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Abstract

In this paper we assess whether flexible modelling of innovations impact the predictive per-

formance of the dividend price ratio for returns and dividend growth. Using Bayesian vector

autoregressions we allow for stochastic volatility, heavy tails and skewness in the innovations.

Our results suggest that point forecasts are barely affected by these features, suggesting that

workhorse models on predictability are sufficient. For density forecasts, however, we find that

stochastic volatility substantially improves the forecasting performance.
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1 Introduction

Since the seminal contribution of Campbell and Shiller (1988), we know that variation of the

dividend-price ratio can be attributed either to variation in expected returns or variation in div-

idend growth. This observation has spurred a large empirical literature analysing jointly return

and dividend-growth predictability using the dividend-price ratio as a predictor. The empirical

investigation has been rich, yet, no conclusive evidence has been reached about the role of the

dividend-price ratio as a predictor of returns and dividend growth.1

We contribute to this literature by analysing the role of non-Gaussianity of the variables. This

is particularly important in the current context as both returns and dividend growth exhibit non-

Gaussian behaviour (Kon, 1984; Harvey and Siddique, 2000; Jondeau and Rockinger, 2003, 2012;

Adcock et al., 2015). Using the standard dataset on the stock market of the United States, we

estimate Bayesian VAR models which can allow for stochastic volatility and non-Gaussian innova-

tions, and assess the importance of these features both by in-sample and out-of-sample performance

evaluation.

Our in-sample results suggest that accounting for more flexible distributions somewhat strength-

ens the evidence for return predictability while weakens that for dividend-growth. However, the

effect is relatively small and suggest that for point forecasting purposes, the workhorse Gaussian,

homoscedastic model is sufficient. In contrast, assessing out-of-sample density forecasting perfor-

mance highlights a clear importance of stochastic volatility.

The paper is organised as follows. Section 2 presents the econometric framework. Section 3

discusses the data and the empirical results. Finally, Section 4 concludes.

2 The econometric framework

Let rt denote the log-returns from period t− 1 to t, ∆dt the change in log-dividends at time t, and

dpt the corresponding log dividend-price ratio. Defining yt = (rt,∆dt, dpt)
′, we can write the joint

1The techniques for empirical investigation range from predictive regressions Fama and French (1988); Lettau
and Ludvigson (2005); Cochrane (2008); Chen (2009); Golez and Koudijs (2018); Golez (2014) to more complicated
models Van Binsbergen and Koijen (2010); Koijen and Van Nieuwerburgh (2011), including vector autoregressions
(VARs) (Campbell, 1991; Engsted et al., 2012).
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model of return and dividend-growth predictability as a VAR(1) system

yt = α+ Byt−1 + A−1εt,

withα = (αr, αd, αdp)
′, coefficient matrix B with elements bij , and innovation terms εt =

(
εrt , ε

d
t , ε

dp
t

)′
.

A is a lower triangular matrix with ones on the diagonal absorbing the contemporaneous interaction

of the endogenous variables. This is a standard specification used by Campbell (1991). However,

earlier literature points out that because of the Campbell and Shiller (1988) identity, one equation

in the above VAR is redundant.2 Therefore, we use two bivariate systems with yt = (rt, dpt)
′

and yt = (∆dt, dpt)
′ for return and dividend-growth predictability, respectively. These bivariate

systems contain the same information as the full trivariate system and avoid potential issues with

multicollinearity between the variables (Cochrane, 2008; Engsted et al., 2012; Hjalmarsson and

Kiss, 2021).

In the vast majority of empirical applications, the above VAR models are estimated assum-

ing Gaussian, homoscedastic innovation terms. Most prominently, the features such as stochastic

volatility, skewness or heavy tails of the innovation term are disregarded when it comes to either

in-sample or out-of-sample evaluation of the prediction performance of the dividend-price ratio.

In this paper, we relax these assumptions by using the framework of Karlsson et al. (2021) where

the non-Gaussian innovations are derived as a Gaussian variance-mean mixture. Also stochastic

volatility is allowed for to capture potential time variation in the second moment. In particular,

we model the innovation term εt as a vector of orthogonal skew-t (OST) distributions,

εt = Wtγ + W
1/2
t H

1/2
t et, t = 1, . . . , T, (2)

where γ = (γ1, γ2)
′

contains skewness parameters; Wt = diag(ξ1t, ξ2t) is a diagonal matrix of

mixing variables ξit that are mutually independent and follow an inverse gamma distribution with

the same shape and rate parameters equal to νi/2, i.e. ξit ∼ IG(νi2 ,
νi
2 ), i = 1, 2; Ht = diag(h1t, h2t)

2By Campbell and Shiller (1988), the following (approximate) present value identity holds between returns, divi-
dend growth and the dividend price ratio:

rt = const− ρdpt + ∆dt + dpt−1, (1)

where ρ ≈ 1 is a linearization constant with exact values depending on the exact dataset.
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is a diagonal matrix that captures the heteroskedastic volatility; and et ∼ N (0, I). Moreover, Wt,

Ht, and et are mutually independent, then the marginal distribution of εt is a vector of independent

OST distributions (Aas and Haff, 2006; Karlsson et al., 2021).

We also assume a random walk process of the log volatility,

log hit = log hit−1 + σiηit, i = 1, 2, t = 1, . . . , T, (3)

where ηit ∼ N (0, 1). Note that the above model nests simpler models that we consider while

assessing the importance of heteroscedasticity, heavy tails and skewness. In particular, the con-

ditional distribution of vector yt reduces to an orthogonal Student’s t-distribution (OT.SV) when

γ1 = γ2 = 0. Additionally as νi → ∞ for i = 1, 2, we approach the Gaussian VAR model with

stochastic volatility (Gaussian.SV). Finally, the VAR models without stochastic volatility can be

achieved by imposing σ2i = 0 for i = 1, 2, with hi0 being the constant volatility. More details on

the prior distributions used in the Bayesian inference are discussed in Appendix A, while further

details about the inference method can be found in Karlsson et al. (2021).

We aim to assess the question whether returns or dividend growth are predictable by the divi-

dend price ratio, and whether the relationship is affected by the presence of heavy tails and skewness.

For this, we evaluate the above VAR models both in-sample (using the posterior distribution of

parameters) and out-of-sample. For the latter, we use Mean Squared Forecasting Error (MSFE) for

point forecast, and Log Predictive Score (LPS) as well as Continuously Ranked Probability Score

(CRPS) for density forecast, see Gneiting and Raftery (2007). In all cases we identify significant

improvements based on the one-sided Diebold and Mariano (1995) test with Newey-West standard

innovations (Clark, 2011).

3 Empirical analysis

For both return and dividend-growth predictability, we analyse four specifications. The baseline is

the VAR model where homoscedastic Gaussian innovations are assumed. We then allow sequentially

for stochastic volatility, heavy tails and skewness in the innovation distribution. The analysis is

based on quarterly returns, dividend growth and dividend-price ratio data from the first quarter
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of 1927 to the last quarter of 2019. The stock returns are captured by the return on the S&P500

index. Dividends are four-quarter moving sums of the dividends paid out by companies in the

S&P500 index year to avoid calendar effects in dividend payouts. For calculating the dividend-

price ratio, the S&P500 index is used as a price index. Data is obtained from the updated Welch

and Goyal (2008) dataset. We use quarterly data because it provides us enough observation for a

reliable Bayesian estimation and, at the same time, it is less noisy than the monthly data.3 Figure

1 presents the data. The histograms in Figure 1 show clearly that the unconditional distribution

of both returns and dividend growth are heavily leptokurtic and skewed, while the dividend-price

ratio is closer to a normally distributed. This suggests that capturing non-Gaussianity in returns

and the dividend-growth is potentially important in modelling these series.

3.1 In-sample results

Results from Bayesian estimation are collected in Table 1. Posterior means of the main parameters

of interest are shown, along with their 90% credible intervals. Looking at the baseline Gaussian

model, we see no evidence for return predictability by the dividend-price ratio (the credible interval

for the posterior of the br,dp coefficient is fairly wide and contains zero) and the dividend-price ratio

is highly persistent (bdp,dp is close to unity). However, dividend growth appears predictable with

a sizeable slope coefficient (bd,dp in the table) and a credible interval well in the negative range.

The picture changes somewhat, once we allow for stochastic volatility. In particular, the coefficient

capturing return predictability increases in magnitude and the credible interval no longer includes

zero, which means evidence in favour of return predictability. At the same time, the posterior mean

of the dividend growth coefficient shrinks in absolute terms. Also, the log marginal likelihoods

(calculated as in Karlsson et al., 2021) show a strong improvement in both bivariate VARs once we

allow for stochastic volatility.

The results are mostly unchanged once we allow for heavy tails and skewness: the return and

dividend-growth coefficients retain the same sign, but their credible intervals suggest some (albeit

weak) in-sample evidence for predictability. In general, more general modelling of higher order

moments does not seem to impact the mean equations substantially. Looking at the credible

3Using quarterly data in a similar context is somewhat unusual, but it is certainly present in the literature, see
Campbell and Viceira (2002); Pástor and Stambaugh (2009, 2012); Welch and Goyal (2008).
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Figure 1: The plots show the quarterly log returns, log dividend-growth and log dividend-price
ratio series used in the analysis. The left panels include the time series of the variables and the
right panel shows histograms (with number of observations on the y-axis).
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interval of the parameters governing heavy tails (νr) and asymmetry (γr) in returns, the results

reveal that innovations to returns are characterized by both heavier-than-normal tails and negative

skewness, even when stochastic volatility is allowed for. This is not the case for innovations to

dividend-growth and the dividend-price ratio: the heavy tail parameters (νd and νdp) are large and

the skewness parameters (γd and γdp) are close to zero. This suggests that these variables can be

very well described by having Gaussian innovations, as long as time variation in the second moment

is taken care of. The log marginal likelihood calculations suggest that the best model for returns is

the one with stochastic volatility and Gaussian innovations. For the dividend-growth VAR, there

is some small improvement in log marginal likelihoods when allowing for non-Gaussianity, and the

model with orthogonal skew-t (OST) distributions turns out to be the best.

3.2 Forecasting performance

The out-of-sample exercise is mostly meant to confirm our in-sample evidence for return and

dividend-growth predictability. To assess forecasting performance, we use return and dividend-

growth predictions from 233 recursive forecasts between the first quarter of 1960 and the last

quarter of 2017. We compare the forecasts to a benchmark Gaussian AR(1) model for both returns

and dividend growth. For dividend-growth, an AR(1) specification is necessary due to the serial

correlation in the series, while the benchmark is basically equal to the historical mean for the return

series due to the low serial correlation4. We present results for both for the short run, and also for

long-horizon (cumulative) return and dividend-growth forecasts from one to eight quarters ahead.5

For the point forecasts, one does not really benefit from abandoning Gaussianity. For returns

we see an interesting pattern where the Gaussian model actually underperforms the benchmark,

and it is overturned, at least in the one quarter horizon. This improvement disappears though

on longer horizons, and even in the short horizon it is not statistically significant. For dividend-

4The AR(1) coefficient of return is -0.043(0.052) and that of log dividend is 0.599(0.042) where the numbers in
the brackets are the standard errors.

5Since the VAR model is dynamically complete, we can form forecasts several periods ahead by rolling the system
forward, computing values for r̂t+1|t, r̂t+2|t, . . . , r̂t+h|t for returns and ∆̂dt+1|t, ∆̂dt+2|t, . . . , ∆̂dt+h|t. The long-horizon
forecasts of the model are then given by

r̂t→t+h|t = r̂t+1|t + r̂t+2|t + · · · + r̂t+h|t,

∆̂dt→t+h|t = ∆̂dt+1|t + ∆̂dt+2|t + · · · + ∆̂dt+h|t.
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Table 1: Summary of the posterior samples from VAR models for the quarterly SP data (1927-2019)

Gaussian Gaussian.SV OT.SV OST.SV

Bivariate VAR - Return - DP Ratio
br,dp 0.442 0.823 0.794 0.725

(-0.56;1.502) (0.061;1.667) (0.031;1.641) (-0.033;1.565)
bdp,dp 0.988 0.992 0.993 0.993

(0.974;0.999) (0.982;0.999) (0.983;0.999) (0.983;0.999)
νr - - 16.117 9.506

- - (5.907;39.615) (4.552;23.428)
νdp - - 38.806 40.707

- - (17.829;68.66) (19.623;71.224)
γr - - - -1.115

- - - (-2.333;0.292)
γdp - - - -0.004

- - - (-0.022;0.013)
LML -908.351 -457.476 -459.006 -467.689

Bivariate VAR - Dividend - DP Ratio
bd,dp -0.72 -0.222 -0.216 -0.225

(-1.118;-0.303) (-0.409;-0.039) (-0.403;-0.035) (-0.414;-0.04)
bdp,dp 0.979 0.986 0.986 0.985

(0.958;0.996) (0.971;0.998) (0.972;0.998) (0.97;0.998)
νd - - 25.512 30.185

- - (8.844;53.142) (12.22;55.53)
νdp - - 23.848 20.792

- - (10.195;48.759) (10.071;40.495)
γd - - - -0.094

- - - (-1.022;0.686)
γdp - - - 0.05

- - - (0.013;0.1)
LML -637.364 -318.389 -317.692 -314.561

The table compares the estimation of the parameters using the four specifications we

consider: the Gaussian VAR (Gaussian), the Gaussian VAR with stochastic volatility

(Gaussian.SV), the VAR with stochastic volatility and orthogonal t-distributed innovations

(OT.SV), and the VAR with stochastic volatility and orthogonal skew-t distributed innova-

tions (OST.SV). Estimation is based on the quarterly data using the S&P500 data between

1927 and 2019. br,dp, bd,dp are the predictive coefficients and bdp,dp is the persistence of

the dividend-price ratio obtained from the respective B matrices. νr, νd, νdp are heavy

tail parameters of the returns, dividend-growth and the dividend-price ratio respectively.

Similarly, γr, γd, γdp are asymmetry parameters of these variables. The numbers in the

brackets are the 90% credible intervals. The table also presents log marginal likelihoods

(LML) for all the model specifications, evaluated as in Karlsson et al. (2021).
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growth predictability, the homoscedastic, Gaussian model performs substantially worse than the

benchmark. Accounting for stochastic volatility, heavy tails and skewness improves in terms of

MSFE for almost all horizons, these changes are not statistically significant though.

Table 2: MSFEs and relative MSFEs [relative to the Gaussian AR(1) model]

MSFEs and relative MSFEs

1Q 2Q 3Q 4Q 8Q
(a) Returns
AR(1) 63.525 136.547 200.784 261.241 490.984
Gaussian 1.007 1.001 1.001 1.001 1.009
Gaussian.SV 0.984 1.002 1.002 1.000 1.025
OT.SV 0.986 1.003 1.006 1.009 1.045
OST.SV 0.985 1.003 1.006 1.007 1.037

(b) Dividends
AR(1) 1.368 5.109 12.708 24.443 97.446
Gaussian 1.108 1.202 1.229 1.241 1.304
Gaussian.SV 0.947 0.918 0.921 0.943 1.029
OT.SV 0.944 0.915 0.920 0.944 1.033
OST.SV 0.943 0.914 0.917 0.938 1.016

The first line reports the MSFE of the benchmark Gaussian VAR(1) model without stochas-

tic volatility during 1960:Q1-2017:Q4 (233 recursive estimations). The relative improvement

is computed as the ratio of the MSFE of alternative specifications over the benchmark. The

entries less than 1 indicate that the given model is better. ***,**,* denote that the corre-

sponding model significantly outperforms the benchmark at 1%, 5%, 10% level based on the

one-sided Diebold and Mariano (1995) test where the standard errors of the test statistics

are computed with the Newey–West estimator (Clark, 2011).

The picture is more interesting when it comes to density forecasts. Results in Table 3 based on

the LPS measure show that there is already an improvement in terms of density forecast of returns

if the dividend-price ratio is used as a predictor variable. Furthermore, allowing for stochastic

volatility improves substantially over the the Gaussian model, across all horizons, while further

flexibility of the innovation terms is not supported by our results. For dividend growth, we find

no evidence for the dividend-price ratio to improve density forecasts, however, stochastic volatility

helps for this variable as well, in particular at within-year horizons. Results based on the CRSP

measure are collected in Table 4. They show an overall similar picture with the only main exception

that the dividend-price ratio in itself does not help improve density forecasts.
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Table 3: LPS and relative LPSs [relative to the Gaussian VAR(1) model]

LP and relative LPs

1Q 2Q 3Q 4Q 8Q
(a) Returns
AR(1) -4.734 -5.327 -5.427 -5.450 -5.481
Gaussian 0.037** 0.055* 0.097** 0.148** 0.292**
Gaussian.SV 1.242*** 1.418*** 1.275*** 1.076*** 0.654*
OT.SV 1.246*** 1.419*** 1.281*** 1.088*** 0.698*
OST.SV 1.243*** 1.417*** 1.272*** 1.086*** 0.711*

(b) Dividends
AR(1) -1.729 -2.379 -2.794 -3.094 -3.758
Gaussian -0.021 -0.039 -0.059 -0.080 -0.141
Gaussian.SV 0.179*** 0.199*** 0.101 -0.010 -0.283
OT.SV 0.175*** 0.191*** 0.100 -0.004 -0.258
OST.SV 0.190*** 0.207*** 0.119* 0.018 -0.223

The first line reports the LP of the benchmark Gaussian VAR(1) model without stochastic

volatility during 1960:Q1-2017:Q4 (233 recursive estimations). The relative improvement

is computed as the difference of the LPS of alternative specifications over the benchmark.

The entries greater than 0 indicate that the given model is better. ***,**,* denote that the

corresponding model significantly outperforms the benchmark at 1%, 5%, 10% level based on

the one-sided Diebold and Mariano (1995) test where the standard errors of the test statistics

are computed with the Newey–West estimator (Clark, 2011).

Table 4: CRPS and relative CRPSs [relative to the Gaussian VAR(1) model]

CRPS and relative CRPSs

1Q 2Q 3Q 4Q 8Q
(a) Returns
AR(1) -4.603 -6.877 -8.394 -9.627 -12.800
Gaussian -0.016 -0.016 -0.020 -0.027 -0.055
Gaussian.SV 0.327*** 0.499*** 0.527** 0.446 -0.194
OT.SV 0.336*** 0.492*** 0.535** 0.469* -0.196
OST.SV 0.336*** 0.502*** 0.548** 0.498* -0.132

(b) Dividends
AR(1) -0.689 -1.306 -2.003 -2.737 -5.507
Gaussian -0.025 -0.087 -0.160 -0.238 -0.631
Gaussian.SV 0.084*** 0.192*** 0.252*** 0.261** 0.050
OT.SV 0.085*** 0.193*** 0.250*** 0.260** 0.032
OST.SV 0.084*** 0.195*** 0.259*** 0.275** 0.096

The first line reports the LPS of the benchmark Gaussian VAR(1) model without stochastic

volatility during 1960:Q1-2017:Q4 (233 recursive estimations). The relative improvement

is computed as the difference of the LPS of alternative specifications over the benchmark.

The entries greater than 0 indicate that the given model is better. ***,**,* denote that the

corresponding model significantly outperforms the benchmark at 1%, 5%, 10% level based on

the one-sided Diebold and Mariano (1995) test where the standard errors of the test statistics

are computed with the Newey–West estimator (Clark, 2011).

10



4 Concluding remarks

In this paper we have assessed whether the empirical evidence on return and dividend-growth

predictability with the dividend-price ratio changes if we allow for a flexible modelling of the

innovation to these variables. As a modelling framework we use a Bayesian VAR model with

stochastic volatility, as well as heavy-tailed and skewed innovations. Our in-sample results suggest

that adding heteroscedasticity and non-Gaussian innovations strengthens somewhat the evidence

for return predictability, while weakens that of the dividend-growth, although changes are not

substantial. Also, the innovations seem to be slightly heavy-tailed and negatively skewed based on

the in-sample estimates. Since changes in the mean equation due to flexible modelling of innovations

are not substantial for the slope coefficients, the above mentioned in-sample results do not translate

into any significant out-of-sample gains in terms of point forecasts. For density forecasts however,

we do see a significant improvement, as stochastic volatility appears to be the main driver behind

density forecasts of both returns and dividend-growth.
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Appendix

A Prior distributions

The Bayesian approach is employed to make inferences for the set of the model parameters θ =

{α′ , vec(B)
′
,a
′
,γ
′
,ν
′
,σ2′ , ξ

′
1:2,1:T ,h

′
1:2,0:T }

′
, where a = (a21) is the stack vector of the elements

in the lower triangular matrix A, and σ2 = (σ21, σ
2
2)′. Following Karlsson et al. (2021), the prior
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distribution of α and vec(B) follows the Minnesota prior distribution with the overall shrinkage

l1 = 0.2 and the cross-variable shrinkage l2 = 0.5, see Koop and Korobilis (2010). The prior

distribution a ∼ N (0, 10I) which imposes a weak assumption of no interaction among endogenous

variables. The degree of freedom for each variable follows a gamma distribution, i.e. νi ∼ G(2, 0.1)

so that the prior mean goes around 20. The asymmetry parameter follows a standard normal

distribution, γi ∼ N (0, 1) for i = 1, 2. The mixing variables distribute as ξit|νi ∼ IG(νi2 ,
νi
2 ) due

to the model settings. The prior for the variance of shock to the volatility is σ2i ∼ G(12 ,
1
2), see

Kastner and Frühwirth-Schnatter (2014). In all cases, log hi0 ∼ N
(

log Σ̂i,OLS , 4
)

where Σ̂i,OLS is

the estimated variance of the AR(1) model using the ordinary least square method, see Clark and

Ravazzolo (2015).
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