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Abstract

We propose a general class of multivariate fat-tailed distributions which includes
the normal, t and Laplace distributions as special cases as well as their mixture. Full
conditional posterior distributions for the Bayesian VAR-model are derived and used
to construct a MCMC-sampler for the joint posterior distribution. The framework
allows for selection of a specific special case as the distribution for the error terms
in the VAR if the evidence in the data is strong while at the same time allowing
for considerable flexibility and more general distributions than offered by any of
the special cases. As fat tails can also be a sign of conditional heteroskedasticity
we also extend the model to allow for stochastic volatility. The performance is
evaluated using simulated data and the utility of the general model specification is
demonstrated in applications to macroeconomics.
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1 Introduction

Bayesian VAR-models have become the de facto standard model in much of applied
macroeconomics and also with many applications in finance. Departing from the ba-
sic constant parameter, constant variance, normally distributed VARs of Kadiyala and
Karlsson (1997) and Sims and Zha (1998) the model has been generalized in several direc-
tions in order to better cope with the challenges of applied work and the vagaries of data.
Notable and useful extensions of the basic VAR include allowing for time varying param-
eters (Doan et al., 1984; Highfield, 1987; Sims, 1993; Cogley and Sargent, 2002) and/or
stochastic volatility (Uhlig, 1997; Cogley and Sargent, 2005; Primiceri, 2005; Chan and
Eisenstat, 2018).

The normality assumption has however, with few exceptions, remained unchallenged
despite the widespread recognition that data is frequently non-normal. The limited lit-
erature on BVARs with non-normal error distributions include Ni and Sun (2005) who
study a VAR with multivariate-t distributed error terms and derives posterior distribu-
tions and MCMC-samplers for a range of prior distributions on the parameters in the
VAR. Panagiotelis and Smith (2008) consider a BVAR with a multivariate skew-t distri-
butions and use this to forecast electricity prices. Lee et al. (2016) consider VAR-models
with multivariate-t and Laplace distributions for the error terms. The focus in the paper
is on the selection of shrinkage parameter for the normal-Wishart or independent normal
Wishart prior. The posterior modes are taken as the parameter estimates thereby avoiding
computationally intensive MCMC. Chiu et al. (2017) propose a VAR model with fat tails
and stochastic volatility where the “structural” errors, εt, have univariate t-distributions.
With a triangular identification scheme the reduced form errors, ut = Aεt, are then a
weighted sum of the independent t-distributed structural errors.

Common to these papers is that the non-normal distribution is obtained as a scale mix-
ture of a normal distribution, i.e. ut ∼ N (0, ξtΣ) for some non-negative random variable
ξt. One important implication of this is that the likelihood is normal and heteroskedastic
conditional on ξt and full conditional posteriors for the parameters in the VAR-model are
readily available. It is thus relatively straightforward to implement a MCMC-sampler for
the joint posterior distribution with ξt as a latent variable.

While a t-distribution or Laplace can be an improvement on the normality assumption
it is, in many cases, not obvious that this is the best choice. The class of scale mixtures of
normals (or more generally elliptically contoured distributions) is quite rich and include a
range of distributions as special cases, e.g. Cauchy and the slash distribution in addition
to the t and Laplace. Instead of focusing on a specific special case as the earlier literature
we propose a more general specification of the distribution of the error term while staying
in a framework that leads to conditional normality and feasible MCMC-samplers. We do
this by using a mixture of scale mixtures (or a MSM distribution) where the weights in the
mixture are estimated from the data. This will allow the data to speak about the shape of
the distribution and, if the evidence in the data is strong, the selection of a known special
case (including the normal distribution) as the error distribution. At the same time our
specification is flexible enough to include more general shapes and intermediate cases.

The paper is structured as follows. First, in Section 2, we introduce the reader to
the family of elliptically contoured distributions and give the details of our new MSM
distribution. In Section 3, we deliver the full conditional posterior distributions for the
Bayesian VAR-model and construct a MCMC-sampler for the joint posterior distribution.
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Section 4 extends all the results to the Bayesian VAR-model with stochastic volatility.
Section 5 discuss estimation of the marginal likelihood and model choice. The properties
of the model and methods are illustrated using simulated data in Section 6, while Section
7 provides applications to macroeconomic data. Section 8 concludes.

2 A flexible fat-tailed distribution

We take the class of elliptically contoured distributions as the starting point when con-
structing a flexible fat-tailed distribution for the error terms in the VAR-model. Recall
that a m-dimensional random vector x is elliptically contoured distributed if its density
function exists and is given by

f(x) = |Σ|−1/2h
(
(x− µ)′Ψ−1(x− µ)

)
,

where µ ∈ Rm, Ψ is a m × m positive definite covariance matrix, h : [0,∞) → [0,∞)
(see Gupta et al. (2013) for details). This distribution will be denoted by Em(µ,Ψ , h).
Alternatively, the distribution can be characterized through its stochastic representation.
If x ∼ Em(µ,Ψ , h), then it holds that

x
d
= µ+ ζ0Ψ

1/2v,

where ζ0 is a nonnegative random variable, v is a m-dimensional random vector uniformly

distributed on the unit sphere in Rm, ζ0 and v are independent and
d
= denotes equality

in distribution.
Except in special cases the stochastic representation can also be written as a scale

mixture of normals,

x
d
= µ+ ζΨ 1/2u,

with ζ = ζ0/‖u‖, u ∼ Nm(0, Im), and ζ0, ‖u‖, u are mutually independently distributed.
For simplicity we will only consider distributions that can be obtained as a scale mixture
of normals. This still leaves us with a very rich family of distributions with, for example,
the multivariate normal, t, and Laplace distributions as special cases, each corresponding
to a specific mixing distribution for ζ. Where we depart from earlier work - and this is at
the heart of our contribution - is that we do not simply replace the normality assumption
with one of the other special cases. Instead we let the mixing distribution itself be a
discrete mixture of distributions. This allows the data to speak about the shape of the
distribution and can effectively select one of the special cases if the posterior distribution
of the weights is concentrated on a single component in the mixture. At the same time it
does not force a specific choice on the data and can accommodate more complex shapes
of the distribution by allocating posterior weight to several components.

It turns out to be more convenient to work with the distribution of ξ = ζ2. Collecting
the parameters, θi, of the components as well as the weights of the mixture in θ we write
the mixing distribution as the mixture

fξ (ξt|θ) =
K∑
i=1

wifξ,i (ξt|θi) (1)
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Figure 1 Distributional shapes covered by the mixture
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leading to a mixture of scale mixtures, or MSM distribution for short. For the special
cases above we have

fξ,i (ξt|θi) =


δ(ξt = 1) point mass at 1 for a multivariate normal component

IG (τ/2, (τ − 2)/2)inverse gamma for a multivariate t component with τ df

G (1, 1) gamma for a multivariate Laplace component
(2)

For the normal and Laplace components all moments exist and the variance is given
by Ψ but the distributions have distinctly different shapes. Using the standard definition,
the multivariate-t component would have variance τ

τ−2
Ψ . To facilitate interpretation as

well as moves between the components in the MCMC-sampler we reparameterize (rescale)
to obtain a common variance Ψ for all components. This in turn leads to the nonstandard
mixing distribution in (2). Figure 1 shows the different distributional shapes covered by
the components in the mixture. As the t-distribution converge to a normal as τ → ∞
we limit this parameter both below and above in order achieve separation between the
distributions.

3 Prior and posterior distributions

To fix notation, write the VAR-model as

y′t =

p∑
i=1

y′t−iAi + x′tC + u′t

= z′tΓ + u′t,

where xt is a vector of d deterministic variables, z′t = (y′t−1, . . . ,y
′
t−p,x

′
t) is a k = mp +

d dimensional vector, Γ ′ = (A′1, . . . ,A
′
p,C

′) is a k × m variate matrix of constants.
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Letting ut|ξt ∼ Nm(0, ξtΨ ) where ξt has the mixture distribution (1) gives the MSM-
VAR. Stacking the data for T observations we can rewrite the VAR-model as

Y = ZΓ +U ,

where Y and U are T × m matrices and Z is a T × k matrix. The distribution of Y
conditional on {ξt}Tt=1 is thus matricvariate normal

Y |Γ ,Ψ ,Ξ ∼ NT,m(ZΓ ,Ψ ,Ξ),

where Ξ = diag(ξ1, ξ2, . . . , ξT ) for ξi = ζ2
i and NT,m denotes the matricvariate normal

distribution for a T ×m matrix (see Karlsson, 2013, for notation).
It remains to specify the prior distributions for Γ , Ψ and θ (the parameters of the

mixture). For Γ and Ψ the two most common forms of prior distributions are the normal-
Wishart prior,

Γ |Ψ ∼ Nk,m (Γ ,Ψ ,Ω) (3)

Ψ ∼ IWm (S, ν) ,

and independent normal Wishart prior,

γ ∼ N
(
γ,V

)
(4)

Ψ ∼ IWm (S, ν) ,

where IW denotes the inverse Wishart distribution and γ = vec(Γ ).
The prior for the parameters of the mixing distribution is specified as independent of

Γ and Ψ with a Dirichlet prior for the weights, wi, in the mixture (1),

w ∼ D(α),

and a truncated exponential prior for τ in the multivariate-t component,

π(τ) ∝ λτ exp(−τλτ ), τmin ≤ τ ≤ τmax

where τmin reflects prior notions about the existence of moments and τmax ensures sep-
aration between the distributions.1 Finally, θ = (w, τ) collects the parameters of the
mixture distribution for ξt.

With prior independence between (Γ ,Ψ ) and θ the posterior for Γ and Ψ is inde-
pendent of θ once we condition on the latent variable ξt. We can thus work with the
conditional likelihood

L(Y |Γ ,Ψ ,Ξ) = (2π)−
mT
2 |Ξ|−

m
2 |Ψ |−

T
2 exp

{
−1

2
tr
[
Ξ−1(Y −ZΓ )Ψ−1(Y −ZΓ )′

]}
∝ |Ξ|−

m
2 |Ψ |−

T
2 exp

{
−1

2
tr
[
Ψ−1SΞ

]}
(5)

× exp

{
−1

2
tr
[
Ψ−1(Γ − Γ̂Ξ)′Z ′Ξ−1Z(Γ − Γ̂Ξ)

]}
.

1See Figure 1
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where Γ̂Ξ = (Z ′Ξ−1Z)−1Z ′Ξ−1Y , the GLS estimate, and SΞ = (Y − ZΓ̂Ξ)′Ξ−1(Y −
ZΓ̂Ξ).

Standard calculations then yield the full conditional posteriors for Γ and Ψ as (see
Karlsson, 2013, for details)

Γ |Ψ ,Ξ,Y ∼ Nk,m
(
Γ Ξ,Ψ ,ΩΞ

)
, (6)

Ψ |Ξ,Y ∼ IWm(ν,SΞ), (7)

with

Ω
−1

Ξ = Ω−1 +Z ′Ξ−1Z, (8)

Γ Ξ = ΩΞ(Ω−1Γ +Z ′Ξ−1ZΓ̂Ξ) = ΩΞ

(
Ω−1Γ +Z ′Ξ−1Y

)
,

SΞ = S + Γ ′Ω−1Γ + Y ′Ξ−1Y − Γ ′ΞΩ
−1

Ξ Γ Ξ

= S + SΞ +
(
Γ − Γ̂Ξ

)′ [
Ω +

(
Z ′Ξ−1Z

)−1
]−1 (

Γ − Γ̂Ξ

)
,

ν = T + ν

for the normal-Wishart prior (3) and

γ|Ψ ,Ξ,Y ∼ N
(
γΞ,V Ξ

)
, (9)

Ψ |γ,Ξ,Y ∼ IWm

(
S, ν

)
, (10)

with

V
−1

Ξ = V −1 + Ψ−1 ⊗ZTΞ−1Z, (11)

γΞ = V Ξ

[
V −1γ +

(
Ψ−1 ⊗Z ′Ξ−1Z

)
γ̂Ξ

]
= V Ξ

[
V −1γ +

(
Ψ−1 ⊗Z ′Ξ−1

)
y
]
,

SΞ = S + (Y −ZΓ )′Ξ−1 (Y −ZΓ ) ,

ν = T + ν

for the independent normal Wishart prior (4) and γ̂Ξ = vec(Γ̂Ξ) the GLS estimate.
The posterior distribution for several other common prior distributions for Γ and Ψ

are available as special cases of the results above. The posterior corresponding to the
diffuse Jeffreys’ prior π (Γ ,Ψ ) ∝ |Ψ |−(m+1)/2 is obtained by setting Ω−1 = O, S = O and
ν = −k in (8). Similarly the posterior for the Normal-diffuse prior, γ ∼ N

(
γ,V

)
and

π (Ψ ) ∝ |Ψ |−(m+1)/2 is obtained by setting S = O and ν = 0 in (11).
The posterior distribution of the latent ξt conditional on Γ and Ψ follows from the

conditional likelihood (5) and the prior independence of θ and is given by

p(Ξ|Γ ,Ψ ,θ,Y ) ∝ |Ξ|−m/2 exp

{
−1

2
tr
[
Ψ−1 (Y −ZΓ )′Ξ−1 (Y −ZΓ )

]}
×

T∏
t=1

fξ (ξt|θ) .

That the full conditional posterior p(Ξ|Γ ,Ψ ,θ,Y ) has the same form irrespective of the
prior for Γ and Ψ as long as it is independent of θ is noteworthy. In addition, it is easily
verified that the elements of Ξ, ξt, are independent conditional on Γ ,Ψ ,θ and Y . Let
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ut be row t of U = Y −ZΓ and qt the quadratic form qt = utΨ
−1u′t, we then have the

full conditional posterior for ξt as

p(ξt|Γ ,Ψ ,θ,Y ) ∝ ξ
−m/2
t exp

(
−qt/2

ξt

) K∑
i=1

wifξ,i (ξt|θi) ,

the product of an inverse gamma distribution with shape parameter m/2 − 1 and rate
parameter qt/2, IG (m/2− 1, qt/2), and the density of ξ.

To facilitate MCMC we introduce a latent indicator variable st = 1, . . . , K, with
p(st = j) = wj where ξt is drawn from component j if st = j. Conditionally on st we then
have

p(ξt|Γ ,Ψ ,θ, st,Y ) ∝ ξ
−m/2
t exp

(
−qt/2

ξt

)
fξ,st (ξt|θst)

and the joint conditional distribution of ξt and st is given by

p(ξt, st|Γ ,Ψ ,θ,Y ) = p(ξt|Γ ,Ψ ,θ, st,Y )p(st|w) (12)

∝ ξ
−m/2
t exp

(
−qt/2

ξt

)
fξ,st (ξt|θst)

K∏
j=1

w
δt,j
j ,

where δt,j = 1 if st = j and zero otherwise.
Explicit expressions for the conditional posterior distributions p(ξt|Γ ,Ψ ,θ, st,Y ) and

p(st|Γ ,Ψ ,θ, ξt,Y ) are straightforward but not needed as we will generate draws from the
joint full conditional posterior (12) using a Metopolis-Hastings step for better mixing of
the Markov chain.2 The Metropolis-Hastings step for a joint draw of st and ξt works as
follows. Given the current values (st, ξt), generate a proposal s∗t from p(st|w) and ξ∗t from
fξ,s∗t

(
ξt|θs∗t

)
. The acceptance probability is then

α = min

1,
(ξ∗t )

−m/2 exp
(
− qt/2

ξ∗t

)
fξ,s∗t

(
ξ∗t |θs∗t

)
ws∗t

ξ
−m/2
t exp

(
− qt/2

ξt

)
fξ,st (ξt|θst)wst

fξ,st (ξt|θst)wst
fξ,s∗t

(
ξ∗t |θs∗t

)
ws∗t

 (13)

= min

1,
(ξ∗t )

−m/2 exp
(
− qt/2

ξ∗t

)
ξ
−m/2
t exp

(
− qt/2

ξt

)
 .

Accept (s∗t , ξ
∗
t ) with probability α, otherwise retain (st, ξt).

2The basic issue is that a Gibbs sampler sampling from the full conditional posteriors for st and ξt
will not be irreducible as P (st = normal|ξt 6= 1) = 0 and p(ξt = 1|st 6= normal) = 0.
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Finally, the full conditional posterior for θ is

p(w, τ, η|Γ ,Ψ , ξ, s,Y ) ∝
T∏
t=1

p(ξt, st|Γ ,Ψ ,θ,Y )pw(w)pτ (τ)

∝
T∏
t=1

ξ
−m/2
t exp

(
−qt/2

ξt

)
fξ,st (ξt|θst)

K∏
j=1

w
δt,j
j

× pw(w)pτ (τ)

∝
K∏
j=1

w
nj
j

∏
t:st=j

fξ,j (ξt|θj) pw(w)pτ (τ)

∝
K∏
j=1

w
nj
j

∏
t:st=j

fξ,j (ξt|θj)× exp(−τλτ )
K∏
j=1

w
αj−1

j

where nj =
∑

t δt,j is the number of observations for component j of the mixture.
The full conditional posteriors for w, τ and η are then straightforward. For the

weights/probabilities in the mixture we have a Dirichlet posterior,

w|s ∼ D(α), (14)

for αj = αj + nj. The full conditional posterior of the degrees of freedom in the t-
distributed component is given by

τ |s, ξ ∝ exp(−τλτ )
∏
t:st=j

(τ − 2)τ/2

Γ(τ/2)
ξ
−(τ/2+1)
t exp

(
−τ − 2

2ξt

)
(15)

∝ (τ − 2)njτ/2 [Γ(τ/2)]−nj exp(−λ̄ττ), τmin ≤ τ ≤ τmax

where st = j corresponds to the inverse gamma component of the mixture and λ̄τ =
λτ + 1

2

∑
t:st=j

(ln ξt + ξ−1
t ).

For the conditional posterior (15) for τ we use a Metropolis-Hastings step with a
random walk proposal τ ∗ ∼ N (τ, cτ ) given the current value τ with cτ chosen to achieve
a reasonable acceptance probability. The acceptance probability simplifies to

α = min

(
1,

(τ ∗ − 2)njτ
∗/2[Γ(τ ∗/2)]−nj exp(−λ̄ττ ∗)I(τmin ≤ τ ∗ ≤ τmax)

(τ − 2)njτ/2[Γ(τ/2)]−nj exp(−λ̄ττ)

)
. (16)

Algorithm 1 summarizes the MCMC algorithm for generating draws from the joint
posterior distribution.

4 Stochastic volatility

Empirically, fat tails in the error distribution can be difficult to distinguish from time-
varying volatility. To investigate this we extend the model to allow for stochastic volatility
in addition to the flexible fat-tailed mixture distribution for the error terms for a MSM-
SV-VAR.

In particular, we let the variance-covariance matrix be time varying with Ψt = P−1ΛtP
−1′

where P is a lower triangular matrix with ones on the diagonal andΛt = diag (exp(h1,t), . . . , exp(hm,t)).
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Algorithm 1 MCMC algorithm for the MSM-VAR

Initialize Ξ(0) = I
Initialize w

(0)
i = 1/K, i = 1, . . . , K

Initialize τ (0) = τmin + 10
if independent Normal-Wishart prior then

Initialize Γ (0) = Γ̂
end if
for j = 1 to B +R do

if Normal-Wishart prior then
Draw Ψ (j) from Ψ |Ξ(j−1),Y in (7)
Draw Γ (j) from Γ |Ψ (j),Ξ(j−1),Y in (6)

else if independent Normal-Wishart prior then
Draw Ψ (j) from Ψ |Γ (j−1),Ξ(j−1),Y in (10)
Draw Γ (j) from Γ |Ψ (j),Ξ(j−1),Y in (9)

end if
for t = 1 to T do

Draw (st, ξt)
(j) from (st, ξt)|Γ (j),Ψ (j),w(j−1), τ (j−1), η(j−1),Y in (12) using the

Metropolis-Hastings step with acceptance probability (13)
end for
Draw w(j) from w|s(j) in (14)
For the multivariate t component draw τ (j) from τ |s(j), ξ(j) in (15) using the
Metropolis-Hastings step with acceptance probability (16)

end for
Discard the first B draws as burn-in.

For the log-volatilities, hi,t, we follow Frühwirth-Schnatter and Wagner (2010) and specify
them as a stationary process,

hi,t = µi + φi(hi,t−1 − µi) + ŭi,t, ŭi,t ∼ N (0, σ̆2
i ), i = 1, 2, . . . ,m, (17)

with the initial state drawn from the unconditional distribution,

hi,0|µi, φi, σ̆i ∼ N
(
µi, σ̆

2
i /(1− φ2

i )
)
.

The volatility parameters are given independent priors, normal for the constant terms,

µi ∼ N (µµ, σ
2
µ), (18)

and a rescaled Beta distribution for φi that enforces stationarity,

(φi + 1)/2 ∼ B(αφ, βφ). (19)

For the variance of the log-volatility, σ̆i, we again follow Frühwirth-Schnatter and Wagner
(2010) and specify a Gamma prior rather than the usual inverser Gamma as this does not
preclude a zero variance and constant volatility. Specifically,

σ̆2
i ∼ Cσ̆i · χ2

1 = G (1/2, 1/2Cσ̆i) . (20)

Stacking the rows below the diagonal of P into p, e.g. p = (p2,1, p3,1, p3,2, . . . , pm,m−1)′,
we specify a multivariate normal prior for p,

p ∼ N (p,V p). (21)
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For the remaining parameters, Γ and θ = (w, τ) the priors are the same as in the
previous section with the independent Normal prior (4) for γ. The only difference is that
we, for computational convenience, reparametrize the model in terms of β = vec(Γ ′) with
the corresponding normal prior for β,

β ∼ N (β,V β).

4.1 Full conditional posteriors

β and θ are conditionally independent of the volatility parameters (µi, φi, σ̆
2
i ) given ξt

and Ψt. With ut|ξt,Ψt ∼ Nm(0, ξtΨt) the conditional likelihood function is given by

L(Y |Γ ,Ψt,Ξ) = (2π)−
mT
2 |Ξ|−

m
2

T∏
t=1

|Ψt|−
1
2 exp

{
−1

2

T∑
t=1

(y′t − z′tΓ ) (ξtΨt)
−1 (y′t − z′tΓ )

′

}

= (2π)−
mT
2 |Υ |−

1
2 exp

{
−1

2
(ỹ −Wβ)′ Υ−1 (ỹ −Wβ)

}
with ỹ = vec(Y ′), Υ = diag(ξ1Ψ1, . . . , ξTΨT ) and W = Z ⊗ Im.

After some algebra it is easy to see that the posterior distribution for β is conditionally
normal, that is,

β|Ψt,Ξ,Y ∼ N
(
β,V β

)
, (22)

with

V
−1

β = V −1
β +W ′Υ−1W

= V −1
β + (Z ⊗ P )′ Υ̃−1 (Z ⊗ P ) ,

β = V β

[
V −1

β β +W ′Υ−1ỹ
]

= V β

[
V −1

β β + (Z ⊗ P )′ Υ̃−1 vec(PY ′)
]
,

where we have used that Υ = (IT ⊗ P−1)Υ̃ (IT ⊗ P−1′) for Υ̃ the diagonal matrix

Υ̃ = diag(ξtΛt)

= diag [ξ1 exp(h1,1), . . . , ξ1 exp(hm,1), . . . , ξT exp(h1,T ), . . . , ξT exp(hm,T )] .

The full conditional posteriors for w and τ only depend on the latent states st and ξt
and are unaffected by the introduction of stochastic volatility and thus given by (14) and
(15).

The conditional posterior distribution of Ξ is expressed as

Ξ|Γ ,Ψt,θ,Y ∝ |Ξ|−
m
2 exp

{
−1

2

T∑
t=1

(y′t − z′tΓ ) (ξtΨt)
−1 (y′t − z′tΓ )

′

}

×
T∏
t=1

fξ (ξt|θ) .
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Moreover, it holds that

ξt|Γ ,Ψ ,θ,Y ∝ ξ
−m/2
t exp

(
− q̆t/2

ξt

) K∑
i=1

wifξ,i (ξt|θi) ,

where q̆t = (y′t − z′tΓ )Ψ−1
t (y′t − z′tΓ )′ = [(y′t − z′tΓ )P ′]Λ−1

t [(y′t − z′tΓ )P ′]′. The states
st and ξt can thus be sampled using the Metropolis-Hasting step (13) with qt replaced by
q̆t.

Let εt = ξ
−1/2
t Put, εi,t is then mean zero with stochastic volatility and log volatilities

given by (17). We can thus sample from the posterior distributions of the latent log-
variances hi,t and the parameters (µi, φi, σ̆i) using the MCMC method of Kastner and
Frühwirth-Schnatter (2014) as implemented in the stochvol R package (Kastner, 2016).

For drawing P , we consider the following system
u1,t

u2,t + u1,tp21

u3,t + u2,tp32 + u1,tp31
...

 =


ε1,t
ε2,t
ε3,t
...

 ,
where εi,t ∼ N (0, ξt exp(hi,t)), i = 1, . . . ,m. We thus have m − 1 heteroskedastic regres-
sions.

u2,t = −u1,tp21 + ε2,t,

u3,t = −u1,tp31 − u2,tp32 + ε3,t,
...

Stacking the dependent variables into ŭ = (u′2, . . . ,u
′
m)′ and the explanatory variables

into W = diag(−u1, [−u1,−u2], . . . , [−u1, . . . ,−um−1]) we can write the system as

ŭ = Wp+ ε̆

where ε̆ ∼ N (0,Σε). Standard calculations then yield the full conditional posterior for p
as

p|β,Ψt, ξ,h,Y ∼ N (p,V p) (23)

for

V
−1

p = V −1
p +W ′Σ−1

ε W ,

p = V p

[
V −1

p p+W ′Σ−1
ε ŭ

]
.

In the MCMC algorithm we replace the draws of Ψ and Γ in Algorithm 1 with draw-
ing β from (22), the stochastic volatilites and volatility parameters using the stochvol

package and p from (23).
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5 Marginal likelihood and model selection

For the MSM-VAR of Section 3 with constant variance the marginal likelihood is given
by

m(Y ) =

∫
p(Y |Γ ,Ψ , ξ)π(Γ |Ψ )π(Ψ )f(ξ|w, τ)π(w)π(τ)dΓ dΨdξdwdτ

=

∫ [∫
p(Y |Γ ,Ψ , ξ)f(ξ|w, τ)dξ

]
π(Γ |Ψ )π(Ψ )π(w)π(τ)dΓ dΨdwdτ

=

∫
p(Y |Γ ,Ψ ,w, τ)π(Γ |Ψ )π(Ψ )π(w)π(τ)dΓ dΨdwdτ

where we start by analytically integrating out the latent mixing variable ξt. Integrating
out ξt yields

p(Y |Γ ,Ψ ,w, τ) =

∫
p(Y |Γ ,Ψ , ξ)f(ξ|w, τ)dξ

=

∫ [ T∏
t=1

p(yt|Γ ,Ψ , ξt)f(ξt|w, τ)

]
dξ1, . . . , dξT

=
T∏
t=1

∫
p(yt|Γ ,Ψ , ξt)f(ξt|w, τ)dξt

=
T∏
t=1

K∑
i=1

wipi(yt|Γ ,Ψ , τ)

where pi(yt|Γ ,Ψ , τ) represents the normal, t and Laplace densities. It then remains to
evaluate the relatively low dimensional integral

m(Y ) =

∫
p(Y |Γ ,Ψ ,w, τ)π(Γ |Ψ )π(Ψ )π(w)π(τ)dΓ dΨdwdτ

numerically. This can, for example, be done using the method of Chib and Jeliazkov
(2001) or using the modifiled harmonic mean estimator (Gelfand and Dey, 1994; Geweke,
1999). See Appendix A for details.

5.1 Stochastic Volatility

In principle the Savage-Dickey density ratio could be used to estimate the Bayes factor
in favor of homoskedasticity against stochastic volatility. A homoskedastic version of the
VAR with stochastic volatility is obtained by setting σ̆2

i to zero. The basic Savage-Dickey
density ratio (Dickey, 1971) states that (under certain conditions) the Bayes factor can
be obtained as

BH vs. SV =
mH(Y )

mSV (Y )
=
pSV (σ̆2

i = 0, i = 1 . . . ,m)

πSV (σ̆2
i = 0, i = 1 . . . ,m)

(24)

where m denotes the marginal likelihoods of the two models and pSV (σ̆2
i = 0, i = 1 . . . ,m)

and πSV (σ̆2
i = 0, i = 1 . . . ,m) is the marginal posterior and prior for the model with

stochastic volatility evaluated at σ̆2
i = 0, i = 1 . . . ,m.
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In our setting we have the complication that φi and µi are unidentified when σ̆2
i = 0.

Koop and Potter (1999) show that (24) holds in the case of unidentified parameters if
πSV (θ|σ̆2

i = 0, φ∗i , µ
∗
i , i = 1 . . . ,m) = πH(θ) for some value of φ∗i and µ∗i and θ the

parameters of the homoskedastic model (which are common with the stochastic volatility
model). This holds trivially here due to the prior independence between the volatility
parameters and the other parameters of the model.

An estimator of the Bayes factor can thus be constructed based on (24). We refrain
from doing this. Instead we are content with noting that the shape of the marginal
posterior for σ̆2

i , in particular the posterior mass at or close to zero, is a valid indicator
of the support for stochastic volatility in the data and make informal judgements based
on this.

6 Simulation study

In this section, we present the results of estimating the mixture VAR on simulated data
with known properties. The data generating process is given by

y′t = A1yt−1 + c′ + u′t,

where A1 = diag(0.8) and c is taken to be a vector of ones. The error terms ut can follow
multivariate normal, t with 3 degrees of freedom, Laplace distributions or a mixture of
these distributions with weights w = (1/3, 1/3, 1/3), with or without stochastic volatility.
Several dimensions m ∈ {3, 5, 10} and number of observations T ∈ {100, 200, 400, 1000}
are considered.

For the MSM-VAR assuming constant variance we use a Minnesota style independent
normal Wishart prior (4) where we set the prior mean of Γ to zero except for the first
own lags where we set the prior mean to 1. The prior standard deviations are set to

sd(γi,j) =


π1

lπ3
for own lags, lag l

π1π2

lπ3
sj
sk

lag l of variable k in equation j

π1π4sj for the constant term in equation j

with π1 = 0.2, π2 = 0.2, π3 =1, π4 = 10 and sj the residual standard deviation from the
OLS estimation of a univariate AR-model for variable j with the same lag length as the
estimated VAR. For the inverse Wishart prior for Ψ we set the prior degrees of freedom
to ν = m+ 4 and the scale matrix to S = (ν −m− 1) diag(s2) where m is the number of
variables and s2 the vector of residual variances. For the mixture distribution we use the
Dirichlet prior w ∼ D(α) with αi = 5 for the weights, slightly favouring equal weights in
the mixture. The degrees of freedom, τ , of the t component is endowed with a uniform
prior on (3, 10).

For the MSM-SV-VAR with stochastic volatility we follow the setup in Section 4 with
the priors (18), (19) and (20) for the volatility parameters. We set the prior parameters to
(µµ, σ

2
µ) = (0, 100) for an uninformative prior on the constant in (17), (αφ, βφ) = (5, 1.5)

for the AR coefficient resulting in prior means E(φi) = 0.54 and variance V (φi) = 0.095
and Cσ̆ = 1, that is a half-normal distribution for σ̆i with variance 1. For the vector
p determining the correlation structure we use the normal prior (21) with p = 0 and
V p = I.

12



Figure 2 Posterior distributions of the weights, simulated data, m = 5 and T = 200
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The true distributions of the error terms are generated from a multivariate standard normal, t distribu-
tion with 3 degrees of freedom, Laplace and their mixture with weights w = (1/3, 1/3, 1/3). All with
constant variance. The posterior distributions of the weights for the MSM-VAR are plotted as solid
lines, and with dashed lines for the MSM-SV-VAR.

Figure 3 Posterior distributions of the weights, t-distributed data with 3 degrees of
freedom and stochastic volatility
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The true distribution of the error terms is generated from a multivariate t distribution with 3 degrees
of freedom and stochastic volatility. The posterior distributions of the weights for the MSM-VAR are
plotted as solid lines, and with dashed lines for the MSM-SV-VAR. Several dimensions m ∈ {3, 5, 10}
and observations T ∈ {100, 200, 400, 1000} are considered.
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Table 1 Log marginal likelihood for models without stochastic volatility, simulated data

Model

Data
Normal

t
Laplace

Normal
t

Normal
Laplace

t
Laplace

Normal t Laplace

Normal -1456.5 -1448.8 -1449.7 -1461.8 -1446.9 -1458.5 -1496.1
t -1811.3 -1809.4 -1860.8 -1809.1 -2111.5 -1807.7 -1857.5
Laplace -1362.8 -1386.5 -1357.3 -1354.8 -1498.7 -1385.6 -1353.1
Mixture -1380.8 -1385.9 -1381.1 -1380.3 -1468.8 -1386.2 -1382.6

The true distributions of the error terms are generated from homoskedastic multivariate standard normal,
t distribution with 3 degrees of freedom, Laplace distributions and their mixture with weights w =
(1/3, 1/3, 1/3). The dimension of the VAR is m = 3 and the number of observations T = 200. The
method of Chib and Jeliazkov (2001) in Appendix A is used to estimate the marginal likelihoods.

When estimating the models we include two lags of yt and take 20,000 draws from the
MCMC algorithm after an initial 2,000 draws as burn-in.

Figure 2 shows the posterior distribution of the mixture weights for different true
distributions (normal, t, Laplace and the equal weight mixture) of the error terms with
m = 5 and T = 200. In each case we get a clear indication of what the true distribution is
with the posterior mean of the weight of the correct component being considerably larger
than the other components. For the equal mixture the posterior distributions and the
posterior means are quite close together. As can be expected, the results becomes more
clear-cut as the amount of information, sample size or dimension of the model, increases.
This is illustrated in Figure 3 for t-distributed errors with stochastic volatility3. The
results for the other error distributions we consider are similar except for the case of
normally distributed data with stochastic volatility (see Figures 16-22 in Appendix B).
In this case, the model not allowing for stochastic volatility tends to allocate more weight
to the t-component of the mixture than the normal component.

More formal model comparisons can be based on marginal likelihoods. Table 1 reports
the log marginal likelihoods for different specifications of the mixture in the MSM-VAR
model estimated on normal, t, Laplace and mixture distributed data with constant vari-
ance. In all cases except for the equal weights mixture the correct specification receives
the highest log marginal likelihood. For the equal weights mixture the model with a mix-
ture of t and Laplace distributions receives a marginally higher log marginal likelihood
than the true three component mixture.

As alluded to, the posterior distribution of the innovations for the log volatilities can
be informative about the presence of stochastic volatility in the data. To illustrate this
Figure 4 shows the posterior distribution of the volatility parameters φ1 and σ̆2

1 of the
MSM-SV-VAR for a case without stochastic volatility (see Figure 23 in Appendix B for
the posterior distributions of all volatility parameters). Here we can observe that there
is substantial posterior mass at or close to zero in the distribution of the innovation
variances. In addition, the AR parameters, φi, are poorly identified by the data and the
posterior distributions are quite close to the prior. The same behavior can be observed
when the true distribution of the error terms is generated from a multivariate t with 3
degrees of freedom, Laplace and the equal weight mixture distribution. Additionally, in

3Stochastic volatility is simulated via the R package stochvol with µi = −10, φi = 0.98 and σ̆2
i = 0.2.
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Figure 5, we present the posterior distribution of the volatility parameters φ1 and σ̆2
1 for

a case of normally distributed data with stochastic volatility (see Figure 24 in Appendix
B for the posterior distributions of all volatility parameters). In this case, we get a clear
indication of stochastic volatility in the data. Similar behavior is observed when the
true distribution of the error terms is generated from a multivariate t with 3 degrees of
freedom, Laplace and mixture distributions with stochastic volatility.

Figure 4 Posterior distributions of volatility parameters φ1 and σ̆2
1, normally distributed

data, m = 5 and T = 200
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Figure 5 Posterior distributions of volatility parameters φ1 and σ̆2
1, normally distributed

data with stochastic volatility, m = 5 and T = 200
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7 Empirical results

In this section we apply the methods developed in the paper to the kind of small and
medium sized VARs frequently used in applied macroeconomics. The first, 3 variable
VAR, is inspired by Cogley and Sargent (2005) and Primiceri (2005) and the second, 7
variable VAR is a variation on the VAR of Smets and Wouters (2007).
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Table 2 Log marginal likelihood for 3-variable VAR without stochastic volatility

Model

Country
Normal

t
Laplace

Normal
t

Normal
Laplace

t
Laplace

Normal t Laplace

Austria 441.8 442.1 434.7 443.0 371.2 444.8 433.3
Canada -676.0 -675.2 -697.3 -671.4 -894.0 -671.1 -700.9
Denmark 100.7 102.3 38.8 102.1 -165.6 105.5 40.4
Finland 240.0 243.9 195.8 249.1 -78.9 255.3 207.1
France 547.1 546.4 530.5 548.0 404.6 549.6 527.9
Germany 623.2 621.1 620.3 623.9 536.1 622.9 619.5
Italy 153.7 152.7 140.2 154.3 -5.4 154.2 139.1
Japan 624.0 624.8 614.8 626.4 548.4 628.9 616.5
South Korea -303.8 -303.6 -322.8 -298.1 -485.2 -295.7 -315.4
Netherlands 620.7 618.8 617.5 621.5 554.5 620.5 609.6
Norway 0.4 2.8 -47.2 1.9 -251.3 6.3 -46.1
Spain 55.8 54.5 42.1 60.6 -95.5 60.8 48.0
Sweden -406.4 -403.3 -465.5 -401.2 -790.9 -395.5 -458.9
United Kingdom 423.8 423.7 413.7 427.6 300.1 429.2 417.1
United States -218.3 -213.1 -267.6 -212.8 -500.9 -205.3 -268.5

All models estimated using 50 000 draws from the sampler and 5 000 draws as burn-in. The method of
Chib and Jeliazkov (2001) in Appendix A is used to estimate the marginal likelihoods.

7.1 A small VAR

We estimate a small VAR similar to Cogley and Sargent (2005) and Primiceri (2005)
for the 15 OECD countries in Table 2 using monthly data. The variables are inflation,
unemployment rate and a 3-month interest rate sourced from the OECD Main Economic
Indicators. Details on the variables and sample periods for the different countries are
given in Appendix C. We use a lag length of 6 for all countries and the prior set up is the
same as in Section 6 with the exception that we set the prior means of the first own lags
in Γ to 0.8, reflecting a belief that the data is stationary.

Table 2 reports the log marginal likelihoods for the 3-component MSM-VAR with
constant variance as well as the special cases that can be obtained by turning off different
components in the mixture. The table gives a very clear message that the normality
assumption is not supported by the data. While our 3 component mixture with normal,
t and Laplace components is never the preferred specification it is clearly superior to a
pure normal likelihood. While a pure t likelihood is the preferred specifications for most
of the countries, this not the case for all of them. A mixture of t and Laplace distributions
is preferred for Germany and the Netherlands and there is a tie between the t-Laplace
mixture and a pure t likelihood for Canada, Spain and Italy – something which would
have been difficult to detect without our flexible modeling framework.

To provide additional insights we take a closer look at the German data displayed
in Figure 6. We start by viewing the data through the lens of the constant variance
3-component MSM-VAR. The posterior distribution of the weights of the normal, t, and
Laplace components in the mixture is shown in Figure 7(a). There is strong and equal
support for the t and Laplace components with the posterior distribution of the weights
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Figure 6 Data for the small VAR - Germany
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Figure 7 Posterior distribution of mixture weights, small VAR - Germany
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Figure 8 Posterior distribution of mixture parameters, small VAR - Germany
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Figure 9 Posterior distribution of volatility parameters, small VAR - Germany
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ment and row 3 the interest rate.
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Figure 10 Posterior distribution of volatilities, small VAR - Germany
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being almost identical and less support for the normal component. As we know from
Table 2 the t-Laplace mixture is the preferred specification and re-estimating the model
with only a t and Laplace component in the mixture again yields essentially equal weights
for the t and Laplace components, see Figure 7(b).

Next we investigate the possibility that the fat tails captured by the t and Laplace
components are, in fact, due to time-varying volatilities. Turning to the MSM-SV-VAR
of Section 4 we use the same prior set up for the volatility part as in Section 6.

Figure 8(a) shows the posterior distribution of the mixture weights when allowing for
stochastic volatility. The weight of the t component has increased compared to the model
without stochastic volatility and the posterior mean has moved from 0.53 to 0.69. The
posterior distribution of τ , the degrees of freedom for the t distribution is displayed in
Figure 8(b) for the model with and without stochastic volatility. Allowing for stochastic
volatility leads to an increase in the degrees of freedom and the mixture distribution is
now less fat-tailed as the stochastic volatility accounts for some – but not all – of the
non-normality of the distribution.

Turning to the volatilities, the posterior distribution of the volatility parameters is
shown in Figure 9. The posterior distribution of the variance of the volatility innovations,
σ̆2
i , shows a substantial posterior mass at zero for unemployment indicating that a constant

variance is preferred for this equation. The posterior distribution of the variance of the
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Figure 11 Data for the medium VAR
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volatility innovations for the interest rate is, on the other hand, well separated from zero
showing strong support for time varying volatility in this equation. For inflation we have
a middle ground with some posterior mass at zero but overall support for time varying
volatility. Turning to the autoregressive parameter, φi, we note a near unit root behaviour
for the log volatilities of the interest rate equation whereas they appear to be stationary
for inflation and for unemployment the posterior distribution – reflecting the lack of time
varying volatility – mimics the prior. The posterior distribution of the volatilities is
displayed in Figure 10. For the inflation equation the volatilities are relatively stable over
time with peaks at the beginning of the sample immediately after German unification and
around the financial crisis. The volatility of unemployment is, as expected, stable over
time. For the interest rate the volatility is quite small for most of the period with a large
peak shortly after German unification and smaller peaks around the year 2000 and at the
financial crisis. The very small volatility at the end of the sample is clearly influenced by
the low interest rate environment.

Overall we find support for both non-normality and stochastic volatility and that the
non-normality can be captured by a mixture of t and Laplace distributions.

7.2 A medium sized VAR

Smets and Wouters (2007) estimated a VAR with seven variables for the USA, real GDP,
real consumption, real investments, the real wage, hours worked, inflation and the federal
funds rate on data from 1966Q1 to 2004Q4. We extend the data set up to 2019Q3, see
Appendix C for data sources and transformations, and display the variables in Figure 11.
We use the same prior setup as in the previous section with the exception that we set the
prior means of the first own lag to one for the first four variables and the remaining to
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Figure 12 Posterior distribution of mixture weights, medium VAR
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Table 3 Log marginal likelihood for models without stochastic volatility - Medium sized
VAR

Model
Normal

t
Laplace

Normal
t

Normal
Laplace

t
Laplace

Normal t Laplace

-1113.4 -1103.0 -1192.1 -1112.4 -1206.3 -1099.0 -1319.0

0.8 and start by estimating the MSM-VAR with constant variance.
The posterior distribution of the weights in the mixture is shown in Figure 12. We note

that the t component dominates with less support for the normal and Laplace components.
The posterior mean of the weights are 0.21, 0.55 and 0.23 for the normal, t and Laplace
components. This picture is confirmed by the marginal likelihoods in Table 3 where the
model with only a t distribution is preferred.

Turning to the issue of time-varying volatilities we continue with the pure t distribution
and add stochastic volatility. The posterior distributions of the volatility parameters are
displayed in Figure 13. The posterior distributions for σ̆2

i indicate limited support in
the data for stochastic volatility as all the posterior distributions except for the GDP,
wage and federal funds rate equations have substantial posterior mass at or close to zero.
Corresponding to this we see that there is little information in the data about φi and the
posterior is close to the prior except for the GDP, wage and federal funds rate equation.
A similar picture is painted by the estimated volatilities in Figure 14 which show very
little time variation for consumption, investments, hours worked and inflation. Figure 15,
finally, shows the posterior distribution of the the degrees of freedom, τ , for the model
with and without stochastic volatility. For this data set there is small shift to the right
(the posterior mean increases from 5.1 to 6.3) and thinner tails when we add stochastic
volatility, again indicating that the contribution of the stochastic volatility is small in
terms of capturing the fat tails.

We thus find support for a non-normal error distribution and the set up with a mixture
distribution has allowed us to identify the t distribution as a plausible candidate. In
addition, while there is support for stochastic volatility in some of the equations, the
contribution of the stochastic volatility to the fatness of the tails seems to be limited in
this case.
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Figure 13 Posterior distribution of volatility parameters, medium VAR
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Figure 14 Posterior distribution of volatilities, medium VAR
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Figure 15 Posterior distribution for τ , constant variance and stochastic volatility,
medium VAR

0.0

0.2

0.4

0.6

4 6 8 10
τ

Model Constant variance SV

8 Conclusions

This paper suggests a simple and flexible framework for modeling non-normal data. This
is done by considering a discrete mixture of scale mixtures of normal distributions leading
to the MSM-VAR. The proposed framework can adapt to a wide range of distributional
shapes while containing the normal, t and Laplace distribution as special cases. The use
of scale mixtures of normals leads to feasible and computationally straightforward MCMC
implementations for Bayesian inference. In addition, the frameworks is easily extended to
include additional or alternative distributions that can be represented as a scale mixture
of a normal distribution.

Since fat tails in the distribution of the error terms can be difficult to distinguish from
time-varying volatility, we extended all the results to the Bayesian VAR-model which
allows for stochastic volatility in the error distribution (MSM-SV-VAR). Using simulated
data and in applications to macroeconomic data we show how marginal likelihoods and
other features of the posterior distribution can be used for model selection.

In the applications we find support for both fat tails and stochastic volatility in the
macroeconomic data. Both are thus important features of the data that should be ac-
counted for in empirical work. In addition we find that the non-normality of the data in
many cases is better modeled with a mixture of distributions rather than, as is frequently
the case, just assuming a t distribution instead of the normal distribution.

In future research, we plan to extend our results to flexible models that allow for fat
tails as well as skewness in the error distribution.
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Appendices

A Marginal likelihood for the MSM-VAR

A.1 Chib-Jeliazkov

The method of Chib and Jeliazkov (2001) is based on the basic marginal likelihood identity
which gives the marginal likelihood as

m(Y ) =
p(Y |Γ ∗,Ψ ∗,w∗, τ ∗)π(Γ ∗|Ψ ∗)π(Ψ ∗)π(w∗)π(τ ∗)

p(Γ ∗,Ψ ∗,w∗, τ ∗|Y )

where the expression holds for any value of Γ ∗,Ψ ∗,w∗ and τ ∗. The numerator is straight-
forward to evaluate and the denominator can be estimated with MCMC.

Write p(Γ ∗,Ψ ∗,w∗, τ ∗|Y ) = p(τ ∗|Y )p(Γ ∗,Ψ ∗w∗|τ ∗,Y ). For Γ , Ψ and w the full
conditional posteriors are available in closed form but not for τ which is sampled with
a Metropolis-Hastings step. p(τ ∗|Y ) can be estimated using the method of Chib and
Jeliazkov (2001) using the output from the full MCMC run and a second run with τ fixed
at τ ∗. Let α(τ, τ ∗|Γ ,Ψ ,w, ξ, s,Y ) be the acceptance probability (16) in the M-H step
proposing a move from τ to τ ∗ and q(τ, τ ∗|Γ ,Ψ ,w, ξ, s,Y ) the proposal distribution. We
then have

p(τ ∗|Y ) =
E1 [α(τ, τ ∗|Γ ,Ψ ,w, ξ, s,Y )q(τ, τ ∗|Γ ,Ψ ,w, ξ, s,Y )]

E2 [α(τ ∗, τ |Γ ,Ψ ,w, ξ, s,Y )]

where the expectation E1 is with respect to the posterior distribution of (Γ ,Ψ ,w, τ, ξ, s)
end E2 with respect to the distribution p(Γ ,Ψ ,w, ξ, s|τ ∗,Y )q(τ ∗, τ |Γ ,Ψ ,w, ξ, s,Y ).
Draws from the latter is obtained by running the original MCMC sampler with τ fixed at
τ ∗ and generating a proposal τ from q(·) given τ ∗ for each draw of (Γ ,Ψ ,w, ξ, s).

An estimate of p(τ ∗|Y ) is then given by

p̂(τ ∗|Y ) =
1
R

∑R
i=1 α(τ (i), τ ∗|ξ(i), s(i),Y )q(τ (i), τ ∗|Y )

1
R

∑R
j=1 α(τ ∗, τ (j)|ξ(j), s(j),Y )

where we have used that the proposal is a symmetric random walk proposal that does not
depend on the other parameters and that the acceptance probability only depends on ξ
and s.

A.1.1 Normal-Wishart prior

For p(Γ ∗,Ψ ∗,w∗|Y ) we note that the draws of (ξ(j), s(j)) from the reduced run with τ = τ ∗

has the marginal distribution p(ξ, s|τ ∗,Y ) and can be used to estimate p(Γ ∗,Ψ ∗,w∗|τ ∗,Y )
as

p̂(Γ ∗,Ψ ∗,w∗|τ ∗,Y ) =
1

R

R∑
j=1

p(Γ ∗,Ψ ∗,w∗|τ ∗, ξ(j), s(j),Y ).
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Normally p(Γ ∗,Ψ ∗,w∗|Y ) would have to be estimated in two steps when they are sampled
in two blocks. The conditional structure offer a simplification here and we can estimate
p(Γ ∗,Ψ ∗,w∗|Y ) in one step since

p(Γ ∗,Ψ ∗,w∗|τ ∗, ξ(j), s(j),Y ) = p(Γ ∗,Ψ ∗|w∗, τ ∗, ξ(j), s(j),Y )p(w∗|τ ∗, ξ(j), s(j),Y )

= p(Γ ∗,Ψ ∗|ξ(j),Y )p(w∗|s(j),Y ).

A.1.2 Independent normal Wishart prior

With the independent normal Wishart prior p(Γ ∗,Ψ ∗|w∗, τ ∗, ξ(j), s(j),Y ) is not available
in closed form and additional reduced MCMC rounds are needed. Write

p(Γ ∗,Ψ ∗,w∗|τ ∗,Y ) = p(w∗|τ ∗,Y )p(Γ ∗|τ ∗,w∗,Y )p(Ψ ∗|τ ∗,w∗,Γ ∗,Y ).

We can then estimate p(w∗|τ ∗,Y ) as

p̂(w∗|τ ∗,Y ) =
1

R

R∑
j=1

p(w∗|τ ∗, s(j),Y )

using the output from the reduced run with τ = τ ∗. For the second reduced run we also
fix w = w∗ and use the output to estimate p(Γ ∗|τ ∗,w∗,Y ) as

p̂(Γ ∗|τ ∗,w∗,Y ) =
1

R

R∑
j=1

p(Γ ∗|τ ∗,w∗,Ψ (j), ξ(j),Y ).

A final reduced MCMC run additionally fixes Γ = Γ ∗ and the output is used to estimate
p(Ψ ∗|τ ∗,w∗,Γ ∗,Y ) as

p̂(Ψ ∗|τ ∗,w∗,Γ ∗,Y ) =
1

R

R∑
j=1

p(Ψ ∗|τ ∗,w∗,Γ ∗, ξ(j),Y ).

A.1.3 When there is no t component in the mixture (or τ is not estimated)

The problem simplifies. We are then concerned with

m(Y ) =
m(Y |Γ ∗,Ψ ∗,w∗)π(Γ ∗|Ψ ∗)π(Ψ ∗)π(w∗)

p(Γ ∗,Ψ ∗,w∗|Y )
.

The numerator is available in closed form and we are left with estimating p(Γ ∗,Ψ ∗,w∗|Y )
which can be done using the output from the original MCMC run as

p̂(Γ ∗,Ψ ∗,w∗|Y ) =
1

R

R∑
i=1

R∑
i=1

p(Γ ∗,Ψ ∗,w∗|ξ(i), s(i),Y )

with the Normal-Wishart prior. For the independent normal Wishart prior the original
run is used to estimate p(w∗|τ ∗,Y ) and two reduced runs are needed for estimating
p(Γ ∗|τ ∗,w∗,Y ) and p(Ψ ∗|τ ∗,w∗,Γ ∗,Y ).
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A.2 Modified harmonic mean

The modified harmonic mean estimator of the marginal likelihood (Gelfand and Dey,
1994) uses the relation

1

m (Y )
=

∫
f (θ) dθ

m (Y )
=

∫
f (θ)

m (Y |θ) π (θ)
p (θ|Y ) dθ

to estimate the marginal likelihood as

m̂ (Y ) =

[
1

R

R∑
i=1

f
(
θ(i)
)

m (Y |θ(i)) π (θ(i))

]−1

using draws θ(i) =
(
Γ (i),Ψ (i),w(i), τ (i)

)
from the posterior. A necessary condition is that

f is a proper density with support contained in the parameter space of the model under
consideration.

For an accurate estimate we need a good choice of the density f that approximates
m (Y |θ) π (θ) well. Geweke (1999) suggests using a truncated multivariate normal. For
this to work well we need to transform θ (that is, Ψ ,w and τ) to an unrestricted parameter
space.

For Ψ we use the matrix logarithm, Ψ̃ = lnΨ = QΛ̃Q′, with inverse transformation
Ψ = exp(Ψ̃ ) = QΛQ′ where Q is the matrix of eigenvectors of Ψ and Ψ̃ and Λ is

the matrix with the eigenvalues of Ψ on the diagonal and Λ̃ has the logarithm of the
eigenvalues on the diagonal. That is, the eigenvalues of Ψ̃ are the logarithm of eigenvalues
of Ψ . These expressions are valid for symmetric matrices and since it is sufficient to
consider the unique elements of Ψ we focus on the transformation from ψ = vechΨ to
ψ̃ = vech Ψ̃ .

Following Linton and McCrorie (1995) we have

dvecΨ = (Q⊗Q)H (Q⊗Q)′ dvec Ψ̃

with H = diag (hi) , i = 1, . . . ,m2, and

hi =


eλ̃k − eλ̃j

λ̃k − λ̃j
=

λk − λj
lnλk − lnλj

, i = (k − 1)m+ j, k 6= j

eλ̃k = λk, k = j

where λ̃k and λk are the eigenvalues of Ψ̃ and Ψ . The Jacobian matrix for the transfor-
mation from ψ̃ to ψ is then

Jψ̃ =
∂ψ

∂ψ̃
= D+

m (Q⊗Q)H (Q⊗Q)′Dm

where the duplication matrix Dm satisfies vec Ψ̃ = Dm vech Ψ̃ and D+
m = (D′mDm)−1D′m

satisfies vechΨ = D+
m vecΨ .

For w, we note that it is confined to the K − 1 simplex and

wi = g−1
w (w̃) =


ew̃i

1 +
∑K−1

j=1 ew̃j
, i = 1, . . . , K − 1

1−
K−1∑
j=1

wi =
1

1 +
∑K−1

j=1 ew̃j
, i = K
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maps w̃ ∈ RK−1 to the simplex. The mapping from w to w̃ is

w̃i = gw(w) = ln(wi/wK), i = 1, . . . , K − 1

with Jacobian elements

∂w̃i
∂wj

=


wi + wK
wiwK

, i = j

1

wK
, i 6= j

and Jacobian matrix

Jw =
1

wK


1 + wK/w1 1 . . . 1

1 1 + wK/w2 . . . 1
...

...
1 . . . 1 1 + wK/wK−1


with determinant

|Jw| =
K∏
j=1

w−1
j .

For τ , finally, we have the restriction τmin < τ < τmax and we can transform τ to the
real line by

τ̃ = gτ (τ) = ln

(
τ − τmin
τmax − τ

)
with Jacobian

∂τ̃

∂τ
=

τmax − τmin
(τ − τmin)(τmax − τ)

.

Transform the MCMC output from θ(i) =
(
Γ (i),ψ(i),w(i), τ (i)

)
to θ̃(i) =

(
Γ (i), ψ̃(i), w̃(i), τ̃ (i)

)
and let θ̄ and S be the sample mean and variance-covariance matrix of θ̃. Next, let

f
(
θ̃
)
∝ exp

[
−1

2

(
θ̃ − θ̄

)′
S−1

(
θ̃ − θ̄

)]
Iχ2

α

where Iχ2
α

is the indicator function for the set

{
θ̃ :
(
θ̃ − θ̄

)′
S−1

(
θ̃ − θ̄

)
≤ χ2

α(n)

}
and

χ2
α(n) is the α quantile of the χ2 distribution with n degrees of freedom (the dimension

of θ). Our modified harmonic mean estimator of the marginal likelihood is then

m̂ (Y ) =

 1

R

R∑
i=1

f
(
θ̃(i)
)

m (Y |θ(i)) π (θ(i)) |Jθ̃|

−1

with |Jθ̃| = |Jψ̃||Jw|−1|Jτ |−1.
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B Additional figures

Figure 16 Posterior distributions of the weights, normally distributed data
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The true distribution of the error terms is generated from a multivariate standard normal distribution.
The posterior distributions of the weights that are obtained via MCMC-sampler without stochastic
volatility are plotted as solid lines, while the posterior distributions of the weights that are obtained via
MCMC-sampler with stochastic volatility are plotted as dashed lines. Several dimensions m ∈ {3, 5, 10}
and observations T ∈ {100, 200, 400, 1000} are considered.
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Figure 17 Posterior distributions of the weights, normally distributed data with stochas-
tic volatility
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The true distribution of the error terms is generated from a multivariate normal distribution with
stochastic volatility. The posterior distributions of the weights that are obtained via MCMC-sampler
without stochastic volatility are plotted as solid lines, while the posterior distributions of the weights
that are obtained via MCMC-sampler with stochastic volatility are plotted as dashed lines. Several
dimensions m ∈ {3, 5, 10} and observations T ∈ {100, 200, 400, 1000} are considered.

Figure 18 Posterior distributions of the weights, t-distributed data with 3 degrees of
freedom
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The true distribution of the error terms is generated from a multivariate standard t distribution with
3 degrees of freedom. The posterior distributions of the weights that are obtained via MCMC-sampler
without stochastic volatility are plotted as solid lines, while the posterior distributions of the weights
that are obtained via MCMC-sampler with stochastic volatility are plotted as dashed lines. Several
dimensions m ∈ {3, 5, 10} and observations T ∈ {100, 200, 400, 1000} are considered.
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Figure 19 Posterior distributions of the weights, Laplace distributed data
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The true distribution of the error terms is generated from a multivariate standard Laplace distribution.
The posterior distributions of the weights that are obtained via MCMC-sampler without stochastic
volatility are plotted as solid lines, while the posterior distributions of the weights that are obtained via
MCMC-sampler with stochastic volatility are plotted as dashed lines. Several dimensions m ∈ {3, 5, 10}
and observations T ∈ {100, 200, 400, 1000} are considered.

Figure 20 Posterior distributions of the weights, Laplace distributed data with stochastic
volatility
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The true distribution of the error terms is generated from a multivariate Laplace distribution with
stochastic volatility. The posterior distributions of the weights that are obtained via MCMC-sampler
without stochastic volatility are plotted as solid lines, while the posterior distributions of the weights
that are obtained via MCMC-sampler with stochastic volatility are plotted as dashed lines. Several
dimensions m ∈ {3, 5, 10} and observations T ∈ {100, 200, 400, 1000} are considered.
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Figure 21 Posterior distributions of the weights, mixture distributed data
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The true distribution of the error terms is generated from the mixture of a multivariate standard normal,
t with 5 degrees of freedom and Laplace distributions such that w = (1/3, 1/3, 1/3). The posterior
distributions of the weights that are obtained via MCMC-sampler without stochastic volatility are plotted
as solid lines, while the posterior distributions of the weights that are obtained via MCMC-sampler
with stochastic volatility are plotted as dashed lines. Several dimensions m ∈ {3, 5, 10} and observations
T ∈ {100, 200, 400, 1000} are considered.

Figure 22 Posterior distributions of the weights, mixture distributed data with stochastic
volatility
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The true distribution of the error terms is generated from a mixture of multivariate normal, t with 5
degrees of freedom and Laplace distributions with stochastic volatility such that w = (1/3, 1/3, 1/3).
The posterior distributions of the weights that are obtained via MCMC-sampler without stochastic
volatility are plotted as solid lines, while the posterior distributions of the weights that are obtained via
MCMC-sampler with stochastic volatility are plotted as dashed lines. Several dimensions m ∈ {3, 5, 10}
and observations T ∈ {100, 200, 400, 1000} are considered.
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Figure 23 Posterior distributions of volatility parameters, normally distributed data
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The true distribution of the error terms is generated from a multivariate standard normal distribution.
The dimension m is taken to be 5, while the number of observations T is equal to 200.

Figure 24 Posterior distributions of volatility parameters, normally distributed data with
stochastic volatility
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The true distribution of the error terms is generated from a multivariate standard normal distribution
with stochastic volatility. The dimension m is taken to be 5, while the number of observations T is equal
to 200.
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C Data

C.1 A small VAR

The data is obtained from the OECD Main Economic Indicators (https://stats.oecd.
org/).

� Inflation is based on the personal consumption price index (CPI) and calculated as

100× (CPIt − CPIt−12)/CPIt−12.

Where CPI is the series CPI: All items (COICOP 1-12).

� Unemployment is the seasonally adjusted unemployment rate (Harmonised unem-
ployment rate (monthly), Total, All persons).

� The interest rate is the 3-month or 90 day interbank rate.

Table 4 Sample period for countries

Country Start End
Austria 1993M1 2020M1
Canada 1956M1 2020M1
Denmark 1987M1 2020M1
Finland 1988M1 2020M1
France 1983M1 2020M1
Germany 1991M1 2020M1
Italy 1983M1 2020M1
Japan 2002M4 2020M1
Korea 1991M1 2020M1
Netherlands 1983M1 2020M1
Norway 1989M1 2019M12
Spain 1986M4 2020M1
Sweden 1983M1 2020M1
United Kingdom 1986M1 2019M11
United States 1964M6 2020M2

C.2 A medium sized VAR

The data is downloaded from FRED (https://fred.stlouisfed.org).

� The real GDP is evaluated via the level of real gross domestic product (GDPC1)
and the quarterly average of the Civilian Non-institutional Population (CNP16OV)
which is normalized so that its 1992Q3 value is one, and is given by

100× log (GDPt/POPt) .

� The real consumption is based on the the level of personal consumption (PCEC), the
level of the GDP price deflator (GDPDEF), and the normalized quarterly average
of the Civilian Non-institutional Population (CNP16OV), and is evaluated as

100× log (CONSt/(GDPPt × POPt)) .
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� The real investment is calculated using the level of fixed private investment (FPI),
the level of the GDP price deflator (GDPDEF), and the normalized quarterly av-
erage of the Civilian Non-institutional Population (CNP16OV), and is evaluated
as

100× log (INVt/(GDPPt × POPt)) .

� The real wage is evaluated via the compensation per hour for the nonfarm business
sector (COMPNFB) and the level of the GDP price deflator (GDPDEF), and is
given by

100× log(Wt/GDPPt).

� Hours worked are computed using the index of average weekly nonfarm business
hours (PRS85006023), the normalized quarterly average of the Civilian Non-institutional
Population (CNP16OV), the number of employed civilians (CE16OV) which is nor-
malized so that its 1992Q3 value is 1, and are given by

100× log (HOURSt × EMPt/POPt) .

� The inflation rate is based on the GDP price deflator (GDPDEF) and calculated as

100× log (GDPPt/GDPPt−1) .

� The federal funds rate is based on the effective federal funds rate (FEDFUNDS)
and evaluated as FFRt/4.

34



References

Chan, J. C. C. and Eisenstat, E. (2018). Bayesian model comparison for time-varying
parameter vars with stochastic volatility. Journal of Applied Econometrics, 33:509–532.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-Hastings out-
put. Journal of the American Statistical Association, 96:270–281.

Chiu, C.-W. J., Mumtaz, H., and Pinter, G. (2017). Forecasting with var models: Fat
tails and stochastic volatility. International Journal of Forecasting, 33(4):1124–1143.

Cogley, T. and Sargent, T. J. (2002). Evolving post-world war II U.S. inflation dynamics.
In Bernanke, B. S. and Rogoff, K. S., editors, NBER Macroeconomics Annual 2001,
Volume 16, pages 331–388. National Bureau of Economic Research, Inc.

Cogley, T. and Sargent, T. J. (2005). Drifts and volatilities: monetary policies and
outcomes in the post wwii us. Review of Economic Dynamics, 8:262–302.

Dickey, J. M. (1971). The weighted likelihood ratio, linear hypothesis on normal location
parameters. The Annals of Mathematical Statistics, 42:204–223.

Doan, T., Litterman, R. B., and Sims, C. (1984). Forecasting and conditional projection
using realistic prior distributions. Econometric Reviews, 3:1–144.
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