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Abstract

In this paper, we consider the sample estimator of the tangency portfolio (TP)

weights, where the inverse of the sample covariance matrix plays an important role.

We assume that the number of observations is less than the number of assets in the

portfolio, and the returns are independent and identically multivariate normally dis-

tributed. Under these assumptions, the sample covariance matrix follows a singular

Wishart distribution and, therefore, the regular inverse cannot be taken. This pa-

per delivers bounds and approximations for the first two moments of the estimated

TP weights, as well as exact results when the population covariance matrix is equal

to the identity matrix, employing the Moore-Penrose inverse. Moreover, exact mo-

ments based on the reflexive generalized inverse are provided. The properties of

the bounds are investigated in a simulation study, where they are compared to the

sample moments. The difference between the moments based on the reflexive gen-

eralized inverse and the sample moments based the Moore-Penrose inverse is also

studied.
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1 Introduction

How to efficiently allocate capital lies in the heart of financial decision making.

Portfolio theory, as developed by Markowitz (1952), provides a framework for this

problem, based on the means, variances and covariances of the assets in the consid-

ered portfolio. The theory revolves around the trade-off between expected return

and variance (risk), denoted by mean-variance optimization. In this setting investors

allocate wealth in order to maximize expected return given a certain level of risk,

or conversely allocate wealth to minimize the risk given a certain level of expected

return.

In this paper, we consider the tangency portfolio (TP) which is one of the most

important portfolios in the financial literature. The TP weights determine what

proportions of the capital to invest in each asset, and are obtained by maximizing

the expected quadratic utility function. For a portfolio of p risky assets, the TP

weights are given by

wTP = α−1Σ−1(µ− rf1p), (1)

where µ is a p-dimensional mean vector of the asset returns, Σ is a p×p symmetric

positive definite covariance matrix of the asset returns, the coefficient α > 0 de-

scribes the investors’ risk aversion, rf denotes the rate of a risk-free asset and 1p is

a p-dimensional vector of ones. We allow for short sales and, therefore, some weights

can be negative. Let us also note that wTP determines the structure of the portfolio

which corresponds to risky assets and does in general not sum to 1. Consequently,

the rest of the wealth 1−w′TP1p needs to be invested into the risk-free asset.

Naturally, the TP weights wTP depend on knowledge of the mean vector µ and

the covariance matrix Σ. In general, these quantities are not known and need to

be estimated from historical return data. Plugging sample estimates of the mean

vector and covariance matrix into (1) leads us to the sample estimate of the TP

weights expressed as

ŵTP = α−1S−1(x̄− rf1p), (2)
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where S is the sample covariance matrix and x̄ is the sample mean vector1. The sta-

tistical properties of ŵTP have been extensively studied throughout the literature.

Britten-Jones (1999) derived an exact test of the weights in the multivariate normal

case. Okhrin and Schmid (2006) obtained the univariate density for the TP weights

as well as its asymptotic distribution, under the assumption that returns are inde-

pendent and identically multivariate normally distributed. Further, Bodnar (2009)

provided a procedure of monitoring the TP weights with a sequential approach.

Bodnar and Okhrin (2011) obtained the density for, and several exact tests on,

linear transformations of estimated TP weights, while Kotsiuba and Mazur (2015)

provided approximate and asymptotic distributions for the weights. Bauder et al.

(2018) studied the distribution of ŵTP from a Bayesian perspective2. Bodnar et al.

(2019c) studied the TP weights in small and large dimensions when both the popu-

lation and sample covariance matrix are singular. Analytical expressions of higher

order moments of the estimated TP weights are derived in Javed et al. (2020), while

Karlsson et al. (2020) delivered asymptotic distribution of the estimated TP weights

as well as the asymptotic distribution of the statistical test about the elements of the

TP under a high-dimensional asymptotic regime. Muhinyuza et al. (2020) derived

a test for the location of the TP, while Muhinyuza (2020) extended this result to

the high-dimensional setting. Furthermore, Bodnar et al. (2019b) derived central

limit theorems for the TP weights estimator under the assumption that the matrix

of observations has a matrix-variate location mixture of normal distributions.

The common scenario considered is that the number of observations available

for the estimation, denoted by N , is greater than the portfolio size, denoted by

p. In this case the sample covariance matrix S is positive definite, and ŵTP can

be obtained as presented in (2). However, when the considered portfolio is large,

it is possible that the number of available observations is less than the portfolio

dimension. This can be due to a lack of data for all the assets in the portfolio, but

it may also occur due to the fact that covariance of asset returns tend to change

1It worth to mention that a similar structure appears in the discriminant analysis. Namely, the
coefficients of a discriminant function that maximizes the discrepancy between two datasets are expressed
as a product of the inverse sample covariance matrix and the sample mean vector (see, for example, Bodnar
and Okhrin (2011), Bodnar et al. (2019a)).

2In the Bayesian setting, the posterior distribution of TP weights is expressed as a product of the
(singular) Wishart matrix and Gaussian vector. Statistical properties of those products are studied by
Bodnar et al. (2013, 2014), Bodnar et al. (2018), Bodnar et al. (2019b).
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over time. As such, the assumption of a constant covariance might only hold for

limited periods of time, hence limiting the amount of data available for estimation.

Any such situations, where p > N , would result in a singular sample covariance

matrix S, which in turn is non-invertible, in the standard sense.

This issue can be remedied by estimating Σ−1 in (1) with the Moore-Penrose

inverse of S, which we will denote by S+. Let us also note that the Moore-Penrose

inverse is successfully employed in the portfolio theory by Bodnar et al. (2016, 2017),

Tsukuma (2016), Bodnar et al. (2019c)3. Doing so, the TP weights are estimated

as

w̃TP = α−1S+(x̄− rf1p). (3)

An attractive feature of applying the Moore-Penrose inverse S+ in (1) is that it is

the least square solution to the system of equations described by

Sv = α−1(x̄− rf1p) (4)

which in the singular case generally lack exact solution. That is, as shown in Planitz

(1979), for any vector v ∈ Rp, we have that ‖Sv − α−1(x̄ − rf1p)‖2 ≥ ‖SS+(x̄ −

rf1p)−α−1(x̄−rf1p)‖2, where ‖·‖2 denotes the Euclidean norm of a vector. Phrased

differently, (3) provides the best solution to equation (4), in the least square sense.

In addition, when p ≤ N , we have that S+ = S−1 and w̃TP = ŵTP , such that w̃TP

can be viewed as a general estimator for the TP weights, covering both the singular

and non-singular case. For further properties on the Moore-Penrose inverse, see e.g.

Boullion and Odell (1971).

The expectation and variance of an estimator are key quantities to describing

its statistical properties. With the standard assumption of normally distributed

asset returns, the stochastic components of w̃TP consists of S+ and x̄, which are

independent under the assumption of normally distributed data (see e.g. Bodnar

et al. (2016)). Unfortunately, there exist no derivation of the expected value or

variance of S+, when p > N . In Cook and Forzani (2011) however, these quantities

3Instead of using the Moore-Penrose inverse, one can consider regularization techniques such as the
ridge-type method (Tikhonov and Arsenin, 1977), the Landweber-Fridman iteration approach (Kress,
1999), a form of Lasso (Brodie et al., 2009), or an iterative algorithm based on a second order damped
dynamical systems (Gulliksson and Mazur, 2019).
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are presented in the special case of Σ = Ip. The authors also provided approximate

results, using moments of standard normal random variables, and exact results for

moments of the generalized reflexive inverse, another quantity that can be applied

as an inverse of S. Further, in a recent paper, Imori and Rosen (2020) provided

several bounds on the mean and variance of S+, based on the Poincaré separation

theorem. Our paper build on the results presented in Cook and Forzani (2011)

and Imori and Rosen (2020) in order to provide bounds and approximations for

the moments of the TP weights, E[w̃TP ] and V[w̃TP ], where E[·] and V[·] denote

the expected value and variance, respectively. A simulation study is also presented,

where various measures compare the derived bounds with the equivalent sample

quantities obtained from simulated data. It also compares the moments obtained

applying the reflexive generalized inverse and the sample moments based on the

Moore-Penrose inverse.

The rest of this paper is organized as follows. Section 2.1 provides exact moment

results for the case Σ = Ip. Section 2.2 presents bounds for the moments of w̃TP

in the general case, while approximate moments are derived in Section 2.3. Exact

moments applying the reflexive generalized inverse are derived in Section 3. The

simulation study is presented in Section 4 while Section 5 summarizes.

2 Moments with the Moore-Penrose inverse

Let X be a p×N matrix with N asset return vectors of dimension p× 1 stacked as

columns, where p > N . Further, we assume that these return vectors are indepen-

dent and normally distributed with mean vector µ and positive definite covariance

matrix Σ. Thus X ∼ MN p,N (µ1N ,Σ, IN ), where MN p,n(M,Σ,U) denotes the

matrix-variate normal distribution with p × N mean matrix M, p × p row-wise

covariance matrix Σ and N × N column-wise covariance matrix U. Further, let

the p × 1 vector x̄ be the row mean of X. Now, define Y = X − x̄1′N , such that

Y ∼ MN p,N (0,Σ, IN ). Further, let S = YY′/n such that rank(S) = n < p with

n = N − 1, and nS ∼ Wp(n,Σ), i.e. nS follows a p-dimensional singular Wishart

distribution with n degrees of freedom and the parameter matrix Σ. Let S = QRQ′

denotes the eigenvalue decomposition of S, where R is the n×n diagonal matrix of

positive eigenvalues and Q is the p × n matrix with corresponding eigenvectors as
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columns. Further, define

S+ = QR−1Q′.

As such, S+ constitutes the Moore-Penrose inverse of YY′/n, and S+ is independent

of x̄ (see Bodnar et al. (2016)).

In the following, let η = α−1(x̄ − rf1p) and θ = E[η] = α−1(µ − rf1p). Con-

sequently, from Corollary 3.2b.1 in Mathai and Provost (1992), together with the

fact that E[x̄] = µ and V[x̄] = Σ/(n+ 1), we obtain that

E[ηη′] = θθ′ +
Σ

α2(n+ 1)
, (5)

E[η′η] = θ′θ +
tr(Σ)

α2(n+ 1)
, (6)

E[η′Ση] = θ′Σθ +
tr(ΣΣ)

α2(n+ 1)
. (7)

Further, let sij denotes the element on row i and column j of S+, and let σij denotes

the element on row i and column j of Σ−1. Also let ei denotes a p×1 vector where all

values are equal to zero, except the i :th element, which is equal to one. Moreover,

it is assumed that λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) are the ordered eigenvalues of a

symmetric matrix M: p× p, and that A ≤L B denotes the Löwner ordering of two

positive semi-definite matrices A and B.

2.1 Exact moments when Σ = Ip

When Σ is the identity matrix, it is possible to derive exact moments of the TP

weights obtained from the Moore-Penrose inverse in the singular case. First, note

the following results presented in Theorem 2.1 of Cook and Forzani (2011), which

state that in the case Σ = Ip and p > n+ 3, we have that

E[S+] = a1Ip, (8)

V[vec(S+)] = a2(Ip2 + Cp2) + 2a3vec(Ip)vec′(Ip), (9)
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where Cp2 is the commutation matrix and

a1 =
n2

p(p− n− 1)
, (10)

a2 =
n3[p(p− 1)− n(p− n− 2)− 2]

p(p− 1)(p+ 2)(p− n)(p− n− 1)(p− n− 3)
, (11)

a3 =
n3[n2(n− 1) + 2n(p− 2)(p− n) + 2p(p− 1)]

p2(p− 1)(p+ 2)(p− n)(p− n− 1)2(p− n− 3)
. (12)

Note that constants in (10)-(12) differ slightly to the constants presented in Cook

and Forzani (2011), since our paper considers results for nS ∼ Wp(n,Σ), while

Cook and Forzani (2011) derived the results for W ∼ Wp(n,Σ). The moments in

(8) and (9) allow us to derive the following results.

Theorem 1. If p > n+ 3 and Σ = Ip, then

E[w̃TP ] = a1wTP ,

V[w̃TP ] = (a2 + 2a3)wTPw′TP +

[
a2w

′
TPwTP +

a2
1 + (p+ 1)a2 + 2a3

α2(n+ 1)

]
Ip

with constants a1, a2 and a3 that are defined in (10)-(12).

Proof. Since w̃TP = α−1S+(x̄− rf1p) the first result follows directly from (8) and

the independence of S+ and x̄. For the second result, first note that as discussed in

Cook and Forzani (2011), equation (9) can be written as

Cov(sij , skl) = a2(δikδjl + δilδjk) + 2a3δijδkl,

where δij = 1 if i = j and 0 otherwise, such that δij , i, j = 1 . . . , p denotes the

elements of Ip. Hence, we have that

E[sijskl] = a2(δikδjl + δilδjk) + (a2
1 + 2a3)δijδkl. (13)

Also note the following element representations of matrix operations, where A and
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B are p× p symmetric matrices:

[Atr(BA)]ij = aij

p∑
k=1

p∑
l=1

aklbkl, (14)

[ABA]ij =

p∑
k=1

p∑
l=1

bklaikajl

=

p∑
k=1

p∑
l=1

bklailajk. (15)

Moreover, with η = α−1(x̄− rf1p) and E[η] = θ,

V[w̃TP ] = V[S+η] = E
[
E[S+ηη′S+ | η]

]
− E[S+]θθ′ E[S+]. (16)

By letting H = ηη′ and applying equations (13)-(15) we obtain

E[S+HS+ | η]ij =

p∑
k=1

p∑
l=1

hkl E[siksjl]

=

p∑
k=1

p∑
l=1

hkl[a2(δijδkl + δilδkj) + (a2
1 + 2a3)δikδjl]

= a2 [Iptr(HIp)]ij + a2[IpHIp]ij + (a2
1 + 2a3)[IpHIp]ij .

Consequently,

E[S+HS+ | η] = (a2
1 + a2 + 2a3)H + a2tr(H)Ip,

and inserting the above result into (16) together with (5) and (8) gives

V[S+η] = (a2
1 + a2 + 2a3)

(
θθ′ + α−2N−1Ip

)
+

+a2

(
tr(θθ′) + α−2N−1p

)
− a2

1θθ
′

and the theorem follows noting that θ = wTP when Σ = Ip.

A direct consequence of Theorem 1 is that the estimator w̃TP is biased, with

bias factor a1. Hence, in the case of Σ = Ip, we have that a−1
1 w̃TP constitutes an

unbiased estimator. Further, in accordance with Corollary 2.1 in Cook and Forzani

(2011), as n, p → ∞, assuming n/p → r, with 0 < r < 1, the constants of V[w̃TP ]

emits the following asymptotic magnitudes: a1 = O(1), a2 = O(n−1) = O(p−1) and

a3 = O(n−2) = O(p−2). Consequently, since tr(wTPw′TP ) = O(p) in the general
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case, we have that a2tr(wTPw′TP ) = O(1). Hence, unless wTP has some specific

structure, V[w̃TP ] does not vanish to zero under this asymptotic regime. This is

not unique for the singular case, since the corresponding is also true for ŵTP in the

non-singular case, when n, p→∞.

2.2 Bounds on the moments

This section aims to provide upper and lower bounds for the expected value of w̃TP

and upper bounds for the variance of w̃TP . First, define the following p×p matrices,

D = a1(λp(Σ
−1))2Σ,

Ua = a1(λ1(Σ−1))2Σ,

Ub =
n

p− n− 1
λ1(Σ−1)Ip,

with elements dij , u
(a)
ij and u

(b)
ij , respectively. Further denote eij the elements of

E[S+] and let u
(∗)
ii = min{u(a)

ii , u
(b)
ii }, i = 1, . . . , p. Then we can derive the following

result.

Theorem 2. Suppose p > n + 3 and Σ > 0. Let wi and θi, be the i:th element

of the p × 1 vectors w = E[w̃TP ] and θ = α−1(µ − rf1p), respectively. Then for

i = 1, . . . , p, it holds that

viiθi +

p∑
j 6=i

vijθj ≤ wi ≤ ziiθi +

p∑
j 6=i

zijθj

where, for i, j = 1, . . . , p,

vij =

gij if θj ≥ 0,

hij if θj < 0,

zij =

gij if θj < 0,

hij if θj ≥ 0,

with gii = dii, hii = u
(∗)
ii , while for i 6= j,
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gij = max



dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj),

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj),

−
√
u

(∗)
ii u

(∗)
jj


,

hij = min



dij +
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj),

u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj),√

(u
(b)
ii − dii)(u

(b)
jj − djj),√

u
(∗)
ii u

(∗)
jj


.

Proof. The result follows directly from the element wise bounds in Lemma A2 and

that due to the independence of S+ and x̄ we have E[w̃TP ] = E[S+]θ.

Note that when Σ = Ip, we have that λ1(Σ−1)2 = λp(Σ
−1)2 = 1, and hence

E[S+] = D = Ua = a1Ip. Consequently gij = hij = 0, i 6= j, and gii = hii = a1,

i = 1, . . . , p, since u
(a)
ii = a1 < a1

p
n = u

(b)
ii , and p > n. Hence, Theorem 2 yields that

E[w̃TP ] = a1θ, consistent with the result of Theorem 1.

The following result provides two upper bounds for the variance of the TP

weights estimate w̃TP .

Theorem 3. Suppose p > n+ 3 and Σ > 0. Then

V[w̃TP ] ≤L (2c1 + c2)(λ1(Σ−1))4
(
k1ΣE[ηη′]Σ + k2ΣE[η′Ση]

)
, (17)

V[w̃TP ] ≤L (2c1 + c2)(λ1(Σ−1))4 E[(η′η)]Ip, (18)

with the expected values given in (5)-(7) and

c1 = n2[(p− n)(p− n− 1)(p− n− 3)]−1,

c2 = (p− n− 2)c1,

k1 =

[
1 + n− (p+ 1)(p(n+ 1)− 2)

p(p+ 1)− 2

]
n

p
,

k2 =

[
1− (p+ 1)(p− n)

p(p+ 1)− 2

]
n

p
.

Proof. We are interested in bounds for the quantity α′V[w̃TP ]α = α′V[S+η]α, for
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all α ∈ Rp. First, by the tower property we have

V[S+η] = E
[
E[S+ηη′S+ | η]

]
− E[S+]θθ′ E[S+].

Hence, we can obtain

α′V[S+η]α = E
[
E[α′S+ηη′S+α | η]

]
−α′ E[S+]θθ′ E[S+]α′

= E
[
E[(α′S+η)2 | η]

]
− (α′ E[S+]θ)2.

Then, by noting that (α′ E[S+]θ)2 > 0 and applying the bounds from Lemma A4

on E[(α′S+η)2] we can derive

α′V[S+η]α ≤ (2c1 + c2)(λ1(Σ−1))4

×E
[
k1(α′Ση)2 + k2(α′Σα)(η′Ση)

]
,

α′V[S+η]α ≤ (λ1(Σ−1))4(2c1 + c2)E[(α′α)(η′η)],

and with the aid of (5)-(7) the result follows.

2.3 Approximate moments

Regarding general Σ, it is possible to provide approximate moments for w̃TP us-

ing simulations of standard normal matrices. Following Section 3.1 in Cook and

Forzani (2011), we denote the eigendecomposition of Σ as Σ = ΓΛΓ′, with λi

denoting the i:th diagonal element of Λ, and let Z ∼ MN p,n(0, Ip, In), with z′i

denoting row i of Z. Further denote mij(Λ) = E[z′i(Z
′ΛZ)−2zj ] and vij,kl(Λ) =

Cov[z′i(Z
′ΛZ)−2zj , z

′
k(Z′ΛZ)−2zl], where Cov[X,Y ] denote the covariance between

X and Y .
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Also define

M(Λ) = n

p∑
i=1

λimii(Λ)eie
′
i,

V(Λ) = n2

 p∑
i=1

p∑
j=1

λiλjvii,jj(Λ)(eie
′
j ⊗ eie

′
j)

+

p∑
i=1

p∑
j=1

λiλjvij,ij(Λ)(eje
′
j ⊗ eie

′
i)(Ip + Cp2)

−2

p∑
i

λ2
i vii,ii(Λ)(eie

′
i ⊗ eie

′
i)

]
, (19)

and make the following decomposition

(Γ⊗ Γ)V(Λ)(Γ′ ⊗ Γ′) =


Ψ11 · · · Ψ1p

...
. . .

...

Ψp1 · · · Ψpp

 , (20)

where Ψij are p × p matrices, i, j = 1, . . . , p. The following result can then be

derived.

Theorem 4. If p > n+ 3 and Σ > 0 then

E[w̃TP ] = ΓM(Λ)Γ′θ,

V[w̃TP ] =

p∑
i=1

p∑
j=1

(
θiθj +

σij
α2(n+ 1)

)
Ψij +

1

α2(n+ 1)
ΓM(Λ)ΛM(Λ)Γ′

with θi = α−1(µi − rf ).

Proof. From Theorem 3.1 in Cook and Forzani (2011), we have that E[S+] =

ΓM(Λ)Γ′. Then the first result follows due to the independence of S+ and x̄.

For the second result, we have that

V[S+η] = E
[
E[S+ηη′S+ | η]

]
− E[S+]θθ′ E[S+]. (21)

Again we let H = ηη′. Applying Theorem 3.1 in Cook and Forzani (2011) we have

that

V[vec(S+)] = (Γ⊗ Γ)V(Λ)(Γ′ ⊗ Γ′),
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and in accordance with equation (6.8) in Ghazal and Neudecker (2000), we get

E[S+HS+] =

p∑
i=1

p∑
j=1

hijΨij + E[S+]HE[S+].

where Ψij is obtained from the decomposition (20). Inserting the above into (21)

gives

V[S+η] =

p∑
i=1

p∑
j=1

E[hij ]Ψij + E[S+]E[H]E[S+]− E[S+]θθ′ E[S+]

=

p∑
i=1

p∑
j=1

(
θiθj +

σij
α2N

)
Ψij +

1

α2N
ΓM(Λ)ΛM(Λ)Γ′,

due to (5) and since Γ′ΣΓ = Λ. The theorem is proved.

In Cook and Forzani (2011) the authors note that the moments mij(Λ) and

vij,kl(Λ) does not seem to have tractable closed-form representations. However,

these quantities can be approximated by simulation of Z, given the eigenvalues of

Σ.

3 Exact moments with reflexive generalized

inverse

An alternative to using the Moore-Penrose inverse S+ to estimate Σ−1 is to apply

the reflexive generalized inverse, defined as

S† = Σ−1/2
(
Σ−1/2SΣ−1/2

)+
Σ−1/2,

with the elements of S† are denoted s†ij . As such, the TP weights vector can be

estimated by

w†TP = S†η,

as to which we derive the following result.
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Theorem 5. If p > n+ 3 and Σ > 0 then

E[w†TP ] = a1wTP ,

V[w†TP ] = (a2 + 2a3)wTPw′TP

+

[
a2w

′
TPΣwTP +

a2
1 + (p+ 1)a2 + 2a3

α2(n+ 1)

]
Σ−1.

Proof. The first result follows directly from Corollary 2.3 in Cook and Forzani

(2011), and the independence of S and x̄. For the second result, we have that

V[S†η] = E
[
E[S†ηη′S† | η]

]
− E[S†]θθ′ E[S†]. (22)

Again we let H = ηη′, and note that by Corollary 2.3 in Cook and Forzani (2011)

we have

E[s†ijs
†
kl] = a2(σikσjl + σilσjk) + (a2

1 + 2a3)σijσkl

which combined with (14)-(15) allows us to obtain

E
[
S†HS† | η

]
ij

=

p∑
k=1

p∑
l=1

hkl E
[
s†iks

†
lj

]
=

p∑
k=1

p∑
l=1

hkl

(
a2(σijσkl + σilσkj)

+(a2
1 + 2a3)σikσjl

)
= (a2

1 + a2 + 2a3)
[
Σ−1HΣ−1

]
ij

+ a2tr(HΣ−1)
[
Σ−1

]
ij

such that

E[S†HS† | η] = (a2
1 + a2 + 2a3)Σ−1HΣ−1 + a2tr(HΣ−1)Σ−1.

Inserting this into equation (22) gives

V[S†η] = (a2
1 + a2 + 2a3)Σ−1 E[ηη′]Σ−1 + a2tr(E[ηη′]Σ−1)Σ−1

−E[S†]θθ′ E[S†],

and applying the first result on E[S†] together with (5) concludes the proof.
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An obvious drawback of w†TP is that Σ must be known in order to construct S†.

Moreover, in the case of Σ = Ip the results in Theorem 5 coincides with the results

in Theorem 1, since in this case S† = S+.

4 Simulation study

The aim of this section is to compare the bounds on the moments of w̃TP derived

in Section 2.2 with the sample mean and sample variance of this estimator. It will

also investigate the difference between the moments of w†TP derived in Theorem 5

and the sample moments of w̃TP . Ideally, the bounds should not deviate from the

obtained sample moments very much. To this end, define bl and bu as the p × 1

vectors with elements

bli = viiµi +

p∑
j 6=i

vijµj ,

bui = ziiµi +

p∑
j 6=i

zijµj ,

such that bl and bu represents the element wise lower and upper bound for the

expected TP weights vector presented in Theorem 2, where we set α = 1 and

rf = 0. Let

B1 = (2c1 + c2)(λ1(Σ−1))4
(
k1ΣE[ηη′]Σ + k2ΣE[η′Ση]

)
,

B2 = (2c1 + c2)(λ1(Σ−1))4 E[(η′η)]Ip,

such that B1 and B2 represents the bounds in equation (17) and (18) in Theorem

3, respectively. Further, let m and V respectively denote the sample mean vector

and sample covariance matrix of w̃TP based on an observed matrix X, as described

in Section 2. Moreover, define

tl =
1′p|bl −m|

p
(23)

tu =
1′p|bu −m|

p
(24)

t† =
1′p|E[w†TP ]−m|

p
(25)
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such that tl, tu and t† measures the element wise difference between the sample

mean vector and the lower and upper bounds on the mean, and mean of w†TP ,

respectively. Dividing by p allows comparing the measures between various portfolio

sizes. Further, let

T1 =

∣∣1′p (B1 −V) 1p

∣∣
p2

(26)

T2 =

∣∣1′p (B2 −V) 1p

∣∣
p2

(27)

T † =

∣∣∣1′p (V[w†TP ]−V
)

1p

∣∣∣
p2

(28)

where 1p is a p × 1 vector of ones. As such, T1 and T2 provide a measure of dis-

crepancy between the sample covariance matrix and bounds presented in Theorem

3, while T † measures the discrepancy between the variance of w†TP presented in

Theorem 5 and the sample covariance matrix of w̃TP . Since it is divided by p2, the

number of elements in B1, B2, V[w†TP ] and V, the measures T1, T † and T2 again

allow for comparison between different portfolio dimensions. Moreover, define

fl = ‖bl −m‖2F /‖m‖2F (29)

fu = ‖bu −m‖2F /‖m‖2F (30)

f † = ‖E[w†TP ]−m‖2F /‖m‖2F (31)

F1 = ‖B1 −V‖2F /‖V‖2F (32)

F2 = ‖B2 −V‖2F ‖/V‖2F (33)

F † = ‖V[w†TP ]−V/‖2F ‖V‖2F (34)

where ‖M‖2F denotes the Frobenius norm of the matrix M. Hence f1, f2, F1 and F2

represents the normalized Frobenius norm of differences between the bounds and

the sample variance, while f † and F † denote the difference between the moments

of w†TP and the sample variance of w̃TP .

In the following, simulations of (23)-(34) will be studied for various parameter

values. In order to account for a wide range of values of µ and Σ, these values will

be randomly generated in the simulation study. Each of the p elements in the mean

vector µ will be independently generated as U(−0.1, 0.1), where U(l, u) denotes the
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uniform distribution between l to u. The positive-definite covariance matrix Σ will

be determined as Σ = ΓΛΓ′, where the p× p matrix Γ represents the eigenvectors

of Σ and is generated according to the Haar distribution. The p × p matrix Λ is

diagonal, and its elements represents the ordered eigenvalues of Σ. Here we let

the p eigenvalues be equally spaced from d to 1, for various values of d. As such,

the parameter d represents a measure of dependency between the p assets in the

portfolio, where d = 1 represents no dependency and larger d represents a stronger

dependency structure. Consequently, the simulation procedure can be described as

follows:

1) Generate µ, with µi ∼ U(−0.1, 0.1), i = 1 . . . , p.

2) Generate Γ according to the Haar distribution, and compute Σ = ΓΛΓ′, where

diag(Λ) = d . . . , 1.

3) Independently generate x̄ ∼ Np,1(µ,Σ/N) and nS ∼ Wp(n,Σ).

4) Compute w̃TP .

5) Repeat step 3)-4) above s = 10000 times.

6) Based on the s samples of w̃TP , compute m and V.

7) Given m and V, compute (23)-(34).

The above procedure is repeated r = 10 times to give r values of (23)-(34) for a

given combination of p, N and d. Figures 1-12 display the mean value, for the r

simulations, of each respective measure, for p = {25, 50, 75, 100}, d = {1, . . . , 10}

and N = {2, 0.4p, 0.7p, p − 3}. For easier reading, the values are displayed on a

logarithmic scale and are connected with a solid line. First, it is noticeable that

most measures seem to increase with increasing dependency measure d. Further, tl,

tu, t†, T1, T2, T † increase with increasing sample size N . However, F2, the measure

on the discrepancy between the sample variance of w̃TP and the variance bound

B2 instead decrease with increasing N . Regarding the bounds on the expected

value of w̃TP , tl and tu appear very similar, as do f1 and f2. The measures on the

difference between E[w̃TP ] and E[w†TP ], t† and f † obtains as fairly small for most the

considered simulation parameters. This suggests that E[w†TP ] can serve as a rough

approximation of E[w̃TP ], especially for N ∈ (0.4p, 0.7p). Furthermore, when d = 1

we have Σ = Ip, and hence both the bounds b1 and b2, as well as E[w†TP ] provide
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equality with E[w̃TP ]. As such, for d = 1, these measures simply capture sample

variance for the mean of m. Similarly, when d = 1, T † and F † capture the sample

variance of V. Further, for N < p − 3 and low values of d, T † and F † obtains as

fairly small, suggesting that V[w†TP ] could be applied as a rough approximation of

V[w̃TP ] in these cases. Finally, it is noticeable that the measures F1 and F2 appear

very large for most of the combinations of p, N and d. It is however important

to note that the Frobenius norm of differences, that these measures are based on,

captures element-wise squared discrepancies, while B1 and B2 are not element-wise

bounds, but rather bounds in the Löwner order sense.

5 Summary

The TP is an important strategy in mean-variance asset optimization, and the sta-

tistical properties of the typical TP weight estimator have been thoroughly studied.

However, when the portfolio dimension is greater than the sample size, this estima-

tor is not applicable since standard inversion of the now singular sample covariance

matrix is not possible. This issue can be solved by applying the Moore-Penrose in-

verse, to which a general TP weights estimator can be provided, covering both the

singular and non-singular case. Unfortunately, there exists no derivation of the mo-

ments for the Moore-Penrose inverse of a singular Wishart matrix, and consequently

the moments of the general TP estimator cannot be obtained.

This paper provides bounds on the mean and variance of the TP weights estima-

tor in the singular case. Further, approximate results are provided, as well as exact

moment results in the case when the population covariance is equal to the identity

matrix. It also provides exact moment results when the reflexive generalized inverse

is applied in the TP weights equation.

Finally, the properties of the derived bounds, and the estimator based on the

reflexive generalized inverse, are investigated in a simulation study. The difference

between the various bounds and the sample counterparts are measured by several

quantities, and studied for numerous dimensions, samples sizes and levels of depen-

dencies of the population covariance matrix. The results suggest that many of the

derived bounds are closest to the sample moments when the population covariance

matrix suggest low dependency between the considered assets. Finally, the study
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implies that in some cases the moments of TP weights based on the reflexive gener-

alized inverse can be used as a rough approximation for the moments of TP weights

based on the Moore-Penrose inverse.
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Appendix

Lemma A1. The elements of E[S+] has the following bounds, i = 1, . . . , p

0 < dii ≤ eii ≤ u(a)
ii ,

and, for i, j = 1, . . . , p, i 6= j,

eij ≤ min{dij , u(a)
ij }+

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

eij ≥ max{dij , u(a)
ij } −

√
(u

(a)
ii − dii)(u

(a)
jj − djj).

Proof. First note that in accordance with Theorem 3.2 and Theorem 3.3 of Imori

and Rosen (2020), we have that

D ≤L E[S+] ≤L Ua,

E[S+] ≤L Ub.

Further, by definition of the Löwner order we have, with α ∈ Rp, that

α′Dα ≤ α′ E[S+]α ≤ α′Uα. (35)

Thus, since α′(E[S+]−D)α ≥ 0, we have that E[S+]−D is a positive semi-definite

matrix, and the same holds for U − E[S+]. This gives that 0 < dii ≤ eii ≤ u
(a)
ii ,

i = 1, . . . , p.

Moreover, note that every principal submatrix of a positive definite matrix is

also positive definite. Combined with (35) it provides the following inequalities, for

any i, j = 1, . . . , p, and with arbitrary non-zero scalars x1 and x2,

x2
1u

(a)
ii + 2x1x2u

(a)
ij + x2

2u
(a)
jj ≥

x2
1eii + 2x1x2eij + x2

2ejj ≥

x2
1dii + 2x1x2dij + x2

2djj > 0.

22



Now, first assume x1 > 0, x2 > 0. As such the above expressions can be applied

to obtain

x2
1eii + 2x1x2eij + x2

2eii ≥ x2
1dii + 2x1x2dij + x2

2djj (36)

x2
1u

(a)
ii + 2x1x2eij + x2

2u
(a)
jj ≥ x2

1dii + 2x1x2dij + x2
2djj

eij ≥ −
x2

1(u
(a)
ii − dii) + x2

2(u
(a)
jj − djj)− 2x1x2dij

2x1x2

= −
x1(u

(a)
ii − dii)
2x2

−
x2(u

(a)
jj − djj)
2x1

+ dij (37)

for any i, j = . . . , p, i 6= j. As the right-hand side is a lower bound, we would like to

obtain values x1 and x2 that maximizes this concave function. Deriving and setting

the expression equal to zero, we obtain that it has its maximum at

x2
1(u

(a)
ii − dii) = x2

2(u
(a)
jj − djj).

Without loss of generality we can set x1 = 1 and thus obtain the maximum at

x1 = 1,

x2 =

√√√√ (u
(a)
ii − dii)

(u
(a)
jj − djj)

.

Applying this result to equation (37) yields

eij ≥ dij −
√

(u
(a)
ii − dii)(u

(a)
jj − djj). (38)

With an equivalent approach, again with x1 > 0, x2 > 0, we can utilize that

x2
1dii + 2x1x2eij + x2

2djj ≤ x2
1u

(a)
ii + 2x1x2u

(a)
ij + x2

2u
(a)
jj

eij ≤
x2

1(u
(a)
ii − dii) + x2

2(u
(a)
jj − djj) + 2x1x2u

(a)
ij

2x1x2

in order to obtain the upper bound

eij ≤ u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj). (39)

Instead considering x1 < 0 and x2 > 0 (or x1 > 0 and x2 < 0) we can with a similar
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approach obtain the bounds

eij ≤ dij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

eij ≥ u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj).

Letting x1 < 0 and x2 < 0 again yield bounds (38) and (39). Expressed differently,

the above bounds can be written as

eij ≤ min{dij , u(a)
ij }+

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

eij ≥ max{dij , u(a)
ij } −

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

concluding the proof.

The results in Lemma A1 can be further extended, by also considering the bound-

ing matrix Ub. The following lemma summarizes this result.

Lemma A2. The elements of E[S+] has the following bounds, i = 1, . . . , p

0 < gii := dii ≤ eii ≤ hii := u
(∗)
ii

where u
(∗)
ii = min{u(a)

ii , u
(b)
ii }. Further, for i, j = 1, . . . , p, i 6= j,

gij ≤ eij ≤ hij

with

gij = max



dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj),

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj),

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj),

−
√
u

(∗)
ii u

(∗)
jj


,

hij = min



dij +
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj),

u
(a)
ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj),√

(u
(b)
ii − dii)(u

(b)
jj − djj),√

u
(∗)
ii u

(∗)
jj


.
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Proof. First, we have that

dij −
√

(u
(∗)
ii − dii)(u

(∗)
jj − djj) ≤ eij ≤ dij +

√
(u

(∗)
ii − dii)(u

(∗)
jj − djj),

since eii (and ejj) in (36) can be replaced by either u
(a)
ii or u

(b)
ii , whichever is smallest.

Then

u
(a)
ij −

√
(u

(a)
ii − dii)(u

(a)
jj − djj) ≤ eij ≤ u(a)

ij +

√
(u

(a)
ii − dii)(u

(a)
jj − djj)

−
√

(u
(b)
ii − dii)(u

(b)
jj − djj) ≤ eij ≤

√
(u

(b)
ii − dii)(u

(b)
jj − djj)

follows directly from Lemma A1 and the fact that Ub is diagonal and thus u
(b)
ij = 0.

Finally

−
√
u

(∗)
ii u

(∗)
jj ≤ eij ≤

√
u

(∗)
ii u

(∗)
jj

follows from

−
√
u

(∗)
ii u

(∗)
jj ≤ −

√
eiiejj ≤ eij ≤

√
eiiejj ≤

√
u

(∗)
ii u

(∗)
jj .

The lemma is proved.

In the following, let

k3 =
n[p(n+ 1)− 2]

p[p(p+ 1)− 2]
,

k4 =
n(p− n)

p[p(p+ 1)− 2]
.

Further define g(L) =
∏n

i=1 |Li|+ and c(n, p) = (2π)np/22ns(n, p) where |Li|+ and

s(n, p) is defined as on page 128 and 129 in Imori and Rosen (2020).

Lemma A3. Let L : n× p satisfy LL′ = In. Then, for all α,x ∈ Rp,

(i)
∫

(α′L′Lα)(x′L′Lx)g(L)dL = k1c(n, p)(α
′x)2 + k2c(n, p)(α

′α)(x′x)

(ii)
∫

(α′L′Lx)2g(L)dL = k3c(n, p)(α
′x)2 + k4c(n, p)(α

′α)(x′x)
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Proof. In accordance with page 130 in Imori and Rosen (2020) we have

n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

= c(n, p)−1

∫
(L⊗ L)′

{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}
×

×(L⊗ L)g(L)dL, (40)

where K·,· is the commutation matrix. Now note that

(α⊗ x)′Ip2(α⊗ x) = (α′α)(x′x) (41)

(α⊗ x)′Kp,p(α⊗ x) = (α′x)2 (42)

(α⊗ x)′vec(Ip)vec′(Ip)(α⊗ x) = (α′x)2 (43)

(α⊗ x)′(L⊗ L)′In2(L⊗ L)(α⊗ x) = (α′L′Lα)(x′L′Lx) (44)

(α⊗ x)′(L⊗ L)′Kn,n(L⊗ L)(α⊗ x) = (α′L′Lx)2 (45)

(α⊗ x)′(L⊗ L)′vec(In)vec′(In)(L⊗ L)(α⊗ x) = (α′L′Lx)2 (46)

and

(α⊗α)′Ip2(x⊗ x) = (α′x)2

(α⊗α)′Kp,p(x⊗ x) = (α′x)2

(α⊗α)′vec(Ip)vec′(Ip)(x⊗ x) = (α′α)(x′x)

(α⊗α)′(L⊗ L)′In2(L⊗ L)(x⊗ x) = (α′L′Lx)2

(α⊗α)′(L⊗ L)′Kn,n(L⊗ L)(x⊗ x) = (α′L′Lx)2

(α⊗α)′(L⊗ L)′vec(In)vec′(In)(L⊗ L)(x⊗ x) = (α′L′Lα)(x′L′Lx).

As such, from equation (40) we can obtain the following two expressions:

(α⊗ x)′
{
n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

}
(α⊗ x)

= c(n, p)−1(α⊗ x)′
[∫

(L⊗ L)′
{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}
× (L⊗ L)g(L)dL

]
(α⊗ x),

n(α′α)(x′x) + (n+ n2)(α′x)2

= c(n, p)−1

∫ {
p(α′L′Lα)(x′L′Lx) + (p+ p2)(α′L′Lx)2

}
g(L)dL, (47)
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and

(α⊗α)′
{
n(Ip2 + Kp,p) + n2vec(Ip)vec′(Ip)

}
(x⊗ x)

= c(n, p)−1(α⊗α)′
[∫

(L⊗ L)′
{
p(In2 + Kn,n) + p2vec(In)vec′(In)

}
× (L⊗ L)g(L)dL

]
(x⊗ x),

2n(α′x)2 + n2(α′α)(x′x)

= c(n, p)−1

∫ {
p2(α′L′Lα)(x′L′Lx) + 2p(α′L′Lx)2

}
g(L)dL. (48)

From equation (47) we can then derive

∫
(α′L′Lα)(x′L′Lx)g(L)dL =

c(n, p)n

p

[
(α′α)(x′x) + (n+ 1)(α′x)2

]
−(1 + p)

∫
(α′L′Lx)2g(L)dL.

Inserting this expression into equation (48) yields

∫
(α′L′Lx)2g(L)dL =

n

p

(p(n+ 1)− 2)(α′x)2 + (p− n)(α′α)(x′x)

c(n, p)−1(p(p+ 1)− 2)
,

and as such we finally obtain

∫
(α′L′Lα)(x′L′Lx)g(L)dL =

n

p

(α′α)(x′x) + (n+ 1)(α′x)2

c(n, p)−1

−(p+ 1)
n

p

(p(n+ 1)− 2)(α′x)2 + (p− n)(α′α)(x′x)

c(n, p)−1(p(p+ 1)− 2))

=
c(n, p)n

p

(
1− (p+ 1)(p− n)

p(p+ 1)− 2

)
(α′α)(x′x)

+
c(n, p)n

p

(
1 + n− (p+ 1)(p(n+ 1)− 2)

p(p+ 1)− 2

)
×(α′x)2,

completing the proof.

Lemma A4. Let nS ∼ Wp(n,Σ), p > n+ 3 and Σ > 0. Then, for all α,x ∈ Rp,

(i) E[(αS+x)2] ≤ (2c1 + c2)(λ1(Σ−1))4
[
k1(α′Σx)2 + k2(α′Σα)(x′Σx)

]
(ii) E[(αS+x)2] ≤ (λ1(Σ−1))4(2c1 + c2)(α′α)(x′x),

Proof. First, let Y′Σ−1/2 = TL, where LL′ = In, L : n× p and T : n× n is lower

triangular with positive elements. Further, note that in accordance with page 131
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in Imori and Rosen (2020), for p > n+ 3,

E[vec(S+)vec′(S+)] = c(n, p)−1

∫
(c1(Ip2 + Kp,p)(P⊗P)

+c2vec(P)vec′(P))g(L)dL,

where

P = Σ1/2L′(LΣL′)−1(LΣL′)−1LΣ1/2.

As such, with equalities similar to (41)-(46),

(α⊗ x)′ E[vec(S+)vec′(S+)](α⊗ x) = c(n, p)−1(α⊗ x)′
∫

(c1(Ip2 + Kp,p)(P⊗P)

+c2vec(P)vec′(P))g(L)dL(α⊗ x)

E[(αS+x)2] = c(n, p)−1

[
(c1 + c2)

∫
(x′Pα)2g(L)dL

+ c1

∫
(x′Px)(α′Pα)g(L)dL

]
. (49)

Now, by Lemma A5, we have that (x′Px)(α′Pα) ≥ (x′Pα)2. As such, combining

this inequality with (49) and Lemma 2.4 (i) in Imori and Rosen (2020), we have

E[(αS+x)2] = c(n, p)−1

[
(c1 + c2)

∫
(x′Pα)2g(L)dL

+ c1

∫
(x′Px)(α′Pα)g(L)dL

]
≤ c(n, p)−1(2c1 + c2)

∫
(x′Px)(α′Pα)g(L)dL

≤ c(n, p)−1(2c1 + c2)(λ1(Σ−1))4

×
∫

(α′Σ1/2L′LΣ1/2α)(x′Σ1/2L′LΣ1/2x)g(L)dL

= (2c1 + c2)(λ1(Σ−1))4
[
k1(α′Σx)2 + k2(α′Σα)(x′Σx)

]
,

where Lemma A3 (i) has been applied in the last equality. On the other hand, if

we instead apply the inequality in Lemma 2.4 (ii) of Imori and Rosen (2020) we

instead obtain

E[(αS+x)2] ≤ c(n, p)−1(λ1(Σ−1))4
[
(2c1 + c2)(α′α)(x′x)

] ∫
g(L)dL

= (λ1(Σ−1))4
[
(2c1 + c2)(α′α)(x′x)

]
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where Lemma 3.1 (i) in Imori and Rosen (2020) gives the equality and concludes

the proof.

Lemma A5. Let A be a p × p symmetric positive-definite matrix. Then for any

c,d ∈ Rp,

(c′Ac)(d′Ad) ≥ (c′Ad)2.

Proof. Let A = QRQ′ denote the eigenvalue decomposition of A, such that Q is

orthogonal and R is a diagonal matrix with positive elements. Make the substitu-

tions

f = R1/2Q′c

g = R1/2Q′d,

such that the inequality (c′Ac)(d′Ad) ≥ (c′Ad)2 can be written

(f ′f)(g′g) ≥ (f ′g)2. (50)

Further, since (f ′g) = ‖f‖‖g‖cos(θ), where ‖·‖ denote the Euclidean norm and θ is

the angle between the vectors f and g, the inequality (50) becomes

‖f‖2‖g‖2≥ ‖f‖2‖g‖2cos(θ)2

which holds since cos(θ)2 ≤ 1. The lemma is proved.
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Figure 1: The logarithm of tl plotted for various values of p, N and d.
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Figure 2: The logarithm of tu plotted for various values of p, N and d.
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Figure 3: The logarithm of t† plotted for various values of p, N and d.
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Figure 4: The logarithm of T1 plotted for various values of p, N and d.
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Figure 5: The logarithm of T2 plotted for various values of p, N and d.

34



Figure 6: The logarithm of T † plotted for various values of p, N and d.
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Figure 7: The logarithm of fl plotted for various values of p, N and d.
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Figure 8: The logarithm of fu plotted for various values of p, N and d.
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Figure 9: The logarithm of f † plotted for various values of p, N and d.
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Figure 10: The logarithm of F1 plotted for various values of p, N and d.
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Figure 11: The logarithm of F2 plotted for various values of p, N and d.
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Figure 12: The logarithm of F † plotted for various values of p, N and d.
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