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Abstract

The sum of a random number of independent and identically distributed random

vectors has a distribution which is not analytically tractable, in the general case.

The problem has been addressed by means of asymptotic approximations embed-

ding the number of summands in a stochastically increasing sequence. Another

approach relies on fitting flexible and tractable parametric, multivariate distribu-

tions, as for example finite mixtures. In this paper we investigate both approaches

within the framework of Edgeworth expansions. We derive a general formula for

the fourth-order cumulants of the random sum of independent and identically dis-

tributed random vectors and show that the above mentioned asymptotic approach

does not necessarily lead to valid asymptotic normal approximations. We address

the problem by means of Edgeworth expansions. Both theoretical and empirical

results suggest that mixtures of two multivariate normal distributions with pro-

portional covariance matrices satisfactorily fit data generated from random sums

∗Corresponding author
Email addresses: Farrukh.Javed@oru.se (Farrukh Javed), nicola.loperfido@uniurb.it

(Nicola Loperfido), Stepan.Mazur@oru.se (Stepan Mazur)

https://www.editorialmanager.com/jmva/viewRCResults.aspx?pdf=1&docID=2280&rev=0&fileID=17731&msid=2642ddde-bf78-46a3-b07e-453ca4b0992e
https://www.editorialmanager.com/jmva/viewRCResults.aspx?pdf=1&docID=2280&rev=0&fileID=17731&msid=2642ddde-bf78-46a3-b07e-453ca4b0992e


where the counting random variable and the random summands are Poisson and

multivariate skew-normal, respectively.

Keywords: Edgeworth expansion, Fourth cumulant, Random sum, Skew-normal.
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1. Introduction

Let {xi, i ∈ N} be a sequence of independent and identically distributed (i.i.d.)

d-dimensional random vectors. Also, let N be a random variable independent of

the sequence whose support is the set of nonnegative integers. Furthermore, let

s = x1 + . . . + xN be the sum of the first N components of the sequence, with the

convention that s is the d-dimensional null vector when N = 0. We refer to s as to

the random sum of {xi, i ∈ N} with aggregating variable N . The distributions of

s, N and xi are the compound, primary and secondary distributions, respectively

([23]). Random sums occur in many research fields, including physics, biology,

reliability, queuing and finance ([14], [18], [19]). One such application is in actuarial

science where such a compound distribution has been mainly studied as a claim

model, where the random vector s, xi and N are represented as the aggregated

claim, the i-th claim size and the claim counts, respectively ([1]). However, analytic

expressions for compound distributions are available only for certain types of primary

and secondary distributions ([7, Chapter 13]) and an approximation is required for

a general case ([23]).

Asymptotic methods are often used to approximate the compound distributions,

when the aggregating variable is expected to be high enough. Following an argu-

ment similar to the one used in central limit theorems, the aggregating variable

is embedded in a sequence of stochastically increasing random variables. More

precisely, let {Nq, q ∈ N} be a stochastically increasing sequence of random vari-

ables independent of {xi, i ∈ N}, whose support is the set of nonnegative integers.

Also, let µq and Σq be the mean vector and the positive definite covariance matrix

of the q-th element sq of the sequence
{
sq = x1 + . . .+ xNq , q ∈ N

}
. Finally, let{

zq = Σ
−1/2
q

(
sq − µq

)
, q ∈ N

}
be the associated sequence of standardized random
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vectors, where Σ
−1/2
q is the positive definite and symmetric square root of the in-

verse of Σq. Conditions for the convergence of {zq, q ∈ N} to a standard normal

distribution have been given in the univariate case in the pioneering work of [35]. In

[19], the authors focused on geometric summation which leads to geometric stable

distributions. In [10], the tail behaviour has been investigated when the secondary

distribution is multivariate subexponential.

Alternatively, the compound distributions can be approximated by properly cho-

sen parametric distributions, as it is often done in actuarial sciences. There have

been many proposals for fitting univariate compund distributions with parametric

ones (see [8]). For example, multivariate compound distributions have been ap-

proximated with skew-normal distributions and their generalizations (see, [6], [11]).

Unfortunately, the information matrix of the distribution in [6] is singular under

normality, thus preventing the use of standard likelihood-based methods for testing

the hypothesis of normality ([13]), while the skew-normal distribution suffers from

the inferential problems discussed in [31]. Multivariate compound distributions have

also been approximated with finite mixture distributions ([4]), which may require

the estimation of many parameters. For example, a mixture of k d-dimensional

normal distributions is parametrized by k(d2 + 3d + 2)/2 real values, unless some

simplifying assumptions are made.

In an interesting thread of research, the compound distributions can also be

approximated by means of Edgeworth expansions, which possess several attractive

properties ([3], [5] and [15]). The simplest, nontrivial Edgeworth expansion of a com-

pound distribution depends on its first three cumulants, which have a simple analyt-

ical form. The third cumulant of a d-dimensional vector y with mean µ and finite

third-order moments is the d2×d matrix K3,y = E
[
(y − µ)⊗ (y − µ)⊗ (y − µ)T

]
,

where ⊗ stands for the Kronecker product. Let νj and ξj (j = 1, 2, 3) be the

j−th cumulants of N and xi, so that the first, second and third cumulants of s are

E (s) = ν1ξ1, Var (s) = ν1ξ2 + ν2ξ1ξ
T
1 and

K3,s = ν1ξ3 + ν2
(
ξ2 ⊗ ξ1 + ξV2 ξ

T
1 + ξ1 ⊗ ξ2

)
+ ν3ξ1 ⊗ ξT1 ⊗ ξ1,

where ξV2 is the vector obtained by stacking the columns of the matrix ξ2 on top of

each other ([27]). Note that the Edgeworth expansions are closely connected to both
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asymptotic and parametric approximations. In [38], the author used Edgeworth

expansions to show that the approximation of a multivariate normal distribution

distribution with another distribution with the same mean vector and covariance

matrix, as measured by the Kullback-Leibler divergence, tends to improve when the

third cumulants of the latter distribution become negligible. In [26], the author

used theoretical as well as empirical arguments based on Edgeworth expansions to

show that data generated by a distribution might be satisfactorily fitted by another

distribution, as long as the two distributions have the same first three cumulants.

Intuition suggests that the Edgeworth approximation of a given distribution im-

proves when more terms are included in the approximation itself. In particular, a

third-order Edgeworth approximation might be improved by including the fourth-

order cumulants of the approximated distribution. Inclusion of fourth cumulants is

particularly useful when the performance of the chosen statistical method heavily

depends on the fourth cumulants of the sampled distribution, as exemplified by the

following cases. In [30], the author showed that the performance of a likelihood test

based on the erroneous assumption of normality crucially depends on a measure of

multivariate kurtosis which is a simple function of fourth cumulants. Fourth cumu-

lants of the sampled distribution impair the performance of widely used likelihood

tests on covariance matrices, when normality is assumed ([40]). In [34], the authors

addressed preferential sampling in spatial statistics by means of fourth cumulants.

In [39], the author stressed the importance of fourth cumulants in the multivariate

linear model. In [2], the authors investigated the effect of fourth cumulants on the

Fisher discriminant function, and found it to be nonnegligible.

In this paper we derive a general formula for the fourth-order cumulants of the

random sum of i.i.d. random vectors and show that the asymptotic approach based

on stochastically increasing sequences does not necessarily lead to valid asymptotic

normal approximations. We address the problem by means of Edgeworth expan-

sions. Both theoretical and empirical arguments suggest that the distribution of a

random sum where the summands and their number are skew-normal and Poisson,

is satisfactorily approximated by a mixture of two multivariate normal distributions

with proportional covariance matrices.
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Sections 2 and 3 contain the theoretical results regarding the fourth cumulant of

a multivariate random sum and Mardia’s measure of multivariate kurtosis. These

results are used in Section 4 to highlight some difficulties in the convergence of

multivariate random sums to a multivariate normal distribution, which are addressed

in Section 5 by means of Edgeworth expansions. Section 6 and the Appendix contain

some concluding remarks and all theorems’ proofs.

2. Fourth cumulant

Let x = (x1, . . . , xd)
T be a d-dimensional random vector with mean vector µ =

(µ1, . . . , µd)
T and covariance matrix Σ = {σij}, i, j = 1, . . . , d. We assume that the

fourth moments of x are finite, i.e. E (|xixjxhxk|) < +∞ for i, j, h, k = 1, . . . , d. The

fourth cumulant K4 = {κijhk} of x is the d-dimensional, symmetric tensor of order 4

whose elements are the fourth-order derivatives of the cumulant generating function

of x: κijhk = logE
[
exp

(
ιtTx

)]
/∂ti∂tj∂th∂tk, where ι2 = −1 and t = (t1, . . . , td)

T

is an arbitrary vector of constants. An equivalent representation of κijhk is

E [(xi − µi) (xj − µj) (xh − µh) (xk − µk)]− σijσhk − σihσjk − σikσjh. (2.1)

The elements κijhk might be arranged into the d2 × d2 block matrix K4,x = {κ̃pq},
where κ̃pq = logE

[
exp

(
ιtTx

)]
/∂tp∂tq∂t∂tT for p, q = 1, . . . , d. The matrix K4,x is

the unfolded version of K4 [32] and can be represented as

K4,x = E
[
y ⊗ yT ⊗ y ⊗ yT

]
− (Id2 + Cd,d) (Σ⊗Σ)−ΣVΣVT, (2.2)

where y = x−µ, ΣV is the vectorization of Σ and Cd,d is the d2× d2 commutation

matrix ([28]). We refer to the matrix K4,x as to the fourth cumulant of x. Some

spectral properties of K4,x are examined by [24]. Basic properties of the fourth

cumulant that can be found in [22] and [25], among others.

In the next theorem, we present the fourth cumulant of the random sum of

random vectors s. It is shown that the fourth cumulant of s can be represented

via the first fourth cumulants of the counting random variable N and the random

summands xi.

5



Theorem 2.1. Let N be a nonnegative counting random variable with finite fourth

moment. Also, let x1, . . . ,xN be i.i.d. random vectors with finite fourth moment

and independent of N . Then the fourth cumulant of s is

K4,s = ν1ξ4 + ν2
[
(Id2 + Cd,d) (ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
+ ν2

(
ξ3 ⊗ ξT1 + ξT3 ⊗ ξ1

+ξT1 ⊗ ξ3 + ξ1 ⊗ ξT3
)

+ ν3
(
ξ2 ⊗ ξ1ξ

T
1 + ξV2 ξ

T
1 ⊗ ξT1 + ξT1 ⊗ ξ2 ⊗ ξ1

+ξ1 ⊗ ξ2 ⊗ ξT1 + ξ1ξ
VT
2 ⊗ ξ1 + ξ1ξ

T
1 ⊗ ξ2

)
+ ν4

(
ξ1ξ

T
1 ⊗ ξ1ξ

T
1

)
,

where νj and ξj denote the j−th (j = 1, 2, 3, 4) cumulants of N and xi, respectively.

The next corollary is the direct consequence of Theorem 2.1 and considers the

fourth cumulant of the random sum of random variables. This result coincides with

the formula obtained in [9].

Corollary 2.1. Let N be a nonnegative counting random variable with finite fourth

moment. Let x1, . . . , xN be i.i.d. random variables with a finite fourth moment,

independent of N . Then the fourth cumulant of s is

κ4,S = ν1ξ4 + 3ν2ξ
2
2 + 4ν2ξ1ξ3 + 6ν3ξ

2
1ξ2 + ν4ξ

4
1 ,

where νj and ξj denote the j−th (j = 1, 2, 3, 4) cumulants of N and xi, respectively.

When the summands are symmetric random vectors and the number of sum-

mands has a symmetric distribution the fourth cumulant of s has a simpler form.

This result is again the direct consequence of Theorem 2.1.

Corollary 2.2. Let N be a nonnegative counting variable with a symmetric distri-

bution. Also, let x1, . . . ,xN be i.i.d. symmetric random vectors with a finite fourth

moment, independent of N . Then the fourth cumulant of s is

K4,s = ν1ξ4 + ν2
[
(Id2 + Cd,d) (ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
+ ν4

(
ξ1ξ

T
1 ⊗ ξ1ξ

T
1

)
.

A nonrandom sum of random vectors is just a random sum where the number

of summands N is a degenerate random variable: P (N = n) = 1. It follows that

ν1 = n, ν2 = ν3 = ν4 = 0 and the fourth cumulant of the random sum is just the

product of the first cumulant of the number of summands and the fourth cumulant

of a summand: K4,s = ν1ξ4, consistently with ordinary properties of cumulants.

———————————————–
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3. Mardia’s kurtosis

The kurtosis and the excess kurtosis of a random variable X with mean µ,

variance σ2 and finite fourth moment E (X4) are often measured by its fourth stan-

dardized moment and its fourth standardized cumulant:

β2 = E

[(
X − µ
σ

)4
]

, γ2 = β2 − 3.

As remarked by [20], the default measures of multivariate kurtosis and multivariate

excess kurtosis have been proposed in [29] and [30]. Mardia’s kurtosis and Mar-

dia’s excess kurtosis of a d-dimensional random vector x with mean µ, non-singular

covariance matrix Σ and finite fourth-order moments are given by

βM2,d(x) = E
{[

(x− µ)TΣ−1(x− µ)
]2}

and γM2,d(x) = βM2,d(x)− d(d+ 2).

[21] first represented Mardia’s measures by means of moment matrices. More pre-

cisely, they showed that Mardia’s kurtosis and Mardia’s excess kurtosis of a random

vector are the traces of its fourth standardized moment and its fourth standardized

cumulant. Following the moment matrices approach in [21], we represent Mardia’s

kurtosis and Mardia’s kurtosis of a random vector as quadratic forms involving the

concentration matrix as well as the fourth central moment and the fourth cumulant.

This statement is made more precise in the next theorem.

Lemma 3.1. Let Σ, M4,x and K4,x be the variance, the fourth central moment and

the fourth cumulant of the d-dimensional random vector x. Then Mardia’s kurtosis

and Mardia’s excess kurtosis are

βM2,d(x) = Σ−VTM4,xΣ
−V and γM2,d(x) = Σ−VTK4,xΣ

−V.

4. Asymptotic behaviour

In this section we derive a closed-form expression for the Mardia’s kurtosis of

the random sums of normal random vectors. It is a simple function of the first four

cumulants of the aggregating variable, the Mahalanobis distance of the mean from
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the origin and the vector’s dimension. We use this result to show that the same

standardized random sum might not converge to a normal distribution, even when

it is embedded in a sequence of stochastically increasing aggregating variables. For

the sake of simplicity, the theorem is stated for random vectors having the identity

matrix as the covariance matrix, but it can be straightforwardly generalized to any

positive definite covariance matrix.

Theorem 4.1. Let νi be the i-th cumulant of the nonnegative random variable N ,

for i = 1, 2, 3, 4. Also, let s = x1 + . . . + xN be a random sum of independent,

d-dimensional normal random vectors xi ∼ Nd (µ, Id), where µ ∈ Rd. Then, by

letting q = ν2
(
ν21 + ν1ν2µ

Tµ
)−1

the Mardia’s kurtosis of s is

β2,d (s) =
(
ν2 + ν21

) [
2

(
d− 1

ν21
+
q2

ν22

)
+

(
d

ν1
− qµTµ

)2
]

+ (ν3 + ν1ν2)
(
µTµ

)(2d− 2

ν21
+

5q2

ν22

)
+
(
ν4 + 3ν22

) q2
ν22

(
µTµ

)2
.

Theorem 4.1 provides some insights into the asymptotic behaviour of random

sums. Let {Nq, q ∈ N} be a stochastically increasing sequence of random vari-

ables whose support is the set of nonnegative integers and are independent of

{xi ∼ Nd (ξ,Ψ)}, where i ∈ N, ξ ∈ Rd, Ψ ∈ Rd ×Rd, Ψ = ΨT>0. Also, let µq and

Σq be the mean vector and the positive definite covariance matrix of the q-th element

sq in the sequence
{
sq = x1 + . . .+ xNq , q ∈ N

}
. Finally, let

{
zq = Σ

−1/2
q

(
sq − µq

)
, q ∈ N

}
be the associated sequence of standardized random vectors, where Σ

−1/2
q is the pos-

itive definite and symmetric square root of the inverse of Σq. A necessary, but not

sufficient condition for the convergence of {zq, q ∈ N} to a standard normal distribu-

tion is the convergence of the sequence of Mardia’s kurtosis {β2,d (sq)} to d (d+ 2),

that is the Mardia’s kurtosis of a d-dimensional normal vector with positive definite

covariance matrix. This condition is fullfilled if ξ is a null vector. The following

corollary shows that {β2,d (sq)} might not converge to d (d+ 2) if ξ is not a null

vector, thus highlighting some differences between the convergence of random and

nonrandom sums.
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Corollary 4.1. Let {xi ∼ Nd (µ 6= 0d, Id)} and {ai} be a random sequence of mu-

tually independent random vectors and a strictly increasing sequence of positive

integers, for i = 1, 2, .... Also, let β2,d (w) be the Mardia’s kurtosis of a d-

dimensional random vector w. Finally, let {Ni = Y + ai} and {Mi = aiY }, where

P (Y = 1) = P (Y = 2) = 0.5. Then

lim
i−→+∞

β2,d (x1 + . . .+ xNi
) = d (d+ 2) and lim

i−→+∞
β2,d (x1 + . . .+ xMi

) = +∞.

5. Edgeworth expansions

When the normal approximation to a given distribution is not satisfactory we

can improve it by means of Edgeworth expansions. We can approximate either the

characteristic function or the probability density function of a random vector by

means of its moments or cumulants ([22]). In particular, from Corollary 2.1.5.1 and

Theorem 2.1.7 of [22], the cumulant generating function and characteristic function

of s can be expressed as

ψs(t) =
n∑
k=1

ιk

k!
(tT)⊗kKVT

k,s + rn and ϕs(t) = 1 +
n∑
k=1

ιk

k!
(tT)⊗kMVT

k,s + rn,

where t⊗k stands for t ⊗ t ⊗ · · · ⊗ t, and rn is the remainder term. The density

function of s can be expressed as

fs(s) =
1

(2π)d

∫
Rd

e−ιt
Tsϕs(t)dt.

Utilizing the Proposition 2.1 of [21] and Theorem 1 of [25], we get the following

relation between first four cumulants of s:
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M1,s = K1,s,

M2,s = K2,s + K1,sK
T
1,s,

M3,s = K3,s +
(
K2,s + K1,sK

T
1,s

)
⊗K1,s + K1,s ⊗

(
K2,s + K1,sK

T
1,s

)
+
(
K2,s + K1,sK

T
1,s

)V
K1,s − 2K1,sK

T
1,s ⊗K1,s,

M4,s = K4,s + (Id2 + Cp,p)
[(

K2,s + K1,sK
T
1,s

)
⊗
(
K2,s + K1,sK

T
1,s

)]
+
(
K2,s + K1,sK

T
1,s

)V (
K2,s + K1,sK

T
1,s

)VT

+MT
3,s ⊗K1,s + M3,s ⊗KT

1,s + KT
1,s ⊗M3,s + K1,s ⊗MT

3,s

−
(
K2,s + K1,sK

T
1,s

)
⊗K1,sK

T
1,s −

(
K2,s + K1,sK

T
1,s

)V ⊗KT
1,s ⊗KT

1,s

−Cd,d

(
K1,sK

T
1,s ⊗

(
K2,s + K1,sK

T
1,s

))
−Cd,d

((
K2,s + K1,sK

T
1,s

)
⊗K1,sK

T
1,s

)
−K1,s ⊗K1,s ⊗

(
K2,s + K1,sK

T
1,s

)VT −K1,sK
T
1,s ⊗

(
K2,s + K1,sK

T
1,s

)
+3K1,sK

T
1,s ⊗K1,sK

T
1,s.

Since the first three cumulants of s are known from [27] and the fourth cumulant

is delivered in Theorem 2.1, we get the following approximations of the characteristic

and density functions

ϕs(t) ≈ 1+
4∑

k=1

ιk

k!
(tT)⊗kMVT

k,s and fs(s) ≈ 1

(2π)d

∫
Rd

e−ιt
T s

(
1 +

4∑
k=1

ιk

k!
(tT)⊗kMVT

k,s

)
dt.

The density function of s depends on d integrals, therefore, it is more natural to

simplify it further. In particular, we consider the Edgeworth expansions which are

based on simpler density function, say fy(y), with finite fourth cumulant. Following

Theorem 3.2.1 of [22], we obtain the density function of s which is stated in the next

theorem.

Theorem 5.1. Under the assumption of Theorem 2.1, the density function fs(y)
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can be represented via the density function fy(y) as follows

fs(y) ≈ fy(y)− (K1,s −K1,y)T f 1
y(y)

+
1

2

[
K2,s −K2,y + (K1,s −K1,y) (K1,s −K1,y)T

]VT

f 2V
y (y)

−1

6

[
(K3,s −K3,y)VT + 3 (K2,s −K2,y)VT ⊗ (K1,s −K1,y)T

+ (K1,s −K1,y)T⊗3
]
f 3V
y (y)

+
1

24

{
(K4,s −K4,y)VT + (K1,s −K1,y)T⊗4

+6
[
(K2,s −K2,y)⊗ (K1,s −K1,y) (K1,s −K1,y)T

]VT

+ 4
[
(K3,s −K3,y)⊗ (K1,s −K1,y)T

]VT
}
f 4V
y (y),

where fky(y) = dkfy(y)

dyk , k = 1, 2, 3, 4.

The above mentioned Edgeworth expansion is based on the density function of y.

Usually y is taken to be normally distributed, i.e. y ∼ Nd(0,Σ). The main reason

for that is based on the fact that many random statistics can be well approximated

by normal distribution in the asymptotic setting. Therefore, the density function of

s can be written via the density function of normal distribution by the Edgeworth

expansion delivered in Theorem 5.1.

As remarked in [16], Edgeworth expansions might be used to approximate a

distribution with a nonnormal one with the same first cumulants. [26] showed that

for any random sum with Poisson agregating variable and skew-normal summands

there is a mixture of two normal distributions with proportional covariance matrices

having its same first three cumulants. These theoretical results suggest that the

latter distribution might satisfactorily fit data generated from the former one. In

order to empirically assess this conjecture we simulated 100 units from the random

sum where the number of summands is Poisson with mean 2 and the summands are

i.i.d. skew-normal random vectors with the null vector as the location parameter, the

identity matrix as the scatter parameter and the unit vector as the shape parameter:

xi ∼ SNd (0d, Id,1d), for d = 2, 3, 4, 5, 6, 7, 8, 9, 10. The pdf of xi = (xi1, . . . , xid)
T
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is

f (xi1, . . . , xid) = 2Φ

(
d∑
j=1

xij

)
d∏
j=1

φ (xij) ,

where φ (·) and Φ (·) denote the pdf and the cdf of a standard normal distribution,

respectively. The simulated data are available as supplementary material to this

paper. We used the R package [36] to fit a mixture model using the BIC criterion.

For all the nine datasets, the chosen model was the mixture with two normal com-

ponents and proportional covariance matrices. This empirical result is consistent

with the theoretical ones, showing that the first three cumulants of the sampled

distributions and this mixture coincide, for an appropriate choice of the parameters.

Figure (1) provide further insight into the fitting of the simulated data.
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Figure 1: Mixture of two normal distributions with proportional covariance matrices fitting

100 data generated from the bivariate skew-normal distribution with the null vector as

the location parameter, the identity matrix as the scale parameter and the unit vector as

the shape parameter.

13



6. Concluding remarks

This paper derives the fourth cumulant of a multivariate random sum and high-

lights some difficulties in the asymptotic approximation of its distribution with a

multivariate normal one. The paper addresses the problem by means of Edgeworth

expansions. For example, the random sum of i.i.d. skew-normal random vectors

with the Poisson distribution as the aggregating variable has the same first three

cumulants of a mixture of two normal distributions with proportional covariance ma-

trices, for appropriate choice of parameters. The paper shows that data generated

from the former distribution might be satisfactorily fitted by the latter.

It would be interesting to know whether convergence to normality of a multivari-

ate random sum holds for well-known choices of the summands and their number. A

first choice could be the random sum of skew-normal random vectors with a Poisson

random variable as the aggregating variable. A second choice could be the random

sum of asymmetric generalized Laplace random vectors with a negative binomial

random variable as the aggregating variable. The third cumulants of both choices

have been derived by [27]. We are currently working on the derivation of their fourth

cumulants.

In this paper, the fourth cumulant of a multivariate random sum is derived under

several assumptions, as for example the aggregating variable and the summands

being independent. More general assumptions are discussed in [9] and [27]. In

particular, the aggregating mechanism might be modelled by a random vector, rather

than by a random variable. At present time, the derivation of the fourth cumulant

of a multivariate random sum under these more general assumptions appers to be

quite a formidable task.
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Appendix

Proof of Theorem 2.1. The mean of s is equal to ν1ξ1. Then the fourth cumulant

of s is given by

K4,s = E
[
(s− ν1ξ1)⊗ (s− ν1ξ1)

T ⊗ (s− ν1ξ1)⊗ (s− ν1ξ1)
T
]

︸ ︷︷ ︸
Θ1

(6.1)

− (Id2 + Cd,d) (Var[s]⊗ Var[s])︸ ︷︷ ︸
Θ2

− (Var[s])V (Var[s])VT︸ ︷︷ ︸
Θ3

.

The first component of the expression may be represented as

Θ1 = E
[
(w + u)⊗ (w + u)T ⊗ (w + u)⊗ (w + u)T

]
with w = (x1 − ξ1) + . . . + (xN − ξ1) and u = ξ1 (N − ν1). Using the standard

properties of the Kronecker product [17, Chapter 16] we obtain that

Θ1 = E
[(

w ⊗wT + w ⊗ uT + u⊗wT + u⊗ uT
)
⊗
(
w ⊗wT + w ⊗ uT + u⊗wT + u⊗ uT

)]
= E

[(
w ⊗wT ⊗w ⊗wT

)
+
(
w ⊗wT ⊗w ⊗ uT

)
+
(
w ⊗wT ⊗ u⊗wT

)
+
(
w ⊗wT ⊗ u⊗ uT

)
+
(
w ⊗ uT ⊗w ⊗wT

)
+
(
w ⊗ uT ⊗w ⊗ uT

)
+
(
w ⊗ uT ⊗ u⊗wT

)
+
(
w ⊗ uT ⊗ u⊗ uT

)
+
(
u⊗wT ⊗w ⊗wT

)
+
(
u⊗wT ⊗w ⊗ uT

)
+
(
u⊗wT ⊗ u⊗wT

)
+
(
u⊗wT ⊗ u⊗ uT

)
+
(
u⊗ uT ⊗w ⊗wT

)
+
(
u⊗ uT ⊗w ⊗ uT

)
+
(
u⊗ uT ⊗ u⊗wT

)
+
(
u⊗ uT ⊗ u⊗ uT

)]
.

Now we apply expectation on each term in the bracket

Θ1 = E
[
w ⊗wT ⊗w ⊗wT

]
+ E

[
w ⊗wT ⊗w ⊗ uT

]
+ E

[
w ⊗wT ⊗ u⊗wT

]
+E

[
w ⊗wT ⊗ u⊗ uT

]
+ E

[
w ⊗ uT ⊗w ⊗wT

]
+ E

[
w ⊗ uT ⊗w ⊗ uT

]
+E

[
w ⊗ uT ⊗ u⊗wT

]
+ E

[
w ⊗ uT ⊗ u⊗ uT

]
+ E

[
u⊗wT ⊗w ⊗wT

]
+E

[
u⊗wT ⊗w ⊗ uT

]
+ E

[
u⊗wT ⊗ u⊗wT

]
+ E

[
u⊗wT ⊗ u⊗ uT

)
+E

[
u⊗ uT ⊗w ⊗wT

]
+ E

[
u⊗ uT ⊗w ⊗ uT

]
+ E

[
u⊗ uT ⊗ u⊗wT

]
+E

[
u⊗ uT ⊗ u⊗ uT

]
.
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First, we evaluate E
[
w ⊗wT ⊗w ⊗wT

]
. Since {xi}Ni=1 and N are indepen-

dently distributed we get that

E
[
w ⊗wT ⊗w ⊗wT|N = n

]
= E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
,

where yi = xi−ξ1, i = 1, . . . , n. Because y1, . . . ,yn are independent and identically

distributed, it holds that

E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
= M

4,
n∑

i=1
xi|N=n

.

By noticing that

M
4,

n∑
i=1

xi|N=n
= nξ4 + (Id2 + Cd,d)[(nξ2)⊗ (nξ2)] + (nξ2)

V(nξ2)
VT

= nξ4 + n2
[
(Id2 + Cd,d)(ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
,

and by taking expectations over N we obtain that

E
[
w ⊗wT ⊗w ⊗wT

]
= E

[
E
[
w ⊗wT ⊗w ⊗wT|N = n

]]
= ν1ξ4 + (ν2 + ν21)

[
(Id2 + Cd,d)(ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
.

Next, we evaluate E
[
w ⊗wT ⊗w ⊗ uT

]
starting from the conditional expecta-

tion. Applying the properties of expected values and Kronecker products we get

E
[
w ⊗wT ⊗w ⊗ uT|N = n

]
= E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗ ξT1 (n− ν1) |N = n

]

= (n− ν1)E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗

n∑
i=1

yi|N = n

]
⊗ ξT1 .

The above expectation is the third cumulant of the sum x1 + . . . + xn. The

random vectors x1, . . . ,xn are independent and identically distributed, so that the

third cumulant of their sum equals to the third cumulant of the i-th summand xi,

multiplied by the number of summands n:

E
[
w ⊗wT ⊗w ⊗ uT|N = n

]
= n (n− ν1) ξ3 ⊗ ξT1 .
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By taking expectations over N we obtain

E
[
w ⊗wT ⊗w ⊗ uT

]
= E

[
E
[
w ⊗wT ⊗w ⊗ uT|N = n

]]
= E [N (N − ν1)] ξ3 ⊗ ξT1 .

The expectation in the right-hand side of the above equation is just the variance

(that is the second cumulant) of N . Hence, we obtain

E
[
w ⊗wT ⊗w ⊗ uT

]
= ν2ξ3 ⊗ ξT1 .

Now we evaluate E
[
w ⊗wT ⊗ u⊗wT

]
, starting from the identity

E
[
w ⊗wT ⊗ u⊗wT|N = n

]
= E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗ ξ1 (n− ν1)⊗

n∑
i=1

yT
i |N = n

]
,

which may be simplified as follows, by remembering that a⊗ bT = bT ⊗ a, for any

two vectors a and b:

E
[
w ⊗wT ⊗ u⊗wT|N = n

]
= E

[
n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗ ξ1 (n− ν1) |N = n

]
.

The above expectation is the third cumulant of the sum x1 + . . . + xn. An

argument similar to the one used before leads to

E
[
w ⊗wT ⊗ u⊗wT

]
= E

[
E
[
w ⊗wT ⊗ u⊗wT|N = n

]]
= E

[
N (N − ν1) ξT3 ⊗ ξ1

]
= ν2ξ

T
3 ⊗ ξ1.

Next, we consider the identity,

E
[
w ⊗wT ⊗ u⊗ uT|N = n

]
= E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗ ξ1 (n− ν1)⊗ ξT1 (n− ν1) |N = n

]

= E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
⊗ ξ1 (n− ν1)⊗ ξT1 (n− ν1) .

The above expectation is the second cumulant of the sum x1+ . . .+xn, therefore,

it leads to

E
[
w ⊗wT ⊗ u⊗ uT

]
= E

[
E
[
w ⊗wT ⊗ u⊗ uT|N = n

]]
= E

[
N(N − ν1)2

]
ξ2 ⊗ ξ1 ⊗ ξT1

= (ν3 + ν1ν2)ξ2 ⊗ ξ1 ⊗ ξT1 ,
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where the last identity follows from the relation between cumulants and moments

[37, Chapter 3.12].

In order to evaluate E
[
w ⊗ uT ⊗w ⊗wT

]
, we recall that wT ⊗ w = wwT =

w ⊗wT and use arguments similar to the above ones to obtain

E
[
w ⊗ uT ⊗w ⊗wT

]
= E

[
uT ⊗w ⊗w ⊗wT

]
= E [N(N − ν1)] ξT1 ⊗ ξ3 = ν2ξ

T
1 ⊗ ξ3.

Next, we consider E
[
w ⊗ uT ⊗w ⊗ uT

]
, which can be simplified as

E
[
w ⊗w ⊗ uT ⊗ uT|N = n

]
= E

[
n∑
i=1

yi ⊗
n∑
i=1

yi ⊗ ξT1 (n− ν1)⊗ ξT1 (n− ν1) |N = n
]

= E

[
n∑
i=1

yi ⊗
n∑
i=1

yi|N = n

]
⊗ ξT1 (n− ν1)⊗ ξT1 (n− ν1)

= (n− ν1)2
(
E

[
n∑
i=1

yi

n∑
i=1

yT
i |N = n

])V

⊗ ξT1 ⊗ ξT1

= n(n− ν1)2ξV2 ⊗ ξT1 ⊗ ξT1

where we have used the fact that for any vector a, a ⊗ a is equal to (aaT)V. Now

taking expectation over N would lead to

E
[
w ⊗w ⊗ uT ⊗ uT

]
= E

[
E
[
w ⊗w ⊗ uT ⊗ uT|N = n

]]
= E

[
N(N − ν1)2

]
ξV2 ⊗ ξT1 ⊗ ξT1

= (ν3 + ν1ν2)ξ
V
2 ⊗ ξT1 ⊗ ξT1 .

Next we consider E
[
w ⊗ uT ⊗ u⊗wT

]
. Using again the fact that a ⊗ bT =

bT ⊗ a, for any two vectors a and b, we get that

E
[
w ⊗ uT ⊗ u⊗wT|N = n

]
= E

[
uT ⊗w ⊗wT ⊗ u|N = n

]
= E

[
ξT1 (n− ν1)⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i ⊗ ξ1(n− ν1)|N = n

]

= (n− ν1)2ξT1 ⊗ E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
⊗ ξ1

= n(n− ν1)2ξT1 ⊗ ξ2 ⊗ ξ1.
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Taking expected value over N leads us to

E
[
w ⊗ uT ⊗ u⊗wT

]
= E

[
E
[
w ⊗ uT ⊗ u⊗wT|N = n

]]
= E

[
N(N − ν1)2

]
ξT1 ⊗ ξ2 ⊗ ξ1

= (ν3 + ν1ν2)ξ
T
1 ⊗ ξ2 ⊗ ξ1.

We move on to consider E
[
w ⊗ uT ⊗ u⊗ uT

]
. It holds that

E
[
w ⊗ uT ⊗ u⊗ uT|N = n

]
= E

[
n∑
i=1

yi ⊗ ξT1 (n− ν1)⊗ ξ1(n− ν1)⊗ ξT1 (n− ν1)|N = n

]

= (n− ν1)3E

[
n∑
i=1

yi|N = n

]
⊗ ξT1 ⊗ ξ1 ⊗ ξT1 = 0.

As a direct consequence, we get that E
[
u⊗wT ⊗ u⊗ uT

]
= E

[
u⊗ uT ⊗w ⊗ uT

]
=

E
[
u⊗ uT ⊗ u⊗wT

]
= 0.

Next, we consider E
[
u⊗wT ⊗w ⊗wT

]
. It holds that

E
[
u⊗wT ⊗w ⊗wT

∣∣N = n] = E

[
ξ1(n− ν1)⊗

n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]

= (n− ν1)ξ1 ⊗ E

[
n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
= n(n− ν1)ξ1 ⊗ ξT3 .

Hence, we get

E
[
u⊗wT ⊗w ⊗wT

]
= E [N(N − ν1)] ξ1 ⊗ ξT3 = ν2ξ1 ⊗ ξT3 .

Now we evaluate E
[
u⊗wT ⊗w ⊗ uT

]
. We have that

E
[
u⊗wT ⊗w ⊗ uT|N = n

]
= E

[
ξ1(n− ν1)⊗

n∑
i=1

yT
i ⊗

n∑
i=1

yi ⊗ ξT1 (n− ν1)|N = n

]

= (n− ν1)2ξ1 ⊗ E

[
n∑
i=1

yT
i ⊗

n∑
i=1

yi|N = n

]
⊗ ξT1

= n(n− ν1)2ξ1 ⊗ ξ2 ⊗ ξT1 .
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Consequently, we obtain

E
[
u⊗wT ⊗w ⊗ uT

]
= E

[
E
[
u⊗wT ⊗w ⊗ uT|N = n

]]
= E

[
N(N − ν1)2

]
ξ1 ⊗ ξ2 ⊗ ξT1

= (ν3 + ν1ν2)ξ1 ⊗ ξ2 ⊗ ξT1 .

Next, we consider E
[
u⊗wT ⊗ u⊗wT

]
, starting from

E
[
u⊗wT ⊗ u⊗wT|N = n

]
= E

[
u⊗wT ⊗wT ⊗ u|N = n

]
= E

[
ξ1(n− ν1)⊗

n∑
i=1

yT
i ⊗

n∑
i=1

yT
i ⊗ ξ1(n− ν1)|N = n

]

= (n− ν1)2ξ1 ⊗ E

[
n∑
i=1

yT
i ⊗

n∑
i=1

yT
i |N = n

]
⊗ ξ1

= n(n− ν1)2ξ1 ⊗ ξVT
2 ⊗ ξ1.

With expectation over N , we get

E
[
u⊗wT ⊗ u⊗wT

]
= E

[
E
[
u⊗wT ⊗ u⊗wT|N = n

]]
= E

[
N(N − ν1)2

]
ξ1 ⊗ ξVT

2 ⊗ ξ1

= (ν3 + ν1ν2)ξ1 ⊗ ξVT
2 ⊗ ξ1.

We move on to evaluate E
[
u⊗ uT ⊗w ⊗wT

]
. It holds that

E
[
u⊗ uT ⊗w ⊗wT|N = n

]
= E

[
ξ1(n− ν1)⊗ ξT1 (n− ν1)⊗

n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]

= (n− ν1)2ξ1 ⊗ ξT1 ⊗ E

[
n∑
i=1

yi ⊗
n∑
i=1

yT
i |N = n

]
= n(n− ν1)2ξ1 ⊗ ξT1 ⊗ ξ2.

Hence, we obtain

E
[
u⊗ uT ⊗w ⊗wT

]
= E

[
E
[
u⊗ uT ⊗w ⊗wT|N = n

]]
= E

[
N(N − ν1)2

]
ξ1 ⊗ ξT1 ⊗ ξ2

= (ν3 + ν1ν2)ξ1 ⊗ ξT1 ⊗ ξ2.
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Next, we consider E
[
u⊗ uT ⊗ u⊗ uT

]
, that is

E
[
u⊗ uT ⊗ u⊗ uT

]
= E

[
ξ1(N − ν1)⊗ ξT1 (N − ν1)⊗ ξ1(N − ν1)⊗ ξT1 (N − ν1)

]
= E

[
(N − ν1)4

]
ξ1 ⊗ ξT1 ⊗ ξ1 ⊗ ξT1

= (ν4 + 3ν22)ξ1 ⊗ ξT1 ⊗ ξ1 ⊗ ξT1 .

Combining all the terms involved in Θ1, we finally get

Θ1 = ν1ξ4 + (ν2 + ν21)
[
(Id2 + Cd,d)(ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
+ν2ξ3 ⊗ ξT1 + ν2ξ

T
3 ⊗ ξ1

+(ν3 + ν1ν2)ξ2 ⊗ ξ1 ⊗ ξT1 + ν2ξ
T
1 ⊗ ξ3 + (ν3 + ν1ν2)ξ

V
2 ⊗ ξT1 ⊗ ξT1

+(ν3 + ν1ν2)ξ
T
1 ⊗ ξ2 ⊗ ξ1 + 0 + ν2ξ1 ⊗ ξT3

+(ν3 + ν1ν2)ξ1 ⊗ ξ2 ⊗ ξT1 + (ν3 + ν1ν2)ξ1 ⊗ ξV T
2 ⊗ ξ1 + 0

+(ν3 + ν1ν2)ξ1 ⊗ ξT1 ⊗ ξ2 + 0 + 0

+(ν4 + 3ν22)ξ1 ⊗ ξT1 ⊗ ξ1 ⊗ ξT1 .

= ν1ξ4 + (ν2 + ν21)
[
(Id2 + Cd,d)(ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
+ν2

[
ξ3 ⊗ ξT1 + ξT3 ⊗ ξ1 + ξT1 ⊗ ξ3 + ξ1 ⊗ ξT3

]
+(ν3 + ν1ν2)

[
ξ2 ⊗

(
ξ1ξ

T
1

)
+
(
ξV2 ξ

T
1

)
⊗ ξT1 + ξT1 ⊗ ξ2 ⊗ ξ1

+ ξ1 ⊗ ξ2 ⊗ ξT1 +
(
ξ1ξ

VT
2

)
⊗ ξ1 +

(
ξ1ξ

T
1

)
⊗ ξ2

]
+(ν4 + 3ν22)

(
ξ1ξ

T
1

)
⊗
(
ξ1ξ

T
1

)
.

Utilizing the results for variance of s already derived in [27], we get that

Θ2 = (Id2 + Cd,d)
[(
ν1ξ2 + ν2ξ1ξ

T
1

)
⊗
(
ν1ξ2 + ν2ξ1ξ

T
1

)]
,

Θ3 =
(
ν1ξ2 + ν2ξ1ξ

T
1

)V (
ν1ξ2 + ν2ξ1ξ

T
1

)VT
.
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Putting all the components of equation (6.1), we finally get the expression as

K4,s = ν1ξ4 + (ν2 + ν21)
[
(Id2 + Cd,d)(ξ2 ⊗ ξ2) + ξV2 ξ

VT
2

]
+ν2

[
ξ3 ⊗ ξT1 + ξT3 ⊗ ξ1 + ξT1 ⊗ ξ3 + ξ1 ⊗ ξT3

]
+(ν3 + ν1ν2)

[
ξ2 ⊗

(
ξ1ξ

T
1

)
+
(
ξV2 ξ

T
1

)
⊗ ξT1 + ξT1 ⊗ ξ2 ⊗ ξ1

+ ξ1 ⊗ ξ2 ⊗ ξT1 +
(
ξ1ξ

VT
2

)
⊗ ξ1 +

(
ξ1ξ

T
1

)
⊗ ξ2

]
+(ν4 + 3ν22)

(
ξ1ξ

T
1

)
⊗
(
ξ1ξ

T
1

)
−(Id2 + Cd,d)

[(
ν1ξ2 + ν2ξ1ξ

T
1

)
⊗
(
ν1ξ2 + ν2ξ1ξ

T
1

)]
−
(
ν1ξ2 + ν2ξ1ξ

T
1

)V (
ν1ξ2 + ν2ξ1ξ

T
1

)VT
.

Standard matrix algebra yields the identities(
ν1ξ2 + ν2ξ1ξ

T
1

)
⊗
(
ν1ξ2 + ν2ξ1ξ

T
1

)
= ν21ξ2 ⊗ ξ2 + ν1ν2ξ2 ⊗ ξ1ξ

T
1 + ν1ν2ξ1ξ

T
1 ⊗ ξ2

+ν22ξ1ξ
T
1 ⊗ ξ1ξ

T
1

and(
ν1ξ2 + ν2ξ1ξ

T
1

)V (
ν1ξ2 + ν2ξ1ξ

T
1

)VT
= ν21ξ

V
2 ξ

VT
2 + ν1ν2ξ

V
2 ⊗ ξT1 ⊗ ξT1

+ν1ν2ξ
T
1 ⊗ ξT1 ⊗ ξV2 + ν22ξ1ξ

T
1 ⊗ ξ1ξ

T
1 .

Straightforward application of basic properties of the commutation matrix ([22,

p. 80]) yields the identities

Cd,d

(
ξ2 ⊗ ξ1ξ

T
1

)
= ξ1 ⊗ ξ2 ⊗ ξT1 , Cd,d

(
ξ1ξ

T
1 ⊗ ξ2

)
= ξT1 ⊗ ξ2 ⊗ ξ1,

ξV2 ξ
T
1 ⊗ ξT1 = ξV2 ⊗ ξT1 ⊗ ξT1 = ξV2 ⊗

(
ξ1ξ

T
1

)VT
= Cd,d

(
ξV2 ξ

T
1 ⊗ ξT1

)
,

(
ξT1 ⊗ ξT1

)
ξV2 = ξT1 ⊗ ξT1 ⊗ ξV2 =

(
ξ1ξ

T
1

)VT ⊗ ξV2 = Cd,d

[(
ξT1 ⊗ ξT1

)
ξV2
]

.

Putting al above together we obtain the expression for the fourth cumulant stated

in the theorem.
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Proof of Lemma 3.1. Let z = Σ−1/2(x−µ) be the standardized version of x, where

µ is the mean of x and Σ−1/2 is the symmetric, positive definite square root of the

concentration matrix Σ−1:

Σ−1/2 = Σ−T/2, Σ−1/2 > 0, Σ−1/2Σ−1/2 = Σ−1.

The Mardia’s kurtosis of x coincides with the trace of the fourth moment of z [21]:

βM2,d(x) = tr [M4,z] .

The trace of the fourth moment M4,w of any d-dimensional random vector w admits

the representation IVT
d M4,wIVd , where Id is the d-dimensional identity matrix [24].

Also, the fourth moment of Qw is

(Q⊗Q) M4,w

(
QT ⊗QT

)
,

where Q is a k× d real matrix [12]. Hence, the fourth moment M4,z of z is a simple

function of the fourth moment of y = x− µ, i.e. the fourth central moment of x:

M4,z =
(
Σ−1/2 ⊗Σ−1/2

)
M4,x

(
Σ−1/2 ⊗Σ−1/2

)
.

We recall a fundamental property of the tensor product and the vectorization oper-

ator (see, for example, [33, page 201]):

(ABC)V =
(
CT ⊗A

)
BV,

where A ∈ Rp×Rq, B ∈ Rq ×Rr and C ∈ Rr ×Rs. This property and the identity

Σ−1/2Σ−1/2 = Σ−1 imply

Σ−V =
(
Σ−1/2 ⊗Σ−1/2

)
IVd and Σ−VT = IVT

d

(
Σ−1/2 ⊗Σ−1/2

)
.

Hence we have β2,d (x) = Σ−VTM4,xΣ
−V and this completes the first part of the

proof.

We now prove the second part of the theorem. Let γi and σi be the i-th columns

of Σ−1and Σ, so that

Σ−VTΣV = γT
1 σ1 + · · ·+ γT

d σd = d.
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The last equality is a direct consequence of Σ−1 being the inverse of Σ: γT
1 σ1 = 1

for i = 1, . . . , d. The same property of Σ−1, together with the above mentioned

property of the vectorization operator and the tensor product imply

Σ−VT (Σ⊗Σ) Σ−V = Σ−VT
(
ΣΣ−1Σ

)V
= Σ−VTΣV = d.

We now recall two properties of the commutation matrix Cp,q ∈ Rpq × Rpq [28]:

ATV = Cp,qA
V for any p × q matrix A and CT

p,q = Cq,p. These properties and the

symmetry of Σ−1 imply Σ−VTCd,d = Σ−VT.

The fourth cumulant K4,x of x is a function of its variance Σ and its fourth

central moment M4,x:

K4,x = M4,x −ΣVΣVT − (Id2 + Cd,d) (Σ⊗Σ) ,

where Id2 is the d2-dimensional identity matrix (see, for example, Kollo [20]). The

identities

β2,d (x) = Σ−VTM4,xΣ
−V, Σ−VTΣV = d,

Σ−VTCd,d = Σ−VT and Σ−VT (Σ⊗Σ) Σ−V = d

which appear in previous part of the proof lead to

Σ−VTK4,xΣ
−V = β2,d (x)− d (d+ 2) .

The right-hand side of the identity is just Mardia’s excess kurtosis of x and this

completes the proof.

Proof of Theorem 4.1. We first recall some fundamental properties of the Kronecker

product and the vectorization operator (see, for example, [33, p. 194-201]): (P1)

the Kronecker product is associative: (A⊗B)⊗C = A⊗ (B⊗C) = A⊗B⊗C;

(P2) if matrices A, B, C and D are of appropriate size, then (A⊗B) (C⊗D) =

AC ⊗ BD; (P3) A = cA = c ⊗A = A ⊗ c, where c ∈ R and A ∈ Rp × Rq; (P4)

(ABC)V =
(
CT ⊗A

)
BV, where A ∈ Rp×Rq, B ∈ Rq×Rr and C ∈ Rr×Rs; (P5)(

aaT
)V

=
(
a⊗ aT

)V
=
(
aT⊗a

)V
= (a⊗ a)V =

(
aT⊗aT

)V
= a⊗ a, where a ∈ Rp.
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The variance of s is Σ = ν1Id + ν2µµ
T (see [27]). By the Sherman-Morrison

formula, the inverse of Σ is

Σ−1 =
1

ν1
Id −

ν2Idµµ
TId

ν21 + ν1ν2µTIdµ
=

1

ν1
Id − qµµT.

The following identities will be used several times in the proof:

1

ν1
− qµTµ =

1

ν1
− ν2µ

Tµ

ν21 + ν1ν2µTµ
=
ν21 + ν1ν2µ

Tµ− ν1ν2µTµ

ν31 + ν21ν2µ
Tµ

=
ν1q

ν2
.

By Theorem 2.1, the fourth central moment of s is

M4,s =
(
ν2 + ν21

) (
Cd,d + Id2 + IVd IVT

d

)
+ (ν3 + ν1ν2) [ Id ⊗ µµT + IVd µ

T ⊗ µT

+µT ⊗ Id ⊗ µ + µ⊗ Id ⊗ µT + µIVT
d ⊗ µ + µµT ⊗ Id ] +

(
ν4 + 3ν22

) (
µµT ⊗ µµT

)
.

By Lemma 3.1 the Mardia’s kurtosis of s is

β2,d (s) = Σ−VTM4,sΣ
−V =

(
ν2 + ν21

)
Q1 + (ν3 + ν1ν2) (Q2 + 2Q3 + 2Q4) +

(
ν4 + 3ν22

)
Q5,

where Q1 = Σ−VT
(
Cd,d + Id2 + IVd IVT

d

)
Σ−V, Q2 = Σ−VT

(
Id ⊗ µµT

)
Σ−V, Q3 =

Σ−VT
(
IVd µ

T ⊗ µT
)
Σ−V, Q4 = Σ−VT

(
µT ⊗ Id ⊗ µ

)
Σ−V andQ5 = Σ−VT

(
µµT ⊗ µµT

)
Σ−V

might be simplified by means of properties (P1)-(P5).

We first evaluate the quadratic form

Q1 =

(
1

ν1
IVT
d − qµT⊗µT

)(
Cd,d + Id2 + IVd IVT

d

)( 1

ν1
IVd − qµ⊗ µ

)
.

The d2 × d2 commutation matrix Cd,d satisfies the identity Cd,dA
V = ATV for any

d× d matrix A (see [28]), so that(
1

ν1
IVT
d − qµT ⊗ µT

)
Cd,d

(
1

ν1
IVd − qµ⊗ µ

)
=

(
1

ν1
IVT
d − qµT ⊗ µT

)(
1

ν1
IVd − qµ⊗ µ

)
=

1

ν21
IVT
d IVd −

2q

ν1

(
µT ⊗ µT

)
IVd + q2

(
µT ⊗ µT

)
(µ⊗ µ) =

d

ν21
− 2q

ν1

(
µTµ

)
+ q2

(
µTµ

)2
.

A little algebra and the identity v−11 − qµTµ = qv1ν
−1
2 yield(

1

ν1
IVT
d − qµT ⊗ µT

)
Cd,d

(
1

ν1
IVd − qµ⊗ µ

)
=
d− 1

ν21
+

(
1

ν1
− qµTµ

)2

=
d− 1

ν21
+
q2

ν22
.
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In a similar way it can be shown that(
1

ν1
IVT
d − qµT ⊗ µT

)
IVd IVT

d

(
1

ν1
IVd − qµ⊗ µ

)
=

(
d

ν1
− qµTµ

)2

,

thus leading to the simplified expression

Q1 = 2

(
d− 1

ν21
+
q2

ν22

)
+

(
d

ν1
− qµTµ

)2

.

We now simplify the expression of the quadratic form

Q2 =

(
1

ν1
IVT
d − qµT ⊗ µT

)(
Id ⊗ µµT

)( 1

ν1
IVd − qµ⊗ µ

)
.

Repeated application of properties (P1)-(P5) yield

Q2 =
1

ν21
IVT
d

(
Id ⊗ µµT

)
IVd + q2

(
µT ⊗ µT

) (
Id ⊗ µµT

)
(µ⊗ µ)− 2q

ν1

(
µT ⊗ µT

) (
Id ⊗ µµT

)
IVd

= IVT
d

µ⊗ µ

ν21
+ q2

(
µT ⊗ µT

) (
µ⊗ µµTµ

)
− 2q

ν1

(
µT ⊗ µT

)
(µ⊗ µ)

=
µTµ

ν21
+ q2

(
µTµ

)3 − 2q

ν1

(
µTµ

)2
.

Further application of the identity v−11 − qµTµ = qv1ν
−1
2 yields

Q2 =
(
µTµ

)( 1

ν1
− qµTµ

)2

=
µTµ

(ν1 + ν2µTµ)2
=
q2

ν22
µTµ.

The following identities allow for a simpler expression of Q3:(
IVd µ

T ⊗ µT
)
IVd =

(
µTIdµIVT

d

)V
=
(
µTµ

) (
IVT
d

)V
=
(
µTµ

)
IVd .

We can then represent Q3 as(
1

ν1
IVT
d − qµT ⊗ µT

)(
IVd µ

T ⊗ µT
)( 1

ν1
IVd − qµ⊗ µ

)
=

1

ν21
IVT
d

(
IVd µ

T ⊗ µT
)

IVd

−2q

ν1

(
µT ⊗ µT

) (
IVd µ

T ⊗ µT
)
IVd + q2

(
µT ⊗ µT

) (
IVd µ

T ⊗ µT
)

(µ⊗ µ)

=
1

ν21
IVT
d

(
µTµ

)
IVd −

2q

ν1

(
µT ⊗ µT

) (
µTµ

)
IVd + q2

(
µT ⊗ µT

) (
IVd µ

Tµ⊗ µTµ
)

=
d

ν21

(
µTµ

)
− 2q

ν1

(
µTµ

)2
+ q2

(
µTµ

)3
=
(
µTµ

) [ d
ν21
− 2q

ν1

(
µTµ

)
+ q2

(
µTµ

)2]
=

(d− 1)
(
µTµ

)
ν21

+
(
µTµ

) [ 1

ν21
− 2q

ν1

(
µTµ

)
+ q2

(
µTµ

)2]
=
(
µTµ

)(d− 1

ν21
+
q2

ν22

)
.
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A simpler expression ofQ4 =
(
ν−11 IVT

d − qµT ⊗ µT
) (

µT ⊗ Id ⊗ µ
) (
ν−11 IVd − qµ⊗ µ

)
might be derived using the identities(
µT ⊗ Id ⊗ µ

)
IVd = [(Id ⊗ µ) Idµ]V = [(Id ⊗ µ)µ]V = [(Id ⊗ µ) (µ⊗ 1)]V = µ⊗ µ,

(
µT ⊗ Id ⊗ µ

)
(µ⊗ µ) = µTµ⊗ (Id ⊗ µ)µ =

(
µTµ

)
(Id ⊗ µ) (µ⊗ 1) =

(
µTµ

)
(µ⊗ µ) .

We can then represent Q4 as

1

ν21
IVT
d

(
µT ⊗ Id ⊗ µ

)
IVd −

2q

ν1
IVT
d

(
µT ⊗ Id ⊗ µ

)
(µ⊗ µ) + q2

(
µT ⊗ µT

) (
µT ⊗ Id ⊗ µ

)
(µ⊗ µ) =

1

ν21

(
µTµ

)
− 2q

ν1

(
µTµ

)2
+ q2

(
µTµ

)3
=
(
µTµ

)( 1

ν1
− qµTµ

)2

=
µTµ

(ν1 + ν2µTµ)2
=
q2

ν22

(
µTµ

)
.

We evaluate Q5 in a similar way:

Q5 =

(
1

ν1
IVT
d − qµT ⊗ µT

)(
µµT ⊗ µµT

)( 1

ν1
IVd − qµ⊗ µ

)
=

1

ν21
IVT
d

(
µµT ⊗ µµT

)
IVd −

2q

ν1
IVT
d

(
µµT ⊗ µµT

)
(µ⊗ µ)

+q2
(
µT ⊗ µT

) (
µµT ⊗ µµT

)
(µ⊗ µ)

=

(
µTµ

)2
ν21

− 2q

ν1

(
µTµ

)3
+ q2

(
µTµ

)4
=
(
µTµ

)2( 1

ν1
− qµTµ

)2

=
q2

ν22

(
µTµ

)2
.

We conclude the proof by reprenting the Mardia’s kurtosis of s by means of the

simplified expressions for recalling the definitions of Q1, Q2, Q3, Q4and Q5:

β2,d (s) =
(
ν2 + ν21

) [
2

(
d− 1

ν21
+
q2

ν22

)
+

(
d

ν1
− qµTµ

)2
]

+ (ν3 + ν1ν2)
(
µTµ

)(2d− 2

ν21
+

5q2

ν22

)
+
(
ν4 + 3ν22

) q2
ν22

(
µTµ

)2
.
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Proof of Corollary 4.1. We first prove the theorem for {Ni = Y + ai}. The first

four cumulants of Y are E (Y ) = 1.5, E
[
(Y − 1.5)2

]
= 0.25, E

[
(Y − 1.5)3

]
= 0

and E
[
(Y − 1.5)4

]
− 3E2

[
(Y − 1.5)2

]
= −0.125. As a direct consequence, the first

four cumulants of Ni are νi,1 = ai + 1.5, νi,2 = 0.25, νi,3 = 0, νi,4 = −0.125. Let

qi = νi,2
(
ν2i,1 + νi,1νi,2µ

Tµ
)−1

, so that

qi =
1

4ν2i,1 + νi,1µTµ
and lim

i−→+∞
qi · ν2i,1 =

1

4
.

The Mardia’s kurtosis β2,d (x1 + . . .+ xNi
) of x1 + . . .+ xNi

is then

(
0.25 + ν2i,1

) [
2

(
d− 1

ν2i,1
+ 16q2i

)
+

(
d

νi,1
− qiµTµ

)2
]

+νi,1
(
µTµ

)(d− 1

2ν2i,1
+ 20q2i

)
+q2i

(
µTµ

)2
.

The definitions of qi and νi,1, together with standard calculus techniques, yield

lim
i−→+∞

β2,d (x1 + . . .+ xNi
) = d (d+ 2) .

We now prove the theorem for {Mi = aiY }. The first four cumulants of Mi are ηi,1 =

1.5ai, ηi,2 = 0.25a2i , ηi,3 = 0 and ηi,4 = −0.125a4i . Let ri = ηi,2
(
η2i,1 + ηi,1ηi,2µ

Tµ
)−1

,

so that

ri =
1

ai (2.25 + 0.375 · µTµ)
and lim

i−→+∞
qi · νi,1 =

5

3
.

By Theorem 4.1, the Mardia’s kurtosis of x1 + . . .+ xMi
is

β2,d (x1 + . . .+ xMi
) =

(
ηi,2 + η2i,1

) [
2

(
d− 1

η2i,1
+

r2i
η2i,2

)
+

(
d

ηi,1
− riµTµ

)2
]

+ (ηi,3 + ηi,1ηi,2)
(
µTµ

)(2d− 2

η2i,1
+

5r2i
η2i,2

)
+
(
ηi,4 + 3η2i,2

) r2i
η2i,2

(
µTµ

)2
.

By recalling the definitions of ηi,1, ηi,2, ηi,3 and ηi,4 the Mardia’s kurtosis of x1 +

. . .+ xMi
might be simplified into

2.5

[
2

(
d− 1

2.25
+

r2i
0.0625

)
+

(
d

1.5
− ri
ai
µTµ

)2
]

+

0.375ai,1
(
µTµ

)(2d− 2

2.25
+

5r2i
0.0625

)
+ r2i

(
µTµ

)2
.
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The assumption µ 6= 0d, the definitions of ri and ηi,1, together with standard calculus

techniques, yield

lim
i−→+∞

β2,d (x1 + . . .+ xMi
) = +∞.
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[27] Loperfido, N., Mazur, S., and Podgórski, K. (2018). Third cumulant for multi-

variate aggregate claim models. Scandinavian Actuarial Journal, 2018(2):109–128.

[28] Magnus, J. and Neudecker, H. (1979). The commutation matrix: some proper-

ties and applications. Annals of Statistics, 7:381–394.

[29] Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with

applications. Biometrika, 57:519–530.

31



[30] Mardia, K. V. (1974). Applications of some measures of multivariate skewness

and kurtosis in testing normality and robustness studies. Sankhya: The Indian

Journal of Statistics, Series B, 36(2):115–128.

[31] Pewsey, A. (2001). Problems of inference for Azzalini’s skew-normal distribu-

tion. Journal of Applied Statistics, 27:859–870.

[32] Qi, L., Sun, W., and Wang, Y. (2007). Numerical multilinear algebra and its

applications. Frontiers of Mathematics in China, 2(4):501–526.

[33] Rao, C. and Rao, M. (1998). Matrix algebra and its applications to statistics

and econometrics. World Scientific Publishing Co. Pte. Ltd., Singapore.

[34] Rezvandehy, M. and Deutsch, C. V. (2018). Declustering experimen-

tal variograms by global estimation with fourth order moments. Stochastic

Environmental Research and Risk Assessment, 32(1):261–277.

[35] Robbins, H. (1948). The asymptotic distribution of the sum of a random number

of random variables. Bulletin of the American Mathematical Society, 54(12):1151–

1161.

[36] Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016). mclust 5: clus-

tering, classification and density estimation using Gaussian finite mixture models.

The R Journal, 8(1):289–317.

[37] Stuart, A. and Ord, K. (1994). Kendall’s Advanced Theory of Statistics, volume

1: Distribution Theory. Hodder Arnold, London, sixth edition.

[38] Van Hulle, M. M. (2005). Edgeworth approximation of multivariate differential

entropy. Neural Computation, 17(9):1903–1910.

[39] Yanagihara, H. (2007). A family of estimators for multivariate kurtosis in a

nonnormal linear regression model. Journal of Multivariate Analysis, 98:1–29.

[40] Yanagihara, H., Tonda, T., and Matsumoto, C. (2005). The effects of non-

normality on asymptotic distributions of some likelihood ratio criteria for testing

32



covariance structures under normal assumption. Journal of Multivariate Analysis,

96:237–264.

33


	Title page template 6
	Working Paper

	WP 9 2020



