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Abstract

In this paper, we consider optimal portfolio selection when the covariance
matrix of the asset returns is rank-deficient. For this case, the original
Markowitz’ problem does not have a unique solution. The possible solu-
tions belong to either two subspaces namely the range- or nullspace of the
covariance matrix. The former case has been treated elsewhere but not the
latter. We derive an analytical unique solution, assuming the solution is in
the null space, that is risk-free and has minimum norm. Furthermore, we
analyse the iterative method which is called the discrete functional particle
method in the rank-deficient case. It is shown that the method is convergent
giving a risk-free solution and we derive the initial condition that gives the
smallest possible weights in the norm. Finally, simulation results on artificial
problems as well as real-world applications verify that the method is both
efficient and stable.

Keywords: Mean–variance portfolio; Rank-deficient covariance matrix;
Linear ill-posed problems; Second order damped dynamical systems

1 Introduction

Modern portfolio theory plays an important role in finance for both re-
searchers and practitioners. Its fundamental goal is to provide efficient
ways for the allocation of investments among different assets in the port-
folio. The basic concepts of modern portfolio theory were developed in [21]
by Markowitz, who introduced a mean-variance portfolio optimization pro-
cedure in which investors incorporate their preferences towards variance and
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their expectation of the return on different assets. The original Markowitz’
problem is formulated as follows

min
w

w>Σw s.t. w>1 = 1, w>µ = q, (1)

where w is a vector of portfolio weights, µ and Σ are mean vector and
covariance matrix of the asset returns, 1 denotes the vector of ones, and q
stands for the expected rate of return on the portfolio. In practice, both
parameters µ and Σ are unobservable and, therefore, need to be estimated
from historical data. The most common estimators are sample mean vector
and sample covariance matrix (see, for example, [25], [13], [7], [3], [19], among
many others). The sample covariance matrix is positive definite when the
number of observations is greater than the portfolio size, otherwise, it is
positive semi-definite and rank-deficient1.

If Σ is a positive definite matrix, then the optimization problem in (1)
has a unique (global) minimum given by

w =
c− bq
ac− b2

Σ−11 +
aq − b
ac− b2

Σ−1µ, (2)

where a = 1>Σ−11, b = 1>Σ−1µ, and c = µ>Σ−1µ. Meanwhile, if Σ is
rank-deficient, the minimum is not necessarily unique and the solution given
in (2) is not valid since the regular inverse of Σ does not exist. In [23], it has
been shown that if, in addition to the constraints in (1), one would assume
that w does not belong to the null space of Σ, N (Σ), the minimum would
be achieved at

w =
c− bq
ac− b2

Σ+1 +
aq − b
ac− b2

Σ+µ (3)

where a = 1>Σ+1, b = 1>Σ+µ, c = µ>Σ+µ, and Σ+ denotes the Moore-
Penrose inverse of Σ. Note that the expression in (3) is used in several papers
with a focus on the statistical analysis ([9], [10], [11], [1]). However, there
is no obvious motivation for the additional constraint w 6∈ N (Σ), except
the apparent similarity between solutions given in (3) and (2). Moreover,
the expression in (3) is not a solution to the classical Markowitz’ problem
formulated in (1) unless this constraint is imposed. Further on, we refer to
this solution as a Range Space (RS) solution.

1Under the assumption that the asset returns are independent and identically multi-
variate normally distributed, the sample mean vector has multivariate (singular) normal
distribution while the sample covariance matrix has (singular) Wishart distribution (see
[22] and [9]). Moreover, the vector which is proportional to the product of the (gener-
alized) inverse sample covariance matrix and sample mean vector represent the sample
estimator of the tangency portfolio weights. It leads us to the product of the (singular)
inverse Wishart matrix and (singular) normal vector which is studied by [12], [5], [6], [20],
[4], and [8].

2



The focus of this paper is on the rank-deficient case. We contribute to
the existing literature by deriving an analytical solution to (1) that can be
obtained via the singular value decomposition (SVD). This solution lies in
the null space of Σ and, therefore, is a global (non-unique) minimum of
(1). In addition, this global minimum corresponds to the smallest portfolio
weight norm among all the other minima. For these reasons, we call the
solution as a risk-free minimum norm solution or, when comparing to the RS
soltuion (3), as a null space minimum norm (NSMN) solution to (1). There
are disadvantages of using the SVD approach. Firstly, the SVD may be
computationally costly. Secondly, if there is a need to find many portfolios
even smaller size SVDs might increase the computational cost too much.
Consequently, it might be of value to use an iterative method. Here, our
second contribution to the existing literature comes in. We further develop
the iterative method presented in [16], called the Discrete Functional Particle
Method (DFPM), and analyze its convergence properties for rank-deficient
Σ. We show that DFPM always converges to a risk-free solution and, for a
specific choice of the initial value, the same minimum norm solution to (1)
as mentioned above.

The structure of the paper is as follows. In Section 2, we present the
analytical form of the risk-free minimum norm solution. Section 3 discuss
the solution obtained via the DFPM. Sections 4 and 5 consist of a simulation
and empirical studies, respectively.

2 Risk-free minimum norm solution

We begin by stating the conditions for a unique solution of (1). It is then
convenient to use a more compact form of our problem

min
w

w>Σw s.t. Bw = c, (4)

where

B =

[
1>

µ>

]
∈ R2×p, c =

[
1
q

]
∈ R2. (5)

From now on, we assume that B has full rank, i.e., µ is not parallel to 1. It
is straight forward to treat the case of B rank-deficient. For the analysis to
come, we use the singular value decomposition of Σ,

Σ = VΣDΣVΣ
>, (6)

where VΣ ∈ Rp×p is orthonormal and DΣ = diag(σ1, . . . , σr, 0, . . . , 0), σj >
0, j = 1, . . . , r with r the rank of Σ. We will also need the following partition

VΣ =
[
VΣ1 VΣ2

]
, DΣ =

[
DΣ1 0

0 0

]
, (7)
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where VΣ1 ∈ Rp×r, VΣ2 ∈ Rp×(p−r), DΣ1 = diag(σ1, . . . , σr), and 0 stands
for the matrix of zeros. Due to this partition, the decomposition (6) can be
written in reduced form

Σ = VΣ1DΣ1VΣ
>
1 . (8)

In the next lemma, we show that if the rank of Σ is less than p − 2, a
solution to (1) is non-unique.

Lemma 2.1. The solution to the optimization problem given in (1) is not
unique if r < p− 2.

Proof. Using the KKT-conditions with the Lagrange function L = w>Σw+
λ>(Bw − c), the solution is given by the linear system[

Σ B>

B 0

] [
w
λ

]
=

[
0
c

]
, (9)

where the elements in λ contains the two Lagrange parameters. Substituting
the SVD given in (6) into (9), we get[

DΣ V>B>

BV 0

] [
V>w
λ

]
=

[
0
c

]
. (10)

Next, using the partition (7), we can write DΣ1 0 (BVΣ1)>

0 0 (BVΣ2)>

BVΣ1 BVΣ2 0

V>Σ1
w

V>Σ2
w

λ

 =

0
0
c

 . (11)

The matrix BVΣ2 is of size 2 × (n − r). Therefore, if r < p − 2, i.e.
p − r > 2, the matrix in (9) will be rank-deficient and, consequently, the
solution will not be unique. The lemma is proved.

Since we are only interested in the case of a non-unique solution, we from
now on assume that r < p− 2.

The next lemma gives us a condition for a solution to be risk-free, i.e.,
w>Σw = 0.

Lemma 2.2. Let r < p − 2. Then w>Σw = 0 if and only if w = VΣ2y,
where VΣ2 is defined in the partition (7) and y ∈ Rp−r.

Proof. Using the SVD of Σ in (6) and (7), we have

w>Σw = w>VΣ1DΣ1VΣ
>
1 w = ξ>DΣ1ξ =

r∑
j=1

ξ2
jσj ,

where ξ = VΣ
>
1 w. Therefore, w>Σw = 0 implies ξ = 0 and VΣ

>
1 w = 0.

Since VΣ
>
1 VΣ2 = 0, we get w = VΣ2y. The other implication in the lemma

is obvious. The proof of the lemma is complete.
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Next, we show how to choose a risk-free solution with a minimal `2
norm. For this, we need yet another SVD decomposition. We introduce
Y = BVΣ2 ∈ R2×(p−r) and define its decomposition as

Y = UYDYV>Y, (12)

or in the reduced form,

Y = UY1DY1V
>
Y1
, (13)

where

VY =
[
VY1 VY2

]
, DY1 =

[
γ1 0
0 γ2

]
, γj > 0, j ∈ {1, 2}, (14)

and VY1 ∈ R(p−r)×2, VY2 ∈ R(p−r)×(p−r−2). Let N (A) stands for the null
space of the matrix A. We can now formulate our main theorem.

Theorem 2.1. Let r < p− 2 and VΣ2 is defined as in (7), Y = BVΣ2 and
VY2 is given as in (14). Then

w = VΣ2Y
+c + VΣ2x, x ∈ N (Y), (15)

is a solution to (1) and it gives zero risk. The minimum norm solution
among (15), or specifically, the solution to

min
w∈Rp

1

2
‖w‖22

s.t. w>Σw = 0

Bw = c,

(16)

is given as

wmin =
(
I− (VΣ2VY2)(VΣ2VY2)+

)
Y+c. (17)

Proof. From Lemma 2.2 the problem (1) simplifies to finding y ∈ Rp−r that
satisfies the equation

BVΣ2y = c, or equivalently, Yy = c, (18)

which is a system of two equations with p−r unknowns. It is straightforward
to see that any solution to (18) can be written in the following form

y = Y+c + x, x ∈ N (Y).

Then, as w = VΣ2y, we arrive at the expression in (15).
Next, we observe that x ∈ N (Y) is equivalent to x = VY2v, v ∈ Rp−r−2,

and therefore
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w = VΣ2Y
+c + VΣ2VY2v. (19)

Thus, the constrained optimization in (16) simply could be written as the
unconstrained problem

min
v∈Rp−r−2

1

2
‖VΣ2(BVΣ2)+c + VΣ2VY2v‖22. (20)

The linear least squares problem in (20) is overdetermined and has the
unique solution expressed as

v = −(VΣ2VY2)+ VΣ2 Y+ c. (21)

Finally, we insert (21) into (19) to obtain (17). The theorem is proved.

The computational complexity to calculate wmin in (17) is mainly due
to the SVDs of Σ, Y, and VΣ2VY2 . Since the SVD of an r1 × r2 matrix is
approximately 2r1r

2
2 + 11r3

2 (see [24]), we get a total cost of

NTOT = 13p3 + 4(p− r)2 + 11(p− r)3 + 2p(p− r − 2)2 + (p− r − 2)3.

An interesting special case is when r � p. Expanding factors we get

NTOT = 27p3 − 40p2r − 10p2 + 38pr2 + 12pr + 20p− 12r3 − 2r2 − 12r − 8

with leading term, the main computational cost, 27p3. Thus, we have a
complexity of order O(p3), and for large p it is of interest to use an iterative
method of lower complexity. In the next section, we will present such an
iterative method that generally has O(p2) in complexity.

Another aspect is that an iterative method can be used to get an approx-
imate solution just stopping the iterations early as well as producing a set
of possibly interesting portfolios.

3 The Discrete Functional Particle Method

Our approach for solving optimization problem stated in (1) iteratively is the
Discrete Functional Particle method (DFPM), see [16] and [15] for details.
DFPM is based on formulating a damped dynamical system and we will show
that the stationary solution is the solution to (1) or with a specific initial
value the solution given in (16).

This method can either be formulated by first eliminating the constraints
in (1) or formulating an additional dynamical system for the constraints. We
choose the former here and leave the latter for future research.
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The null space of B can be formulated using the SVD decomposition

B = UB

[
DB1 0

0 0

] [
V>B1

V>B2

]
,

where VB2 ∈ Rp×(p−2) spans N (B). Thus, any solution to (1) can be written
in the form

w = VB2u + g, (22)

where g is any solution to Bw = c. Since B has only two rows, the matrix
VB2 can be found by doing a reduced (or thin) SVD of B or a reduced
QR-decomposition of B> together with Gram-Schmidt orthogonalization at
a cost of order O(p2).

Let, e.g., g = B+c, then (1) can be written as

min
u

1

2
(VB2u + g)>Σ (VB2u + g), (23)

or
min

u

(
1

2
u>V>B2

Σ VB2u + g>Σ VB2u +
1

2
g>Σg

)
. (24)

Calculating g can be done efficiently by a QR-decomposition of B> with
a cost of O(p2). We can exclude the last term in (24) as it is constant and
introduce

M = V>B2
Σ VB2 and d = V>B2

Σ g, (25)

to simplify the notation. Finally, we get the unconstrained problem

min
u∈Rp−2

1

2
u>Mu + u>d. (26)

Here, M ∈ R(p−2)×(p−2) and d ∈ Rp−2.
The idea is to solve (26) by finding the stationary solution, say u∗, to

the second order damped dynamical system

d2u

dt2
+ η

du

dt
= −d−Mu, η > 0,

u(0) = u0,
du

dt
(0) = v0.

(27)

We remind the reader about our assumption on the rank of Σ, i.e., r <
p− 2. This implies that M is rank-deficient as well with the rank s ≤ r and
a solution to (26) is not unique. We show here that as t→∞, the solution
to (27) converges to u∗ which corresponds to a zero risk solution w via (22).
Moreover, we show that there is a choice of the initial condition u0, that
ensures that u∗ converges to the risk-free minimum norm solution. Let us
note that if Σ is positive definite, then so is M, giving u∗ = −M−1d. We
refer to [16] for this special case.
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3.1 Stationary solutions

Let the SVD of M ∈ R(p−2)×(p−2) of rank s be defined as

M = VMDMV>M = VM1DM1VM
>
1 (28)

where

VM =
[
VM1 VM2

]
, DM =

[
DM1 0

0 0

]
, (29)

VM ∈ R(p−2)×(p−2), VM1 ∈ R(p−2)×s, VM2 ∈ R(p−2)×(p−2−s), D ∈ R(p−2)×(p−2),
and DM1 ∈ Rs×s. Here, the diagonal matrix DM1 contains the non-zero sin-
gular values of M, i.e., DM1 = diag(γ1, . . . , γs). Substituting (28) into (27)
and introducing the change of variables z = V>Mu, we transform (27) into

d2z

dt2
+ η

dz

dt
= −V>Md−DMz. (30)

From (25), d ∈ R(V>Σ2
) and as R(V>Σ2

) = R(M) = R(VM1), we have
d = VM1h for some h ∈ Rs. As V>MVM1 = [I 0]>, (30) can be partitioned
as

d2z1

dt2
+ η

dz1

dt
= −h1 −DM1z1, (31a)

d2z2

dt2
+ η

dz2

dt
= 0, (31b)

where the sizes of the partitions should be evident. System (31) was already
considered in [16] but the following results are new.

Lemma 3.1. Let u0 and v0 be fixed initial conditions. Then a solution of
(27) approaches to

u∗ = VM1D
−1
M1V

>
M1d + VM2V

>
M2

(
u0 +

1

η
v0

)
. (32)

Proof. A solution of (31a)-(31b) is given as

z1(t) = e−Λ1ta1 + e−Λ2ta2 −D−1
M1h1,

z2(t) = a3 + a4e
−ηt,

(33)

with ai, i = 1, . . . , 4, that are given by the initial conditions,

Λj =

−η/2±
√
η2/4− γ1 . . . 0
...

. . .
...

0 . . . −η/2±
√
η2/4− γs)


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where index j refers to the two different roots. Further, we have

u(t) = VMz(t) = VM

[
z1(t)
z2(t)

]
= VM1z1(t) + VM2z2(t). (34)

Since V>M2
VM1 = 0 and VM

>
2 VM2 = I, we have

V>M2
u(t) = V>M2

VM1z1(t) + V>M2
VM2z2(t) = z2(t). (35)

Inserting the initial condition we conclude that

z2(t) = V>M2

(
u0 +

1

η
v0

)
− 1

η
V>M2

v0e
−ηt,

and, therefore,

u∗ = lim
t→∞

VMz(t) = VM

[
−D−1

M1h1

V>M2

(
u0 + 1

ηv0

)] . (36)

After completing the matrix multiplication, we obtain the result.

Note that u∗ in (32) consists of two terms lying in perpendicular sub-
spaces. Therefore, a simple way of decreasing the norm of u∗ is to choose
u0 + v0/η = 0 but that does not necessarily give the smallest w. Next, we
establish which initial conditions would lead to the minimal norm w.

Given u∗, we can easily calculate

w∗ = VB2u
∗ + g. (37)

We see from Lemma 3.1 that the stationary solution is dependent on the
initial condition u0. Therefore, we are able to choose u0 such that the norm
of w∗ is as small as possible.

Theorem 3.1. Let M be of rank s ≤ r, w∗ given by (37) and (32), F =

VB2VM2VM
>
2 , and f = VB2

(
VM1D

−1
M1

V>M1

)
d + g. Then

min
(u0,v0)

||w∗||2, (38)

is attained at
u0 +

1

η
v0 = −F+f (39)

and it is equal to
w∗+ = (I− FF+)f .

In addition, w∗+ = wmin, where wmin is given by (17), i.e., w∗+ solves
(16).
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Proof. For F and f chosen as above and (32), we have

w∗ =VB2

(
VM1D

−1
M1

h + VM2V
>
M2

(u0 +
1

η
v0)

)
+ g

=F

(
u0 +

1

η
v0

)
+ f .

(40)

The norm is then

||w∗||2 =

∥∥∥∥F(u0 +
1

η
v0

)
+ f

∥∥∥∥
2

. (41)

Consequently, we get (39) and calculate

w∗+ = −F

(
u0 +

1

η
v0

)
+ f = FF+f − f = (I− FF+)f .

To prove the last claim, we notice that w∗ lies in the null space of Σ. Fur-
thermore, it satisfies Bw = c by construction. Since, w∗+ is minimal, it
solves (16). It completes the proof of the theorem.

Remark 3.1. From Theorem 3.1 one choice of the initial condition is

u0 = −F+f and v0 = 0,

which we will assume for simplicity further on.

While Theorem 3.1 gives a way to find an optimally small w∗ it also
requires the SVD of Σ and M which increase the computational complexity
considerably. However, we would like to emphasise that any choice of u0 and
v0 results in a risk-free solution. Indeed, numerical tests in Section 4 show
that DFPM is a competitive method in many cases.

3.2 Symplectic Euler with optimal parameters

In order to solve (27) through an numerical iterative method, we start by
writing (27) as the first order system

du

dt
= v,

dv

dt
= −ηv − d−Mu.

(42)

with u(0) = u0 and v(0) = 0. The latter is assumed for simplicity and does
not affect further analysis, see also Remark 3.1.

We first note that (42) may be numerically solved with a small error
using any stable and consistent numerical method if the time step4t is small
enough. However, we are only interested in reaching the stationary solution
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as efficiently as possible. As shown in [15], an excellent choice for this purpose
is the symplectic Euler method. Thus, for some initial conditions u(0) = u0

and u̇(0) = v0 we use the symplectic Euler method on (42) defined as

vk+1 = (I −4tη)vk −4t(d + Muk),

uk+1 = uk +4tvk+1 , k = 0, 1, ...,
(43)

or more concisely ξk+1 = Gξk + b, where

G =

[
I−4t2M 4t(1−4tη)I
4tI (1−4tη)I

]
, ξk =

[
vk
uk

]
, b =

[
−4t2d
−4td

]
. (44)

We emphasize that symplectic methods are very well suited for the case when
M has non-negative eigenvalues, see [15]. In order to ensure fast convergence
of the method one must choose a time step 4t and damping factor η such
that ‖G‖ is as small as possible.

Theorem 3.2. Assume that M has rank s and let γi, i = 1, . . . , s, denote
its non-zero singular values with γ1 ≥ · · · ≥ γs. Then symplectic Euler (44)
with parameters

4t =
2

√
γs +

√
γ1
, η =

2γsγ1√
γs +

√
γ1

(45)

is convergent, i.e.,

lim
k→∞

uk = −VM1DM
−1
1 VM

>
1 d + VM2V

>
M2

u0. (46)

Moreover, 4t and η are optimal in the sense that they are the solution to
the problem

min
∆t,η

max
1≤i≤2p

|µi(G)|,

where µi(G) are the eigenvalues of G.

Proof. By using (28), we define the transformations ũk = VMuk and ṽk =
VMvk resulting into ξ̃k+1 = G̃ξ̃k + b̃, where

G̃ =

[
V>M 0
0 V>M

]
G

[
VM 0
0 VM

]
=

[
I−∆t2 DM ∆t(1−∆t η) I

∆tDM (1−∆t η) I

]
,

and obvious similar definitions of ξ̃k+1, b̃. Since, γs+1 = · · · = γp−2 = 0 we
can partition G̃ further using the reduced SVD of M so that

G̃ =


I−∆t2 DM1 0 ∆t(1−∆t η) I 0

0 I 0 ∆t(1−∆t η) I
∆tDM1 0 (1−∆t η) I 0

0 0 0 (1−∆t η) I

 .
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Due to the structure of G̃, we can solve for the last p− 2− s components of
ũk, denoted by ũ

(k)
2 , and eliminate the corresponding elements in ṽk (that

will play no further role). In other words the iterations ξ̃k+1 = G̃ξ̃k + b̃ will
separate into one part with the iteration matrix

G̃1 =

[
I−∆t2 DM1 ∆t(1−∆t η) I

∆tDM1 (1−∆t η) I

]
and the constant part ũ

(k)
2 now to be determined. We have

uk = VMũ(k) = VM

[
ũ

(k)
1

ũ
(k)
2

]
= VM1ũ

(k)
1 + VM2ũ

(k)
2 (47)

that gives

V>M2
ũ(k) = V>M2

VM1ũ
(k)
1 + V>M2

VM2ũ
(k)
2 = ũ

(k)
2 (48)

since V>M2
VM1 = 0 and VM

>
2 VM2 = I. Inserting the initial condition we

conclude that ũ
(k)
2 = V>M2

u0 and, therefore,

u∗ = lim
k→∞

VMũ(k) = lim
k→∞

(
VM1ũ

(k)
1 + VM2ũ

(k)
2

)
=VM2V

>
M2

u0 + lim
k→∞

VM1ũ
(k)
1 .

(49)

Following already known results in [15], we get

lim
k→∞

VM1ũ
(k)
1 = −VM1DM

−1
1 VM

>
1 d

which concludes the proof.

Attaining estimates of γ1/γs and the rank for the optimal parameters
can be done by standard condition and rank estimators at a cost of O(p2),
[26].

4 Simulation Study

There are several aspects that we illustrate in this simulation study. In
Section 4.1 we compare the outcomes of three different approaches of finding
a portfolio, namely, the analytic Range Space (RS), see (3), and Null Space
Minimum Norm (NSMN), see (17), approaches, and the iterative DFPM with
zero initial value u0 = 0, see Section 3. In particular, we investigate how the
portfolio risk and portfolio weights’ norm vary for each method depending
on the problem size, rank of Σ, and its condition number. In Section 4.2
we touch upon robustness of these different approaches in relation to rank
underestimation due to the sampling of Σ.
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The setup for the simulation study is as follows. Each element of the
mean vector µ is drawn from the uniform distribution on the interval [−0.01, 0.01].
The expected rate of return on the portfolio q is equal to the return on
a naive equal-weighted (EW) portfolio, i.e., q = 1>µ/p. The population
covariance matrix Σ of rank r was obtained as Σ =

∑r
i=1 xix

>
i , where

xi ∈ N(0, I), i = 1, . . . , r, i.e., xi ∈ Rp are normally distributed vectors with
mean vector 0 and covariance matrix I. In Section 4.1, the condition number
of Σ, defined by κ = σ1/σr, was then set through a similarity transformation.

In order to define the convergence criterium we set V (u) = u>Mu/2 +
u>d and ∇V (u) = Mu + d. Then, given a tolerance ε we end the iterations
at iteration k if ‖∇V (uk)‖2/V (uk) < ε. Here, we set the tolerance ε = 10−6.
In accordance with [15], the number of iterations is proportional to the square
root of the condition number, which is observed in all the numerical tests.

In order to estimate method performances, we solve 1000 problems with
random matrices Σ for a specific set of p, r and κ, and random µ. The results
presented as scatter- and box-plots. In addition we provide the tables with
mean estimates for the norm and the risk.

4.1 Comparison of the RS, NSMN, and DFPM solutions

Here, we solve 1000 problems (1) with random matrices Σ and µ for a specific
set of p, r and κ with three different approaches: The RS and NSMN meth-
ods, and DFPM. For the DFPM we set the initial value u0 = 0. Thus, the
method provides an approximation of a null space solution (and, therefore,
risk-free solution), but is not expected to converge to the NSMN solution.

We consider four different cases of the condition number κ = σ1/σr ∈
{1.01, 102, 103, 105}. The dimension of the portfolio, p, was set to 70 and 140,
while the rank r of the covariance matrix Σ is 60. More tests were performed
with other choices of p and r. However, as the results were very similar to
the ones presented here, we do not include them.

In Figures 1 and 2 we plot the portfolio weights’ norm vs the portfolio
risk for different solutions types and different condition numbers. In Figures
3 and 4 the norm and the corresponding risk as box plots are displayed. The
red boxes correspond to the NSMN solution, yellow to the DFPM solutions,
and blue to the RS solutions.

Our first observation is that the risk - norm distributions corresponding
to the NSMN and DFPM solutions are not sensitive to the condition number
κ, which is not the case for the RS approach. For the RS solution, the larger
condition number gives a lower risk and higher norm variance. Secondly, the
norm distribution for the NSMN approach and DFPM is flatter for a lower
p to r ratio (p = 70, r = 60), see Figure 1.

Figure 3 illustrates well the trade off between getting a smaller norm
and smaller risk. While the the RS solution norm is the smallest, among
the approaches, for the lower p to r ratio (p = 70, r = 60), the risk is the
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highest. This is rather expected, as the NSMN solution minimizes the norm
among zero-risk solutions and the DFPM solution is only approximating a
risk-free solution without minimizing the norm. Interestingly, for the high p
to r ratio (p = 140, r = 60), see Figure 4, the NSMN solution gives both the
smallest norm and zero risk. The DFPM solution norm is typically larger
than the norm of the NSMN solution, which is expected.

In Table 1, the portfolio weights’ norm and portfolio risk are shown as
the mean of the 1000 randomly generated problems with p = 70 and r = 60
for four different cases of κ. Similarly, in Table 2 we list the mean estimation
of the norm and risk for p = 140 and r = 60, for the four different κ. We
would like to point out here, that the risk for both DFPM and NSMN is
close to zero and of the order of computational accuracy (floating double
precision). For that reason, the computed risk can be negative, see Tables 1
and 2. In order to use logarithmic scale in the plots, we plot absolute values
of the computed risk in Figures 3 and 2.

In Figure 5 we give an example of the portfolio weights’ norm and portfo-
lio risk for the DFPM iterations. Here, the smallest norm is not attained at
the stationary point, but at an intermediate iteration where the risk is rather
high. Further note that there is a consistent relation between the norm of
weights and risks for the different initial values; blue is right of black is right
of red. From other numerical experiments, this seems to be generally the
case but we have not been able to prove that.

4.2 How rank deficiency of Σ effects different solutions

Let Σ have the rank r < p− 2. The reason for the rank deficiency could be
(i) low sampling number N = r + 1 compared to the portfolio size, or (ii)
collinearity of data samples.

Thus, assume that Σr is a covariance matrix obtained from the limited
data, and ΣR is the true covariance matrix, then Σr → ΣR if the number
of samples N → ∞. Here r ≤ R ≤ p, and r < p − 2. In another words,
the matrix Σ = Σr in (1) is an (under-sampled) approximation of ΣR, and
neither w in (3) nor (17) are true solutions of the problem when Σ = ΣR.

Let wr denote a solution to (1) with Σ = Σr. We computed the risk
associated with wr, w>r ΣRwr to see if any of the RS, NSMN or DFPM
solutions consistently give higher risk.

Here, the matrices Σr and ΣR obtained as follows. Assume xi ∈ N(0, I), i =
1, . . . , R, i.e., xi ∈ Rp are normally distributed vectors with mean vector
0 and covariance matrix I. Here we perform a simulation study where
Σr =

∑r
i=1 xix

>
i and ΣR = Σr +

∑R
i=r+1 xix

>
i . We do not monitor the

condition numbers for Σr and ΣR since we do not consider it important
enough to perform the theoretical derivation for that, which can be quite
elaborate. In Figure 6, we plot the risk associated with different solutions
for r = 60, p = 140, and varying R. We chose R ∈ [61, 80] to illustrated
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what seems to be a generic case for this construction of Σr and ΣR. That
is, solution obtained using the NSMN theoretical approach gives the small-
est risk that other methods as for any R. When R − r is small, DFPM
method with zero initial guess gives better results, but as R increases, the
method becomes less reliable. Finally, as R grows, the risk is increasing for
all considered methods.

In Figure 7, we plot the relative risk, that is, w>r ΣRwr/‖wr‖2. This plot
illustrates that the higher risk obtained using the DFPM seems to be due to
the larger magnitude of the weights w.

We conclude that all methods do have a predictive capacity, i.e., the
original weight vector does not give a much larger risk when adding non-
correlated data.

5 Empirical Study

To get a better understanding of the results obtained in Sections 2 and 3,
we consider examples with real datasets. In this study, we compare the
performance of NSMN, DFPM, RS and EW portfolios. We make use of
the log return weekly data from S&P 500 of 250 stocks for the period from
2016W34 to 2021W11. The analysis is performed for different sample sizes
such as N ∈ {30, 60, 120, 240}. The expected rate of return on the portfolio
q is set to the return on the equal-weighted portfolio. For the DFPM, we set
the same the convergence criterion, the tolerance and the maximum number
of iterations as in Section 4.

Since the mean vector µ and covariance matrix Σ of the logarithmic
stock returns are unknown, we should estimate them using historical data.
For that, we use the corresponding sample estimators. In this case, the sam-
ple estimator of the covariance matrix Σ is singular because the number of
stocks p = 250 is greater than the number of observations in the sample
N ∈ {30, 60, 120, 240}. Having estimated µ and Σ, we can build optimal
portfolio strategies using NSMN, DFPM and RS methods. These methods
are compared with naive EW portfolio strategy. In Table 3, we present the
values of the portfolio weights’ norm and portfolio risk for four approaches.
The portfolio weights’ norm of RS and EW approaches is lower than for
NSMN and DFPM for all considered sample sizes. The highest portfolio
weights’ norm is observed for DFPM except for the case N = 240 where the
NSMN approach has a slightly higher norm. For the portfolio risk, solutions
obtained via NSMN and DFPM approaches deliver much lower portfolio risk
in comparison with RS and EW methods. Moreover, NSMN and DFPM at-
tain risks close to zero for all considered cases. It can be observed that some
values of the portfolio risk obtained via the NSMN approach are negative.
This happens due to numerical errors. Overall, NSMN and DFPM strate-
gies have much lower portfolio risk and higher portfolio weight’s norm in
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comparison with RS and EW strategies.

6 Conclusions

We have analyzed the classical Markowitz’ problem for a rank-deficient co-
variance matrix assuming the solutions lie in the nullspace. Thus, the solu-
tions will be risk-free but not unique. We derive a unique risk-free solution
that has minimum norm through the use of several SVD decompositions
which is our main theoretical result. Our analysis then fills a gap so that all
possible relevant solutions of the classical Markowitz’ problem are derived
and analysed. We also show the dependence on the size of the risk and the
norm of the weights depending on the condition number of the covariance
matrix (quotient between largest and smallest non-zero singular value). Fi-
nally, we illustrate the fairly strong predictive capacity of our methods, i.e.,
in most cases they still give solutions with a smaller risk than the range space
solution when adding more (non-correlated) data to the model.

The other part of our results is a thorough analysis of the iterative method
DFPM for the rank-deficient case. This was partly covered in [16] but with-
out a strict convergence analysis. Here, we show that DFPM always con-
verges to a risk-free solution. Further, we derive an initial condition such
that DFPM convereges to the unique minimum norm solution. Numerical
results verify the theoretical findings through simulations on random gener-
ated problems as well as real world data. Moreover, the numerical results
show several advantages using DFPM such as being more efficient for fairly
well conditioned problems and the possibility to pick any one of the iterates
that for some reason has preferable properties.
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Figure 1: Scatter plot of portfolio weights’ norm vs portfolio risk for three
different approaches, with p = 70, r = 60, and four different condition
numbers.
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Figure 2: Scatter plot of portfolio weights’ norm vs portfolio risk for three
different approaches, with p = 140, r = 60, and four different condition
numbers.

Figure 5: Iterates from DFPM with three different choices of the initial
conditions for p = 70, r = 60 and κ = 103.
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Figure 3: Boxplot of the portfolio weights’ norm and related portfolio risk,
for the test case I. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted individually using the
’+’ symbol.
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Figure 4: Boxplot of the portfolio weights’ norm and related portfolio risk,
for the test case II. On each box, the central mark indicates the median,
and the bottom and top edges of the box indicate the 25th and 75th per-
centiles, respectively. The whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted individually using the
’+’ symbol.
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Norm Risk
NSMN DFPM RS NSMN DFPM RS

case 1 (κ = 1.01) 3.58× 10−1 4.32× 10−1 1.29× 10−1 2.95× 10−19 1.04× 10−14 1.67× 10−2

case 2 (κ = 102) 3.57× 10−1 4.31× 10−1 1.99× 10−1 1.95× 10−19 3.84× 10−15 8.20× 10−4

case 3 (κ = 103) 3.60× 10−1 4.31× 10−1 2.43× 10−1 −1.09× 10−19 3.27× 10−15 1.26× 10−4

case 4 (κ = 105) 3.60× 10−1 4.33× 10−1 3.16× 10−1 4.77× 10−20 1.06× 10−12 2.26× 10−6

Table 1: Mean estimation (out of 1000 random simulations) of the portfolio
weights’ norm and the corresponding portfolio risk, for different condition
numbers. Here p = 70 and r = 60.

Norm Risk
NSMN DFPM RS NSMN DFPM RS

case 1 (κ = 1.01) 1.13× 10−1 5.40× 10−1 1.31× 10−1 −6.09× 10−21 1.05× 10−16 1.71× 10−2

case 2 (κ = 102) 1.13× 10−1 5.40× 10−1 2.00× 10−1 4.84× 10−21 5.64× 10−16 8.33× 10−4

case 3 (κ = 103) 1.12× 10−1 5.39× 10−1 2.46× 10−1 −1.14× 10−21 6.63× 10−16 1.30× 10−4

case 4 (κ = 105) 1.12× 10−1 5.41× 10−1 3.19× 10−1 −1.59× 10−22 1.16× 10−15 2.34× 10−6

Table 2: Mean estimation (out of 1000 random simulations) of the portfolio
weights’ norm and the corresponding portfolio risk„ for different condition
numbers. Here p = 140 and r = 60.

N
Norm Risk

NSMN DFPM RS EW NSMN DFPM RS EW

30 0.2070 0.8580 0.1689 0.0632 −8.2309× 10−21 1.6626× 10−18 2.9360× 10−4 5.1693× 10−4

60 0.3534 0.7191 0.2699 0.0632 4.2065× 10−20 6.2424× 10−17 2.1292× 10−4 0.0020

120 0.5728 0.6665 0.4813 0.0632 −1.0835× 10−19 1.1570× 10−14 6.2364× 10−5 0.0011

240 3.9050 3.8987 2.1748 0.0632 −5.6200× 10−20 2.0725× 10−11 3.8010× 10−6 6.4904× 10−4

Table 3: Norm and risk of p = 250 stocks and different sample sizes N ∈
{30, 60, 120, 240} obtained using NSMN, DFPM, RS and EW approaches.
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Figure 6: Risk w>r ΣRwr calculated with wr obtained using different meth-
ods: RS, NSMN, and DFPM. Here r = 60, p = 140, and R varies between
61 and 80. Number of random simulations is 1000.
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Figure 7: Relative risk w>r ΣRwr/‖wr‖2 calculated with wr obtained using
different methods: RS, NSMN, and DFPM. Here r = 60, p = 140, and R
varies between 61 and 80. Number of random simulations is 1000.
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