(48) 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗∗𝑖𝑖𝑖𝑖 ,𝑁𝑁∗𝑗𝑗𝑗𝑗� = −𝑛𝑛

2𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
1 − 𝑝𝑝7

2𝑝𝑝𝑗𝑗�1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7�
1 − 𝑝𝑝7

, 

 

(49) 

and 

 
𝑉𝑉�𝑁𝑁∗∗𝑖𝑖𝑖𝑖� = 𝑛𝑛

2𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
1 − 𝑝𝑝7

�1 −
2𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
1 − 𝑝𝑝7

�. 

 

(50) 

Now, substitute (47) to (50) into (46) to get 

 
𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁∗𝑖𝑖 ,𝑁𝑁∗𝑗𝑗� =

2𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗(1 − 2(1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 − 𝑝𝑝7))
1 − 𝑝𝑝7

−
4𝑛𝑛𝑝𝑝𝑖𝑖2𝑝𝑝𝑗𝑗2

(1 − 𝑝𝑝7)2
 

 

(51) 

Finally, substitute (43) to (45) and (51) into (42). After simplification we end up with 

 
1
𝑛𝑛
𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝𝑗𝑗� =

1
𝑛𝑛
𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝7 −

1
2𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗

(1 − 𝑝𝑝7)
, 

 
(52) 

 

for  𝑖𝑖 = 1, … , 6, and 𝑗𝑗 = 1, … , 6, where 𝑖𝑖 ≠ 𝑗𝑗. 

We have yet one more case to consider, the off-diagonal elements 1
𝑛𝑛
𝜎𝜎𝑖𝑖7 = 1

𝑛𝑛
𝜎𝜎7𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝7) 

for 𝑖𝑖 = 1, … , 6. With a similar motivation as for the previous cases, we get 

 

𝐶𝐶𝐶𝐶𝐶𝐶�𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝𝑗𝑗� = 𝐶𝐶𝐶𝐶𝐶𝐶 �
2𝑁𝑁𝑖𝑖𝑖𝑖 + ∑ (𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑗𝑗𝑗𝑗)6

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

2𝑛𝑛
,
𝑁𝑁77
𝑛𝑛
� 

= 𝐶𝐶𝐶𝐶𝐶𝐶 �
2𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁∗𝑖𝑖

2𝑛𝑛
,
𝑁𝑁77
𝑛𝑛
� 

=
1

2𝑛𝑛2
�2𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁77) + 𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁∗𝑖𝑖 ,𝑁𝑁77)�. 

 

 
 
 

(53) 

 

It is easily shown that 

 
𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁77) = −𝑛𝑛

𝑝𝑝𝑖𝑖2

1 − 𝑝𝑝7
𝑝𝑝7 

 

(54) 

and 

 
𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁∗𝑖𝑖,𝑁𝑁77) = −𝑛𝑛

2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝7)
1 − 𝑝𝑝7

𝑝𝑝7. 

 

(55) 

Substituting (54) and (55) into (53), after simplification, we get 
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 1
𝑛𝑛
𝜎𝜎𝑖𝑖7 =

1
𝑛𝑛
𝜎𝜎7𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑝̂𝑝𝑖𝑖, 𝑝̂𝑝7) = −

𝑝𝑝𝑖𝑖𝑝𝑝7
𝑛𝑛

. 
 

(56) 

 

5.3 Inference for the Strategy of Maximizing Expected Score 

Recall equation (14) showing 𝜃𝜃, where the integer part of 𝜃𝜃 is the number of points to obtain 
in a round before stop rolling the pigs, as a function of 𝒑𝒑 and 𝑆𝑆. Now that we have derived 
maximum likelihood estimators for 𝒑𝒑, we have, again using the invariance principle, a 
maximum likelihood estimator for 𝜃𝜃 as well, simply by replacing 𝒑𝒑 by 𝒑𝒑� given in (30) and 
(31) to obtain the point estimator 

𝜃𝜃� = ℎ(𝒑𝒑�) =
𝑓𝑓(𝒑𝒑�)
𝑔𝑔(𝒑𝒑�). 

To find interval estimators we make use of the Multivariate Delta Method as well as Bootstrap 
methods. Starting with the Delta Method consider the following theorem (Casella and Berger, 
2002): 

Theorem (Multivariate Delta Method)  

Let 𝒀𝒀1, … ,𝒀𝒀𝑛𝑛 be a random sample with 𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝜇𝜇𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖,𝑌𝑌𝑗𝑗𝑗𝑗� = 𝜎𝜎𝑖𝑖𝑖𝑖. For a given 
function ℎ with continuous first partial derivatives and a specific value of 𝝁𝝁 = (𝜇𝜇1, … , 𝜇𝜇𝑟𝑟) for 
which 𝜏𝜏2 = ∑ ∑ 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕ℎ(𝝁𝝁)
𝜕𝜕𝜇𝜇𝑖𝑖

𝑟𝑟
𝑗𝑗=1

𝑟𝑟
𝑖𝑖=1

𝜕𝜕ℎ(𝝁𝝁)
𝜕𝜕𝜇𝜇𝑗𝑗

> 0, 

√𝑛𝑛[ℎ(𝑌𝑌�1, … ,𝑌𝑌�𝑟𝑟) − ℎ(𝜇𝜇1, … , 𝜇𝜇𝑟𝑟)] ⟶𝑁𝑁(0, 𝜏𝜏2) 

in distribution, where 𝑌𝑌�𝑖𝑖 = 1
𝑛𝑛
∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1 . 

To apply this theorem on our problem of interest we define for the 𝑘𝑘th roll, where 𝑘𝑘 = 1, … ,𝑛𝑛, 

𝑌𝑌𝑖𝑖𝑖𝑖 =
2𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + ∑ (𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗)6

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

2
, 𝑖𝑖 = 1, … , 6, 

and  

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖,        𝑖𝑖 = 7, 

where 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 is an indicator variable taking the value 1 if, for the 𝑘𝑘th roll, the outcome of the first 
pig is 𝑖𝑖 and the outcome of the second pig is 𝑗𝑗. Now, 𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖) = 𝑝𝑝𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖𝑖𝑖,𝑌𝑌𝑗𝑗𝑗𝑗� = 𝜎𝜎𝑖𝑖𝑖𝑖, where 
𝜎𝜎𝑖𝑖𝑖𝑖 is given from (40), (41), (52) and (56) in the previous section. It is also clear that 𝑝̂𝑝𝑖𝑖 can 
be expressed as 1

𝑛𝑛
∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1 . Thus, the above theorem can be used. For a large sample size 𝑛𝑛, we 

have 

𝜃𝜃�
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

~ 𝑁𝑁�𝜃𝜃,
1
𝑛𝑛
��𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑖𝑖

𝑟𝑟

𝑗𝑗=1

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑗𝑗

�, 

where the partial derivatives are given below.  
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For (𝑖𝑖, 𝑗𝑗) = (1, 2), (2,1), 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑖𝑖

=
(2𝑝𝑝𝑖𝑖 + 10𝑝𝑝3 + 10𝑝𝑝4 + 20𝑝𝑝5 + 30𝑝𝑝6)𝑔𝑔(𝒑𝒑) − �2𝑝𝑝𝑗𝑗 − 2𝑝𝑝𝑗𝑗𝑝𝑝7�𝑓𝑓(𝒑𝒑)

(𝑔𝑔(𝒑𝒑))2
. 

For (𝑖𝑖, 𝑗𝑗) = (3, 4), (4,3), 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑖𝑖

=
40𝑝𝑝𝑖𝑖 + 10𝑝𝑝1 + 10𝑝𝑝2 + 20𝑝𝑝𝑗𝑗 + 30𝑝𝑝5 + 40𝑝𝑝6

𝑔𝑔(𝒑𝒑) , 

while for 𝑖𝑖 = 5, 6, 7, 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝5

=
80𝑝𝑝5 + 20𝑝𝑝1 + 20𝑝𝑝2 + 30𝑝𝑝3 + 30𝑝𝑝4 + 50𝑝𝑝6

𝑔𝑔(𝒑𝒑) , 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝6

=
120𝑝𝑝6 + 30𝑝𝑝1 + 30𝑝𝑝2 + 40𝑝𝑝3 + 40𝑝𝑝4 + 50𝑝𝑝5

𝑔𝑔(𝒑𝒑) , 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝7

=
𝑆𝑆(2𝑝𝑝7 − 1)𝑔𝑔(𝒑𝒑) − (2𝑝𝑝7𝑝𝑝1𝑝𝑝2 − 1)𝑓𝑓(𝒑𝒑)

(𝑔𝑔(𝒑𝒑))2
. 

 

An approximate 100(1 − 𝛼𝛼) % confidence interval estimator for 𝜃𝜃 is now given by 

(𝜃𝜃� − 𝑧𝑧𝛼𝛼/2  
1
√𝑛𝑛

���𝜎𝜎�𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑝𝑝𝑖𝑖

𝑟𝑟

𝑗𝑗=1

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑝𝑝𝑗𝑗

, 𝜃𝜃� + 𝑧𝑧𝛼𝛼/2  
1
√𝑛𝑛

���𝜎𝜎�𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕�
𝜕𝜕𝑝𝑝𝑖𝑖

𝑟𝑟

𝑗𝑗=1

𝑟𝑟

𝑖𝑖=1

𝜕𝜕𝜕𝜕�
𝜕𝜕𝑝𝑝𝑗𝑗

), 

where 𝑧𝑧𝛼𝛼/2 is the 100(1 − 𝛼𝛼/2)th percentile for the standard normal distribution, while 𝜎𝜎�𝑖𝑖𝑖𝑖 and 
𝜕𝜕𝜕𝜕�

𝜕𝜕𝑝𝑝𝑖𝑖
 are estimators for 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝑝𝑝𝑖𝑖
, respectively. To get these estimators, 𝒑𝒑 is simply replaced by 

𝒑𝒑� in the expressions for 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝𝑖𝑖

. 

Bootstrap methods are alternatives to the Delta method, see for example the pioneering work 
by Efron and Tibshirani (1994) for a nice treatment of bootstrap methods. Here we adopt a 
parametric bootstrap method to obtain an interval estimator for 𝜃𝜃. Based on the maximum 
likelihood estimates of 𝑝𝑝𝑖𝑖 1000  resamples, each with a size of 5000, are generated using the 
model described in (7). For each resample an estimate of 𝜃𝜃 is calculated, this value is denoted 
by 𝜃𝜃�𝑖𝑖∗ for the 𝑖𝑖th resample. A bootstrap estimator for the variance of 𝜃𝜃� is  

𝑉𝑉𝑉𝑉𝑉𝑉∗�𝜃𝜃�� = 1
1000−1

∑ (𝜃𝜃�𝑖𝑖∗ − 𝜃𝜃�𝚤𝚤∗���)21000
𝑖𝑖=1 , 

where 𝜃𝜃�𝚤𝚤∗��� = 1
1000

∑ 𝜃𝜃�𝑖𝑖∗1000
𝑖𝑖=1 , the mean of the resampled values. An approximate 100(1 − 𝛼𝛼) % 

confidence interval estimator for 𝜃𝜃 based on bootstrap is now given by  
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(𝜃𝜃�𝚤𝚤∗��� − 𝑧𝑧𝛼𝛼/2�𝑉𝑉𝑉𝑉𝑉𝑉∗�𝜃𝜃��,𝜃𝜃�𝚤𝚤∗��� + 𝑧𝑧𝛼𝛼/2�𝑉𝑉𝑉𝑉𝑉𝑉∗�𝜃𝜃��). 

As an alternative, an interval based on percentiles of the distribution of the resampled estimates 
of 𝜃𝜃 can be utilized, where the 100𝛼𝛼/2th percentile is the lower limit and the 100(1 − 𝛼𝛼/2)th 
percentile is the upper limit.  

 

5.4 A Test of Model Assumptions 

In this section a goodness-of-fit test, see Wackerly et al. (2008), is proposed for simultaneously 
testing the assumptions of conditional independence and equal marginal distributions. Note that 
the two model assumptions imply the joint probability distribution given by (2). Therefore, to 
test the null hypothesis 

𝐻𝐻0: The two model assumptions are fulfilled 

against the alternative 

𝐻𝐻1: At least one of the two model assumptions is not fulfilled 

a goodness-of-fit test can be performed of the null hypothesis 

𝐻𝐻0: The joint distribution of 𝑋𝑋1 and 𝑋𝑋2 is given by (2) 

against the alternative 

𝐻𝐻1: The joint distribution of 𝑋𝑋1 and 𝑋𝑋2 is not given by (2). 

Recall that under the null hypothesis the joint distribution of (𝑁𝑁11,𝑁𝑁12, … ,𝑁𝑁66,𝑁𝑁77) is 
multinomial with parameters 𝑛𝑛 and (𝑝𝑝11,𝑝𝑝12, … , 𝑝𝑝66,𝑝𝑝77) given in (2). Thus, the marginal 
distribution of 𝑁𝑁𝑖𝑖𝑖𝑖 are binomial with parameters 𝑛𝑛 and 𝑝𝑝𝑖𝑖𝑖𝑖, and 𝐸𝐸�𝑁𝑁𝑖𝑖𝑖𝑖� = 𝑛𝑛𝑝𝑝𝑖𝑖𝑖𝑖. Since 𝑝𝑝𝑖𝑖𝑖𝑖 is not 
known we replace the unknown parameter by its maximum likelihood estimator 𝑝̂𝑝𝑖𝑖𝑖𝑖 to obtain 

𝐸𝐸�𝑁𝑁𝚤𝚤𝚤𝚤�� = 𝑛𝑛𝑝̂𝑝𝑖𝑖𝑖𝑖, where 𝑝̂𝑝𝑖𝑖𝑖𝑖 = 𝑝̂𝑝𝑖𝑖𝑝̂𝑝𝑗𝑗/∑ 𝑝̂𝑝𝑘𝑘,6
𝑘𝑘=1  for 𝑖𝑖 = 1, … , 6, 𝑗𝑗 = 1, … , 6, and 𝑝̂𝑝77 = 𝑝̂𝑝7 under 

𝐻𝐻0. The test statistic given by 

Χ2 = ∑ ∑ (𝑁𝑁𝑖𝑖𝑗𝑗− 𝐸𝐸�𝑁𝑁𝚤𝚤𝚤𝚤�)� 2

𝐸𝐸�𝑁𝑁𝚤𝚤𝚤𝚤��
6
𝑗𝑗=1

6
𝑖𝑖=1 + (𝑁𝑁77−𝐸𝐸(𝑁𝑁77))� 2

𝐸𝐸(𝑁𝑁77)� , 

has approximately a 𝜒𝜒2 distribution with (37 − (7 − 1) − 1) = 30 degrees of freedom. The 
significance level to be used is 5 %. 

To motivate the number of degrees of freedom associated with this 𝜒𝜒2 statistic recall that this 
number is equal to the number of cell probabilities minus 1 degree of freedom for each 
independent restriction put on the cell probabilities. In total we have 37 cell probabilities. We 
lose 1 degree of freedom because of the constraint ∑ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖6

𝑗𝑗=1
6
𝑖𝑖=1 + 𝑝𝑝77 = 1. Moreover, we use 

the cell frequencies to estimate 7 parameters, 𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1, … , 7. However, the seventh parameter 
is determined once we have estimates for the first six parameters. Thus, we lose yet another 
(7 − 1) = 6 degrees of freedom for estimation of the parameters. 

 The sharp-eyed reader might already have noticed that the test statistic given above can be 
simplified to 
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∑ ∑ (𝑁𝑁𝑖𝑖𝑖𝑖− 𝐸𝐸�𝑁𝑁𝚤𝚤𝚤𝚤�)� 2

𝐸𝐸�𝑁𝑁𝚤𝚤𝚤𝚤��
6
𝑗𝑗=1

6
𝑖𝑖=1 , 

since (𝑁𝑁77−𝐸𝐸(𝑁𝑁77))� 2

𝐸𝐸(𝑁𝑁77)�  equals zero under the null hypothesis. The reasoning behind the degrees of 

freedom being 30 now goes like this: There are 36 cell probabilities and now we estimate 6 
parameters, 𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1, … , 6, where no parameter is determined once the others have been 
estimated. furthermore, no other constraint is placed on the cell probabilities. Thus, we get the 
number of degrees of freedom as (36 − 6) = 30.  

 

6. Results from Estimation and Testing 
In Table 4 the maximum likelihood estimates of the marginal distribution of 𝑋𝑋 is presented. 

Table 4. Maximum likelihood estimates of the marginal distribution of 𝑋𝑋. 

𝑝̂𝑝1 𝑝̂𝑝2 𝑝̂𝑝3 𝑝̂𝑝4 𝑝̂𝑝5 𝑝̂𝑝6 𝑝̂𝑝7 
0.2971 0.3435 0.0956 0.2271 0.0284 0.0045 0.0038 

 

Using the above maximum likelihood estimates for the goodness of fit test set out earlier yields 
an observed value of the test statistic equal to 34.09 with a p-value of 0.28. Thus, our model is 
not rejected at the prescribed significance level of 5 %. 

For 𝑆𝑆 = 0 we get the point estimate 𝜃𝜃� = 22.91, suggesting rolling again if 𝑇𝑇 ≤ 22. The 
estimated variance of 𝜃𝜃� using the Delta method is 0.4451 and 0.4300 using the Bootstrap 
method. Table 5 below shows 95 percent confidence interval for 𝜃𝜃 for the three different 
interval methods used. 

Table 5. 95 % confidence intervals for 𝜃𝜃 setting 𝑆𝑆 = 0. 

Method Interval estimate 
Delta (21.60, 24.22) 
Bootstrap using normal approximation (21.62, 24.26) 
Bootstrap using percentiles (21.61, 24.31) 

 

The intervals are quite similar, suggesting the normal approximation is a reasonable 
assumption. 

For 𝑆𝑆 = 60 the point estimate of 𝜃𝜃 is only slightly smaller than for 𝑆𝑆 = 0. We get 𝜃𝜃� = 21.84 
and a 95 % confidence interval (20.75, 24.00). The reason for the small difference in point 
estimates is of course the small probability of the outcome that the pigs touch each other. 

 

7. Discussion 
Apparently, the game Pass the Pigs® offers students in statistics a variety of possibilities in 
training their skills on different concepts and methods usually contained in a typical advanced 
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undergraduate or first year graduate course in Statistical theory. In solving the problem of 
estimating a confidence interval for the accumulated score where you are supposed to stop 
rolling the pigs in order to maximize the expected score in a given round, initially students need 
to think of concepts such as random experiments, outcomes and sample spaces. Furthermore, 
in formulating a model to be estimated and tested they practice, among other things, the 
concepts of joint probability distributions, statistical independence and conditional probability 
as well as the multiplication law of probability. Moreover, in developing a game’s strategy they 
encounter the mathematical expectation as a tool for decision making. In the latter part of the 
problem the students meet the main inferential methods such as point and interval estimation 
as well as hypothesis testing. The method of maximum likelihood is used for point estimation 
while two methods are proposed for interval estimation, the Delta method and the Bootstrap 
method. Hypothesis testing is used to check for model adequacy in terms of a goodness-of-fit 
test. Thus, a lot of probabilistic and statistical stuff are used to solve the problem. Therefore, 
the problem is suitable to serve as a comprehensive home assignment at the end of the course 
to tie together all the topics covered. Another approach is to split up the problem into several 
parts, given as smaller home assignments as concepts and methods are introduced during the 
course.  

We are certainly not limited to the approach outlined in this paper to solve the problem. From 
the results section it is suggested that the unlikely outcome where the pigs touch each other has 
a small effect on the strategy. Therefore, one possibility is to skip that outcome. Things would 
simplify a lot, especially those parts contained in the sections of model assumptions and 
maximum likelihood estimation.  

The assumptions of conditional independence and identical marginal distributions outlined 
earlier are of course not crucial for the construction of a confidence interval. Therefore, another 
solution of the problem might be obtained if the two assumptions previously mentioned are 
skipped, either because of rejection of the null hypothesis in section 5.4 or because a simpler 
model is preferred. In this case the ten parameters 𝑞𝑞−(𝑆𝑆+𝑇𝑇), 𝑞𝑞−𝑇𝑇 , … , 𝑞𝑞60  are simply estimated by 
the maximum likelihood estimates 𝑚𝑚𝑘𝑘/𝑛𝑛, where 𝑚𝑚𝑘𝑘 is the number of times the 𝑛𝑛 rolls have 
resulted in 𝑘𝑘 points, 𝑘𝑘 = −(𝑆𝑆 + 𝑇𝑇),−𝑇𝑇, … , 60. Doing the necessary modifications of the 
formulas yields the point estimate 22.37 for 𝜃𝜃 and a corresponding interval estimate 
(20.75, 24.00) with a  95 % confidence level using the Delta method. This interval is wider 
than the intervals calculated based on our assumptions of conditional independence and 
identical marginal distributions, suggesting that provided these assumptions are fulfilled the 
estimator for 𝜃𝜃 based on these assumptions is more efficient. 

Our point estimates of 𝜃𝜃, suggesting rolling until 𝑇𝑇 ≤ 22, are in line with the result obtained by 
Kern (2006). However, this similarity in estimation results should be interpreted with care, since 
variation in rolling techniques and a possible variation in the pigs’ shape might influence the 
true parameter 𝜃𝜃, see Kern (2006) for a discussion of various sources of variation. Therefore, a 
good idea might be to let the groups of students generate their own data to provide the 
opportunity of testing for these possible sources of variation using homogeneity tests, i.e. testing 
for equality of distributions among different groups of students controlling for the same pair of 
pigs as well as testing for equality of the pigs’ shape, where rolling techniques are controlled 
for. 
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The approach presented in this paper is purely classical. A suggestion for further analysis is to 
go on with the Bayesian approach suggested by Kern (2006) to get a credible interval for 𝜃𝜃. 
Such an approach would allow for an appealing interpretation like statements of the type: “The 
probability is 0.67 that you should go on rolling as long as the accumulated score is 22, while 
the probability is 0.13 you should go on as long as the score is 23”. Such statements are of 
course not valid using the classical approach. 
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