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ABSTRACT

In this paper, we investigate the distributional properties of the estimated tangency

portfolio (TP) weights assuming that the asset returns follow a matrix variate closed

skew-normal distribution. We establish a stochastic representation of the linear com-

bination of the estimated TP weights that fully characterize its distribution. Using

the stochastic representation we derive the mean and variance of the estimated

weights of TP which are of key importance in portfolio analysis. Furthermore, we

provide the asymptotic distribution of the linear combination of the estimated TP

weights under the high-dimensional asymptotic regime, i.e. the dimension of the

portfolio p and the sample size n tend to infinity such that p/n → c ∈ (0, 1). A

good performance of the theoretical findings is documented in the simulation study.

In the empirical study, we apply the theoretical results to real data of the stocks

included in the S&P 500 index.
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1. Introduction

Modern portfolio theory, introduced by Markowitz (1952), has been a pinnacle of in-

vestment theory since its introduction in the 1950s. The problems posed by Markowitz

aim to find a portfolio that is characterized by the investor’s belief in risk and return.

In an optimal fashion, the obtained portfolio is then used by the investor to allocate

her/his wealth. Tangency portfolio (TP) is one of these optimal portfolios which de-

termines how an investor should allocate the wealth between the risk-free rate and

some risky assets. When an investor tries to construct a portfolio, either there is a

need to specify all the parameters in the portfolio allocation procedure or to make use

of data to estimate them. We believe that the latter is more common than the former



and by doing so we introduce estimation uncertainty into the allocation process. This

uncertainty is paramount to quantify for the investors since their expectations might

not match with what the portfolio can deliver. It is also essential to communicate to

stakeholders and assert compliance to regulatory frameworks which makes analytic

results more compelling as these are easy to reason about.

The implications of estimation uncertainty in modern portfolio theory, in general,

and in TP, in particular, have been extensively researched in the literature. The re-

search dates back as far as late 90s, see e.g. Britten-Jones (1999), where the statistical

test for the TP weights is derived. Okhrin and Schmid (2006) continued on this path

and derived the asymptotic distribution for the portfolio weights. The moments of the

TP weights were then later characterized by Kan and Zhou (2007) under the assump-

tion of normally distributed returns. Bodnar and Okhrin (2011) derived statistical

tests for the composite hypothesis of the TP weights and Kotsiuba and Mazur (2016)

approximated the density using Taylor expansion. Characterising uncertainty fits well

into the Bayesian framework and along this line of research, in Bauder et al. (2018)

distributional properties of the TP weights are studied.1

Recent literature has continued to build upon the previously mentioned works. Bod-

nar et al. (2019) extended the works of Okhrin and Schmid (2006) and Bodnar and

Okhrin (2011) to the scenario when both the population and the sample covariance

matrices are singular. This can be seen as a high-dimensional setting where the sample

size is comparable, or smaller, than the portfolio size. Recently this topic has gained

a lot of attention and a large number of different approaches have been taken to con-

struct statistical tests, characterizing the distribution of the TP weights and functions

thereof. Bodnar et al. (2021) derived the distribution in small and large dimension for

a large class of portfolios, including the normalised TP weights. In Muhinyuza et al.

(2020) and Muhinyuza (2020) the statistical test for the TP in small and large dimen-

sion is derived to deduce whether the portfolio is efficient or not. Karlsson et al. (2020)

delivered the high-dimensional asymptotic distribution of the estimated TP weights

and high-dimensional asymptotic test on the linear combination of the elements of

TP weights. Javed et al. (2021) obtained analytical expressions for the higher order

moments of the estimated TP weights. In Alfelt and Mazur (2020), the mean and

variance of the estimated TP weights are studied when the sample covariance matrix

is singular.

When the influence of uncertainty is to be understood in a finite-sample setting,

there is usually a need for a statistical model to account for it. The chosen model

should take into account the characteristics of asset returns, which are usually known

as the stylized facts (see e.g. Cont (2001)). One such characteristic is skewness, which

is quite often present in low-frequency data, such as weekly, monthly or quarterly,

1In Bayesian framework, the posterior distribution of the TP weights is proportional to the product of (sin-

gular) Wishart matrix and (singular) normal vector under the assumption of normally distributed data. The
distributional properties of these products are well studied by Bodnar et al. (2013, 2014), Bodnar et al. (2018),

Bodnar et al. (2019).
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and has been documented in the literature (see e.g. Kraus and Litzenberger (1976),

Alles and Kling (1994) or Peiro (1999)). Following this line of research, Bodnar and

Gupta (2015) incorporated skewness into a portfolio allocation problem through the

Closed Skew-Normal (CSN) model. This model can incorporate many different aspects

of asset returns due to its flexible parameter structure.

Along this direction, in this article, we consider the CSN model for assets returns

with a focus on TP. Our contribution to the existing literature is as follows. First, we

derive a stochastic representation of the linear combination of the TP weights that is a

computationally effective tool for studying distributional properties. Second, we deliver

closed-form expressions for the mean and variance of the TP weights. The moments

are vital for quickly understanding the implications of estimation uncertainty in a

portfolio. A plug-in or sample version of the TP is one realisation from its distribution.

The moments would help quantify the overall uncertainty in the point estimate. Third,

we obtain the asymptotic distribution of the linear combination of the TP weights

under a high-dimensional asymptotic regime, i.e. both portfolio size p and sample

size n tend to infinity such that p/n → c ∈ (0, 1). There have been a large number of

portfolios derived to constrain higher order moments of the portfolio. For the interested

reader, we recommend Harvey et al. (2010) and the references therein. However, one

can see this as an entirely different problem since it aims to constrain the portfolio

choice allocation problem. Our contribution helps investors to understand the influence

of skewness, and not constrain it.

This paper is organized as follows. In Section 2, we briefly introduce the CSN model.

Section 3 provides a framework for TP within the domain of the CSN model together

with numerous results for its sample counterpart in small and high dimension. In

Section 4, we study the performance of the theoretical results through simulation and

empirical studies. We finish the paper with discussion in Section 5.

2. Skew-normal model

In this section, we will briefly present the matrix-variate closed skew-normal (CSN)

distribution and discuss its properties, especially in connection to asset returns. For

this, we need some notation, with which we start first. Let 1k denotes a k-dimensional

vector of ones, while 0k stands for a k-dimensional vector of zeros. We would note that

the vectors in this work are identified with single-column matrices. Let Ik stands for the

identity matrix of size k. The symbol ⊗ stands for the Kronecker product and vec(A)

denotes the vec operator, which vectorizes a matrix through stacking its columns,

e.g. if A is a k× p matrix then vec(A) = (a11, . . . , ak1, a12, . . . , ak2, . . . , a1p, . . . , akp)
⊤.

Furthermore, let
d
= denotes the equality in distributions. Finally, let A ≻ 0 implies

that A is symmetric and positive definite.
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Let

X =


x11 . . . x1p
...

. . .
...

xn1 . . . xnp

 = (x̃1, . . . , x̃p) =


x⊤
1
...

x⊤
n


be the n× p observation matrix of the asset returns, where each observation x̃i is a n-

dimensional vector of returns for the i:th asset, i = 1, . . . , p, while xt is a p-dimensional

vector of the asset returns at time point t, t = 1, . . . , n.

Throughout the paper we assume that the matrixX is random and follows a matrix-

variate CSN distribution (see e.g. Domı́nguez-Molina et al. (2007)), denoted by X ∼
CSN n,p;1,1(1n⊗µ⊤, In⊗Σ,1⊤n⊗e⊤, 0, v), where µ is a p-dimensional vector,Σ is a p×p

symmetric positive definite matrix, 1n is a n-dimensional vector, e is a p-dimensional

vector and v is a strictly positive number.

To discuss the parameters in detail, the density function of X is expressed in terms

of vec(X⊤) and is given by

fvec(X⊤)(y) = 2ϕnp(y; vec(1
⊤
n ⊗ µ),Σ⊗ In)Φ((e

⊤ ⊗ 1⊤n )(y − vec(1⊤n ⊗ µ)); 0, v),

(2.1)

where ϕk(y;m,A) and Φk(y;m,A) stand for the density function and cumulative dis-

tribution function, respectively, of the k-dimensional normal distribution with mean

m and covariance matrix A. The density function of vec(X⊤) presented in (2.1) corre-

sponds to the density function of multivariate skew-normal distribution considered by

Arellano-Valle and Azzalini (2006). If there is no skewness, i.e. if e = 0p, then it leads

us to the matrix-variate normal distribution with mean matrix 1n⊗µ⊤ and covariance

matrix In⊗Σ denoted by Nn,p(1n⊗µ⊤, In⊗Σ). The parameter v is harder to reason

about from the density since it is part of the CDF of the normal distribution. Due

to Proposition 2.1 Domı́nguez-Molina et al. (2007) the CSN distribution can also be

written by a stochastic representation as

vec(X⊤)
d
= vec(1⊤n⊗µ)+

(
(In ⊗Σ)−1 +

(1n ⊗ e)(1⊤n ⊗ e⊤)

v

)−1/2

z+
1n ⊗Σe√
v + ne⊤Σe

|z0|,

(2.2)

where z ∼ Nnp (0np, Inp) and z0 ∼ N (0, 1); moreover, z and z0 are independent. The

stochastic representation makes it easier to reason about v. The random variable z0 is

latent and represents the distortions that the considered data gets to experience. From

the stochastic representation, we can actually see that the parameter v represents the

absence of the distortions. The larger it becomes, the smaller the skewness will be.

As mentioned earlier, the CSN distribution is known to capture some of the dy-

namics and stylized facts that asset returns are known to exhibit. Specifically, the
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parameter vector e takes care of the skewness of the asset returns and its influence

is present in both the mean and the variance. The larger it becomes the more dis-

persed the values of X will be. Depending on the sign of e the mean will also change

accordingly.

The flexibility of the matrix-variate CSN distribution can be seen from these pa-

rameters. Given that our asset return distribution follows the stochastic representation

(2.2) we have from Bodnar and Gupta (2015, Section 2), that the covariance for n dif-

ferent observations of ith asset class x̃i is equal to

Cov[x̃i] = σiiIn − 2

π

(e⊤Σap;i)
2

σ2
ii(v + ne⊤Σe)

1n1
⊤
n ,

where σii is the ith diagonal element of Σ and ap;i = (0, . . . , 0, 1, 0, . . . , 0)⊤. The non-

diagonal elements of the matrix Cov[x̃i] are non-zero and, therefore, the elements of x̃i

are dependent. For our special case of the matrix-variate CSN distribution, the model

is stationary, since

E[xt] = µ+

√
2

π
(v + ne⊤Σe)−1/2e,

Var[xt] = Σ− 2

π

1

v + ne⊤Σe
ee⊤,

are independent of time.

3. Tangency portfolio under the skew normality

In this section, we will construct the TP as well as derive its properties using the

statistical model described in Section 2. Let x denotes the vector of asset returns with

mean vector η and covariance matrix Ψ, while rf stands for the return on the risk-free

asset, which can be the interest rate of a risk-free bond or any other risk-free contract.

Let w = (w1, w2, . . . , wp) denotes any vector of portfolio weights where each element

wi represents the amount allocated in the i:th asset.

Mean-variance portfolios have been extensively studied since their introduction in

Markowitz (1952). The solution to these classical portfolio selection problems is opti-

mal in the sense that we can not expect to receive more return without accepting more

risk or vice versa. Many portfolio allocation problems give solutions which are opti-

mal in the same sense (see e.g. Bodnar et al. (2013)). However, one specific portfolio is

able to attain all mean-variance efficient portfolios, namely the solution to maximizing

the expected quadratic utility. Assuming that the investor wants to use the expected

quadratic utility to optimize the portfolio and include the risk-free asset, then the

investor will end up with what is known as the TP. The precense of a risk-free asset

rf , implies that any portfolio can be obtained by borrowing or placing a large enough
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portion on the risk-free asset. To see this, consider the common portfolio constraint

w0+w⊤1p = 1, where w0 is the amount allocated in the risk-free rate. The constraint

can be removed by considering w0 = 1−w⊤1p which implies that the portfolio return

distribution will be given by xp = w0rf +w⊤x = w⊤(x−rf1p)+rf . Investing nothing

in the market, e.g. w = 0, results in the investor receiving the risk-free rate as the

portfolio return. Consider now the expected payoff for such a portfolio, which is equal

to µp = w⊤(η − rf1p) + rf . The mean of the assets η are discounted according to

the risk-free rate. Risk in this scenario is then measured by the portfolio variance,

σ2
p = w⊤Ψw.

Using the expected quadratic utility, the portfolio can be obtained through the

following unconstrained optimization problem

max
w

[
µp −

α

2
σ2
p

]
,

where α > 0 is the risk aversion coefficient, representing investor’s risk profile. A large

risk aversion represents a risk averse investor. The solution is given by

wTP = α−1Ψ−1 (η − rf1p) .

In this paper, we focus on the linear combination of the TP weights expressed as

θ := l⊤wTP = α−1l⊤Ψ−1 (η − rf1p) (3.1)

where l is a p-dimensional vector of constants. Since both parameters η and Ψ are

unknown in practice, they need to be estimated from historical data. The most common

estimators are sample mean vector and sample covariance matrix that are given by

x̄ =
1

n

n∑
t=1

xt =
1

n
X⊤1n, (3.2)

S =
1

n− 1

n∑
t=1

(xt − x̄)(xt − x̄)⊤ =
1

n− 1
X⊤VX, (3.3)

where V = In − 1
n1n1

⊤
n is a symmetric idempotent matrix, i.e. V = V⊤ and V = V2.

The sample estimator of θ can then be expressed as

θ̂ := l⊤ŵTP = α−1l⊤S−1 (x̄− rf1p) . (3.4)

The choice of l can represent the investors’ preference and interest in the portfolio. It

can be used to understand what kind of contribution a certain asset has to the portfolio

performance or what performance one might achieve by excluding (or including) a

certain asset. It can also be used to examine future portfolio performance when l is
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the log-returns at time n+1. This can include stress testing the portfolio when l follows

a distribution which might be different from the current. This scenario requires some

additional attention as the vector l is now stochastic.

In the following proposition, we derive the distribution of the sample mean vec-

tor and sample covariance matrix when asset returns follow a matrix-variate CSN

distribution.

Proposition 3.1. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤n ⊗ e⊤, 0, v) with Σ ≻ 0.

Then it holds that

(i) x̄ ∼ CSN p,1(µ,
1
nΣ, ne⊤, 0, v);

(ii) (n−1)S ∼ Wp(n−1,Σ) (p-dimensional Wishart distribution when p ≤ n−1 and

p-dimensional singular Wishart distribution when p > n − 1 with n − 1 degrees

of freedom and the parameter matrix Σ);

(iii) x̄ and S are independently distributed.

Proof. Since (Ip⊗1⊤n ) is of full row rank, from Proposition 3.1 of Domı́nguez-Molina

et al. (2007) we have that

x̄ ∼ CSN p,1

(
µ,

1

n
Σ, ne⊤, 0, v

)
(3.5)

which shows the first part of the statement. To show the second and third parts of the

statement, we make use of the Sherman-Morrison formula (Harville, 1997, Corollary

18.2.10) on the matrix square root in (2.2) and get that

(
(In ⊗Σ)−1 +

(1n ⊗ e)(1⊤n ⊗ e⊤)

v

)−1/2

=

(
In ⊗Σ− (1n1

⊤
n )⊗ (Σee⊤Σ)

v + ne⊤Σe

)1/2

.

Hence, using Proposition 2.1 in Domı́nguez-Molina et al. (2007), it holds that

(n− 1)S
d
= X⊤VX

d
= Y⊤VY,

where Y ∼ Nn,p (1n ⊗ µ, In ⊗Σ). Therefore, we get that (n − 1)S ∼ Wp(n − 1,Σ).

Next, let us note that the stochastic representation of x̄ has the following form

x̄
d
= µ+

(
nΣ−1 +

n2

v
ee⊤

)−1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|,

where z̃ ∼ Np(0p, Ip) and z̃0 ∼ N (0, 1); moreover, z̃ and z̃0 are independent. Since

the distribution of S doesn’t depend on z̃0, we get that x̄ and S are independently

distributed. The proposition is proved.
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From Proposition 3.1 we get that the sample mean vector follows multivariate CSN

distribution, while the sample covariance matrix follows regular Wishart distribution

when p ≤ n − 1 and singular Wishart distribution when p > n − 1. It also holds

that the sample mean vector and sample covariance matrix are independent. In what

follows, we focus on the case when p ≤ n − 1 since it guarantees us that the sample

covariance matrix is not singular and its regular inverse can be taken. For the case

when p > n−1, there is a need for deriving distributional properties of the generalized

inverse Wishart matrix and it is not a trivial task.2

From Proposition 3.1 we can also see that the introduction of skewness in the data-

generating process will affect the mean of the estimators but not the sample covariance

matrix. That is, for investors using this type of model for investment, there is a need

to adjust their expectations since currently the sample mean is not centred around

the true mean and will experience shocks, modelled by the parameter e and v. The

influence of the latent variable scales with n, so the larger the sample size is, the

smaller the skewness parameter is expected to be.

3.1. Finite sample results

The sampling distribution of the TP can be derived in many ways. Here, we derive

the stochastic representation of the linear combination of the TP weights that fully

describes the distribution. This result is delivered in the next theorem.

Theorem 3.2. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤n ⊗ e⊤, 0, v) with n > p

and Σ ≻ 0. Also, let l be a p-dimensional vector of constants and Rl := Σ−1 −
Σ−1ll⊤Σ−1/l⊤Σ−1l. Then the stochastic representation of θ̂ = l⊤ŵTP is given by

θ̂
d
= α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 (3.6)

where ξ ∼ χ2
n−p, t0 ∼ t(n− p+ 1, 0, 1), and z̄ ∼ CSN p,1(µ− rf1p,

1
nΣ, ne⊤, 0, v) and

ξ, t0, z̄ are mutually independent.

Proof. From Proposition 3.1 we know that S and x̄ are independently distributed.

Consequently, it follows that the conditional distribution of θ̂|x̄ = x̄∗ is equal to the

distribution of θ̆ := α−1l⊤S−1z̄∗ with z̄∗ := (x̄∗ − rf1p). Moreover, θ̆ can be rewritten

2Additionally assuming that rank(Σ)=r ≤ n−1, Bodnar et al. (2016, 2017) and Bodnar et al. (2019) employed

the Moore-Penrose inverse in the portfolio context. One can also make use of different regularization methods
such as the ridge-type approach (Tikhonov and Arsenin, 1977), the Landweber-Fridman algorithm (Kress,

1999), the spectral cut-off approach (Chernousova and Golubev, 2014), the Lasso-type method (Brodie et al.,

2009), and an iterative method based on a second order damped dynamical systems (Gulliksson and Mazur,
2020; Gulliksson et al., 2021).
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as

θ̆
d
= α−1z̄∗⊤Σ−1z̄∗

l⊤S−1z̄∗

z̄∗⊤S−1z̄∗
z̄∗⊤S−1z̄∗

z̄∗⊤Σ−1z̄∗
. (3.7)

Now, we shall show that z̄∗⊤Σ−1z̄∗ · l⊤S−1z̄∗/z̄∗⊤S−1z̄∗ and z̄∗⊤S−1z̄∗/z̄∗⊤Σ−1z̄∗ are

independently distributed and derive their distributions.

Let M = (l, z̄∗)⊤ such that l ̸= z̄∗. Through the application of Theorem 3.2.11 in

Muirhead (1990), we obtain that

(n− 1)(MS−1M⊤)−1 ∼ W2

(
n− p+ 1, (MΣ−1M⊤)−1

)
,

and, through Theorem 3.4.1 in Gupta and Nagar (2018), we receive

(n− 1)−1MS−1M⊤ ∼ IW2

(
n− p+ 4,MΣ−1M⊤

)
,

i.e. (n−1)−1MS−1M⊤ has a 2-dimensional inverse Wishart distribution with n−p+4

degrees of freedom and the parameter matrix MΣ−1M⊤. It also holds that

MS−1M⊤ =

(
l⊤S−1l l⊤S−1z̄∗

z̄∗⊤S−1l z̄∗⊤S−1z̄∗

)
. (3.8)

Applying Theorem 3(d) of Bodnar and Okhrin (2008), we have that z̄∗⊤S−1z̄∗ is

independent of l⊤S−1z̄∗/z̄∗⊤S−1z̄∗. Therefore, z̄∗⊤S−1z̄∗/z̄∗⊤Σ−1z̄∗ is independent of

z̄∗⊤Σ−1z̄∗ · l⊤S−1z̄∗/z̄∗⊤S−1z̄∗. Moreover, from Theorem 3.2.12 of Muirhead (1990),

we get that

(n− 1)
z̄∗⊤Σ−1z̄∗

z̄∗⊤S−1z̄∗
∼ χ2

n−p

that is also independent of z̄∗. This implies that z̄⊤S−1z̄/z̄⊤Σ−1z̄ is independent of

z̄⊤Σ−1z̄ · l⊤S−1z̄/z̄⊤S−1z̄, where z̄ := x̄− rf1p.

From the proof in Theorem 1 of Bodnar and Schmid (2008) we obtain

z̄∗⊤Σ−1z̄∗
l⊤S−1z̄∗

z̄∗⊤S−1z̄∗
∼ t

(
n− p+ 1, l⊤Σ−1z̄∗,

l⊤Σ−1l · z̄∗⊤Rlz̄
∗

n− p+ 1

)

with Rl := Σ−1 −Σ−1ll⊤Σ−1/l⊤Σ−1l. Hence, the stochastic representation of θ̆ can

be further simplified to

θ̆
d
= α−1n− 1

ξ

l⊤Σ−1z̄∗ + t0

√
l⊤Σ−1l · z̄∗⊤Rlz̄∗

n− p+ 1

 (3.9)
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where ξ ∼ χ2
n−p and t0 ∼ t(n − p + 1, 0, 1) which are independently distributed.

Finally, since z̄ ∼ CSN p(µ − rf1p,
1
nΣ, ne⊤, 0, ṽ) (see Genton (2004, Chapter 2.3)),

the stochastic representation of θ̂ follows straightforward. The theorem is proved.

From Theorem 3.2, we can observe that the stochastic representation of θ̂ is ex-

pressed as a function of independent univariate random variables that follow χ2 and

t distributions and random vector that follows multivariate CSN distribution. This

result helps us to speed up the simulation of θ̂ as we shouldn’t simulate the inverse

of the sample covariance matrix S−1 that is a computationally heavy task, especially

in high dimensions. Let us note that the obtained stochastic representation plays a

fundamental role in the derivations of the mean and covariance of ŵTP , and of the

asymptotic distribution of θ̂ under a high-dimensional asymptotic regime. We can also

use equation (3.6) to compute what influence a certain asset has on the portfolio and

what would happen if it was to be excluded. If we let lj = 1p − bj , where bj is the

canonical basis in Rp then we would be investigating how the portfolio size is affected

by the exclusion of the j:th asset.

To this end, we further simplify the portfolio diagnostics for the investor by deriv-

ing the moments of the portfolio weights distribution. By doing so, the investor can

compare several assets in a portfolio and their corresponding returns through a small

number of quantities.

Theorem 3.3. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤n ⊗ e⊤, 0, v) with n > p and

Σ ≻ 0. Also, let l be a p-dimensional vector of constants, µ̃ := µ − rf1p and ẽ :=

α−1
√

2/π(v + ne⊤Σe)−1/2e. Then it holds that

E[ŵTP ] =
n− 1

n− p− 2
(wTP + ẽ)

and

Var[ŵTP ] = c1 (wTP + ẽ) (wTP + ẽ)⊤ − c2ẽẽ
⊤

+c3

(
1− 2

n
+ µ̃⊤Σ−1µ̃+ 2αẽ⊤µ̃

)
Σ−1

with

c1 =
(n− 1)2(n− p)

(n− p− 1)(n− p− 2)2(n− p− 4)
,

c2 =
(n− 1)2

(n− p− 1)(n− p− 4)
,

c3 =
c1(n− p− 2)

α2(n− p)
.

10



Proof of Theorem 3.3. First, we shall evaluate E[θ̂]. Application of Theorem 3.2

leads us to

E[θ̂] = E

α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1


=

n− 1

α
E

[
1

ξ

]
l⊤Σ−1 E[z̄], (3.10)

where the last equality follows from the fact that ξ, t0, and z̄ are mutually independent,

and E[t0] = 0. Since ξ ∼ χ2
n−p, it holds that 1/ξ ∼ Inv − χ2

n−p (inverse-chi-squared

distribution with n − p degrees of freedom). From Gelman et al. (2013, p. 575) it

follows that

E

[
1

ξ

]
=

1

n− p− 2
. (3.11)

Next, we shall evaluate E(z̄) using the moment generating function of z̄ which is

given by

mz̄(t) = 2Φ1

(
e⊤Σt; 0, v + ne⊤Σe

)
exp

(
µ̃⊤t+

1

2n
t⊤Σt

)
for t ∈ Rp (see Genton (2004, Lemma 2.2.2)). Therefore, E[z̄] can be evaluated as

E[z̄] =
∂mz̄(t)

∂t

∣∣∣∣∣
t=0

= 2

[
ϕ1

(
e⊤Σt; 0, ṽ + ne⊤Σe

)
Σe

+Φ1

(
e⊤Σt; 0, v + ne⊤Σe

)(
µ̃+

1

n
Σt

)]

× exp

(
µ̃⊤t+

1

2n
t⊤Σt

) ∣∣∣∣∣
t=0

=

√
2

π
(v + ne⊤Σe)−1/2Σe+ µ̃. (3.12)

Substituting (3.11) and (3.12) in (3.10) and using the fact that l is an arbitrary vector

show the first part of the theorem.

Next, we shall evaluate Var[θ̂]. Let us recall that

Var[θ̂] = E[θ̂2]− (E[θ̂])2,

11



where E[θ̂] is known from above, while E[θ̂2] should be evaluated. From Theorem 3.2

we get that

E[θ̂2] = E

α−2 (n− 1)2

ξ2

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

2
=

(n− 1)2

α2
E

[
1

ξ2

](
E
[
(l⊤Σ−1z̄)2

]
+

l⊤Σ−1l

n− p− 1
E
[
z̄⊤Rlz̄

])
, (3.13)

where the last equality follows from the fact that ξ, t0, and z̄ are mutually independent,

and E[t0] = 0, E[t20] =
n−p+1
n−p−1 . From Gelman et al. (2013, p. 575), we obtain that

E

[
1

ξ2

]
=

1

(n− p− 2)(n− p− 4)
(3.14)

while through the application of Lemma 5.1 it holds that

E
[
(l⊤Σ−1z̄)2

]
= E

[
z̄⊤Σ−1ll⊤Σ−1z̄

]
= (µ̃⊤Σ−1l)2 +

l⊤Σ−1l

n
+ 2

√
2

π

e⊤ll⊤Σ−1µ̃

(v + ne⊤Σe)
1/2

= (αθ)2 +
l⊤Σ−1l

n
+ 2

√
2

π

αθe⊤l

(v + ne⊤Σe)
1/2

(3.15)

and

E
[
z̄⊤Rlz̄

]
= µ̃⊤Rlµ̃+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)
1/2

= µ̃⊤Σ−1µ̃− (αθ)2

l⊤Σ−1l
+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)
1/2

. (3.16)

12



Hence, through (3.14), (3.15) and (3.16), we receive

E[θ̂2] =
(n− 1)2

α2(n− p− 2)(n− p− 4)

[
(αθ)2 +

l⊤Σ−1l

n
+ 2

√
2

π

αθe⊤l

(v + ne⊤Σe)
1/2

+
l⊤Σ−1l

n− p− 1

(
µ̃⊤Σ−1µ̃− (αθ)2

l⊤Σ−1l
+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)
1/2

)]

=
(n− 1)2

α2(n− p− 1)(n− p− 2)(n− p− 4)

×

(n− p− 2)α2

(
θ +

1

α

√
2

π

e⊤l

(v + ne⊤Σe)
1/2

)2

− 2(n− p− 2)

π

(
e⊤l
)2

v + ne⊤Σe

+

(
n− 2 + nµ̃⊤Σ−1µ̃+ 2

√
2

π

ne⊤µ̃

(v + ne⊤Σe)
1/2

)
l⊤Σ−1l

n

]
.

Therefore, we get that

Var[θ̂] = E[θ̂2]−
(
E[θ̂]

)2
= c1

(
θ +

1

α

√
2

π

e⊤l

(v + ne⊤Σe)
1/2

)2

− c2
2

α2π

(e⊤l)2

v + ne⊤Σe

+c3

(
1− 2

n
+ µ̃⊤Σ−1µ̃+ 2

√
2

π

e⊤µ̃

(v + ne⊤Σe)1/2

)
l⊤Σ−1l

with c1, c2 and c3 which are the same as in the formulation of the theorem. Finally,

using the fact that l is an arbitrary vector we arrive the statement of the theorem.

From Theorem 3.3 we can clearly see that our estimates are biased when returns

follow the CSN distribution. Any increase in the elements of e will increase that bias

and an increase in the sample size n or v will decrease that bias. We can also see that

it is quite hard to disentangle the parameters e and v. It is not surprising since the

definition of the distribution is in terms of shocks based of the matrix 1⊤ ⊗ e⊤ and v.

3.2. Asymptotic distribution under double asymptotic regime

Today investors need to traverse large asset universes, trying to convey which assets

to be included in the portfolio and which not. This often implies that their portfolio

grows in relation to the number of samples they can obtain for the specific asset

classes. When the asset universe is large, the number of parameters that need to be

estimated grow respectively, especially in comparison to the sample size. It is therefore

of interest to study the influence of the number of assets included in the portfolio and

what happens in the limit.
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In the high-dimensional setting, both n and p grow towards infinity such that p/n =

c ∈ (0, 1). The following are some necessary assumptions for the existence of the

asymptotic distribution.

(A1) There exists a constant M1 such that maxi |µi| ≤ M1 uniformly in p.

(A2) Let λ1 and λp denote the largest and smallest eigenvalue of Σ. There exist

constants M2 and M3 such that M2 < λ1, λp < M3 uniformly in p.

(A3) There exists a constant M4 such that maxi |ei| ≤ M4.

The assumptions (A1) and (A2) concern the mean vector and covariance matrix in

high dimensions (see, Ledoit and Wolf (2017) or Bodnar et al. (2021)). As for (A1),

it is empirically and intuitively justified, there does not exist an asset return with

infinite mean, if so, the whole market would converge to that asset. If the mean would

be negative enough then, in a limiting case, the asset will not survive in the market as

no investor would invest in it. As for (A2), it covers the fluctuations of classes of asset

returns along the axis of their eigenvectors. The eigenvectors are in turn a rotation

to make the assets uncorrelated. The assumption (A3) is due to the fact that CSN

model depends on several parameters and can be interpreted as the skewness for each

individual asset in the portfolio needs to be bounded, it can not grow with n or p. It

is merely a technicality since infinite skewness has little economical interpretation.

Let X
a.s.→ x denotes almost sure convergence of a random variable X to a quantity

x and X
d→ F denotes convergence in distribution. Define L = {z : zi < ∞ ∀ i =

1, 2, ..., p, z⊤1p < ∞} as a feasible set of linear combinations. Assuming that l ∈ L, we
limit the investor to choose the combinations to make inference of. This is a technicality

since in most practical applications especially in higher dimensions, the vector l will

be sparse. In the following theorem, we present results for θ̂ in the high-dimensional

setting.

Theorem 3.4. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤n ⊗ e⊤, 0, v) with n > p and

Σ ≻ 0. Also, let l ∈ L. Then, under the assumptions (A1)-(A3), it holds that

θ̂
a.s.→ 1

1− c
θ

and

√
n− p

σ̃

(
θ̂ − 1

1− p/n
θ

)
d→ N (0, 1)

with

σ̃2 =
α−2

(1− c)2

[
2 (αθ)2 + l⊤Σ−1l

(
(1− c) + (µ− rf1p)

⊤Rl(µ− rf1p)
)]
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for p/n → c ∈ (0, 1) as p → ∞ and n → ∞.

Proof. From Theorem 3.2 we know that

θ̂
d
= α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 (3.17)

where ξ ∼ χ2
n−p, t0 ∼ t(n − p + 1, 0, 1), and z̄ ∼ CSN p,1(µ − rf1p,

1
nΣ, ne⊤, 0, v);

moreover, ξ, t0 and z̄ are mutually independent.

Through the properties of the χ2-distribution we have that

ξ

n− p

a.s.→ 1 (3.18)

for p/n → c ∈ (0, 1) as p → ∞ and n → ∞ (Bodnar and Reiß, 2016, Lemma 3).

From Proposition 2.1 of Domı́nguez-Molina et al. (2007) we have that z̄ permits the

following stochastic representation

z̄
d
= µ− rf1p +

(
nΣ−1 +

n2

v
ee⊤

)−1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|

= µ− rf1p +
1√
n

(
Σ− Σee⊤Σ

v
n + e⊤Σe

)1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|, (3.19)

where z̃ ∼ Np(0, Ip), z̃0 ∼ N (0, 1) and they are independently distributed. We would

note that in the last equality we used the Sherman-Morrison inversion formula (Sher-

man and Morrison (1950)). From (3.19), under the assumptions (A1)-(A3), we obtain

that

l⊤z̄
a.s.→ l⊤(µ− rf1p) (3.20)

for p/n → c ∈ (0, 1) as p → ∞ and n → ∞.

Therefore, through (3.18), (3.20) and assumptions (A1)-(A3), we get

θ̂
d
= α−1n− 1

n− p

1

ξ/(n− p)

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1


d→ 1

1− c
θ.

Since convergence in distribution to a point implies convergence almost surely, we

receive, through the continuous mapping theorem (Billingsley (2013)), that the one

dimensional objects in (3.17) converge to their desired components. The first part of

the theorem is shown.
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Next, we derive the high-dimensional asymptotic distribution of θ̂. For sufficiently

large n and p, through the stochastic representation θ̂ given in Theorem 3.2, we have

that

√
n− p

(
θ̂ − 1

1− p/n
θ

)
d
=

√
n− p

α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

− α−1

1− p/n
l⊤Σ−1(µ− rf1)


≈ α−1

ξ/(n− p)

√
n− p

1− p/n

l⊤Σ−1

(
z̄− ξ

n− p
(µ− rf1p)

)
+ t0

√
l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 . (3.21)

Furthermore, by (3.19) we have that

z̄− ξ

n− p
(µ− rf1p) =

(
ξ

n− p
− 1

)
(rf1p − µ) +

1√
n

(
Σ− Σee⊤Σ

v
(n + e⊤Σe

)1/2

z̃

+
Σe√

v + ne⊤Σe
|z̃0|. (3.22)

From Bodnar and Reiß (2016, Lemma 3) we have that

√
n− p

(
ξ

n− p
− 1

)
d→ N (0, 2)

and, therefore, it holds that

√
n− pl⊤Σ−1

(
z̄− ξ

n− p
(µ− rf1p)

)
d→
√
2l⊤Σ−1 (µ− rf1) z̃1 +

√
1− cl⊤Σ−1/2z̃,

where we used the fact that −z̃1
d
= z̃1 if z̃1 ∼ N (0, 1) and that the dependence on z̃0

vanishes asymptotically. By assumptions (A1)-(A3) together with (3.22) it holds that

z̄⊤Rlz̄
P→ (µ− rf1p)

⊤Rl(µ− rf1p).

Thus, we have that (3.21) converges in distribution towards

α−1

1− c

{
√
2l⊤Σ−1 (µ− rf1) z̃1 +

√
1− cl⊤Σ−1/2z̃

+
√

l⊤Σ−1l
√

(µ− rf1p)⊤Rl(µ− rf1p)z̃2

}
, (3.23)

where z̃ ∼ Np(0p, Ip), z̃1 ∼ N (0, 1), and z̃2 ∼ N (0, 1); moreover, z̃, z̃1 and z̃2 are
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mutually independently distributed. Evaluating the variance of (3.23) we receive the

desired statement. The theorem is proved.

4. Simulation and empirical studies

In this section, we will investigate different properties of the estimators through a

simulation study and finish the section with an empirical application.

4.1. Simulation study

We will investigate how well the high-dimensional asymptotic distribution approxi-

mates the finite-sample distribution given by Theorem 3.4 and 3.2, respectively. A

number of parameters are simulated to analyze it. The following setup for the simu-

lation study is applied. We set α = 2, rf = 0.01 and v = 3. For each combination of

n ∈ {50, 120, 250, 500} and c ∈ {0.1, 0.3, 0.7, 0.9}, we

(1) simulate a random matrixY of size p×n with entries following a centered normal

distribution with standard deviation 0.2 and fix Σ = YY⊤;

(2) simulate the elements of the mean vector µ according to µj ∼ U(−0.1, 0.1),

j = 1, 2, . . . , p;

(3) simulate the elements of the skewness parameter e from a standard t-distribution

with 5 degrees of freedom;

(4) simulate 104 observations from the sampling distribution of θ̂ given by Theorem

3.2.

In Figure 1 we compare the quantiles of the empirical sampling distribution

and its high-dimensional asymptotic distribution for the different cases of n ∈
{50, 120, 250, 500}. We can see that for small values of c (the two first rows of each

subfigure), the approximation works well. The only occasion where the approximation

does not seem sufficient, is for n = 50. However, for larger values of n it does not

seem to be an issue. For c closer to 1 the asymptotic distribution fails to account for

the tails and there are a number of explanations for this. The effective sample size is

very small since the number of parameters we need are estimating is large. In each

scenario we are estimating p quantities in the mean vector and p(p− 1)/2 elements of

the covariance matrix to construct the tangency portfolio.

4.2. Empirical study

This section presents an application of the theoretical results obtained in Section 3.

Weekly log-returns of a randomly selected number of stocks from the S&P 500 index

for the period from the 19th of February, 2011, to the 6th of May, 2020, are used in

this study. No special preference is given to the selection of stocks as it is not in our
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(a) n = 50 (b) n = 120

(c) n = 250 (d) n = 500

Figure 1.: QQ-plot of realisations of θ̂. In this Figure, we compare the empirical distri-
bution to its theoretical high dimensional asymptotic distribution. On the right hand,
we display the quantity cn = p/n for each simulated scenario.

interest to select a good (or bad) collection of stocks.

To estimate the parameters of the CSN model, we employ the method of weighted

moments developed by Bodnar and Gupta (2015). Due to the complex relationship

between v and e, estimation of the skewness vector e is hard. However, estimation of a

skewness vector that is proportional to the skewness parameter e is much easier. That

is, we are able to estimate

ĕ =
1

(v + ne⊤Σe)1/2
e.

If we estimate ĕ instead of e the parameter v is implicitly determined by the algorithm.

However, to use the results in Section 3 we still need to specify it, ex ante. To estimate

the parameters µ, Σ and ĕ, we employ the algorithm listed below. For a more detailed

exposition on the approach, we suggest the mentioned reference and the references

therein.
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(1) From a data matrix X of size n× p construct the following entities

x̄ =
1

n

n∑
t=1

xt, (4.1)

Σ̂ =
1

n− 1

n∑
t=1

(xt − x̄)(xt − x̄)⊤, (4.2)

ϕ̄(γ) =
γ−p/2

n

n∑
t=1

exp

(
γ − 1

2γ
x⊤
t Σ̂

−1
xt

)
, (4.3)

x̄ϕ(γ) =
γ−p/2

n

n∑
t=1

xt exp

(
γ − 1

2γ
x⊤
t Σ̂

−1
xt

)
, (4.4)

where γ > 1.

(2) Solve (numerically) the following root problem

(
γx̄−

x̄ϕ(γ)

ϕ̄(γ)

)⊤
Σ̂

(
γx̄−

x̄ϕ(γ)

ϕ̄(γ)

)
+

2

(γ − 1)πn
(1− f(γ))2

(
1− 1

f(γ)2

)
= 0,

where

f(γ) =
1

x̄⊤Σ̂
−1

x̄− 2
γ−1 log ϕ̄(γ)

[
x̄⊤Σ̂

−1
x̄ϕ(γ)

ϕ̄(γ)
− 2γ

γ − 1
log ϕ̄(γ)

±

[ x̄⊤Σ̂
−1

x̄ϕ(γ)

ϕ̄(γ)
− 2γ

γ − 1
log ϕ̄(γ)

]2
−
(
x̄⊤Σ̂

−1
x̄− 2

γ − 1
log ϕ̄(γ)

)

×

[
x̄ϕ(γ)

⊤Σ̂
−1

x̄ϕ(γ)

ϕ̄(γ)2
− 2γ2

γ − 1
log ϕ̄(γ)

])1/2
 (4.5)

in terms of γ. We first consider the positive part in (4.5) and if no solution is

found there, we try with the negative one. Let γ̂ denotes its solution.

(3) The estimator for µ,Σ and ĕ are then determined by

Σ̂ = S, (4.6)

µ̂ =
1

f(γ̂)− γ̂

(
f(γ̂)x̄−

x̄ϕ(γ̂)

ϕ̄(γ̂)

)
, (4.7)

ˆ̆e =

√
π

2

1

1− f(γ̂)

(
γ̂x̄−

x̄ϕ(γ̂)

ϕ̄(γ̂)

)
. (4.8)

We take these estimates and use them in a plug-in approach for the moments described

in Theorem 3.3 and 3.4. In Figures 2 and 3, we show the comparison between the

moments obtained in the finite- and high-dimensional settings. The first row shows the
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estimates of mean while the second row shows estimates of variance. The (estimated)

moments are based on a moving window sample of size 300. The number of stocks are

chosen to be 150 and 200. The parameter α was chosen to 5 and rf = 0.01. From the

moments given by Theorem 3.3 and 3.4, we can see that α will only change the scale

of the mean and variance. Hence, we have chose one value of α in this application. In

this illustration, we set l1 = (1, 0, 0, . . . , 0) and l2 = (0, 1, 0, . . . , 0) in Theorem 3.4. We

will showcase the mean and variance (diagonal element) of the two first elements from

Theorem 3.3. These weights correspond to the M&T Bank Corporation (MTB) and

Cisco Systems, Inc. (CSCO) stocks. The results can be seen in Figures 2 and 3.

In Figure 2, we can see the mean and variance for the first set of portfolios, where

c = 0.5. There is a sharp decline in the mean of the MTB weight. It goes from a long

position to quite a heavy short over night. This change is then recovered throughout

the rest of the investment period. In the same Figure, in the second column we can

see that there is a steady decrease in the mean of CSCO (second column, CSCO)

from 2017 to 2019. After that the weights are reasonably stable with the exception

for COVID, which impacts both means. Looking at the variance, second row in the

same figure, we can see a slightly bigger difference between the methods. For MTB,

the decrease in mean around 2019 causes an increase in the variance. Thereafter there

is a steady decrease and then COVID impacts the variance, as should be expected.

The variance of the second weight, for the asset CSCO, is almost twice as high. One

possible explanation to it is the constant change in the weight, seen in the mean.

Although not noticed in the mean for the CSCO weight, there is a sharp increase in

the variance for the same period as the MTB mean drops. This is due to the fact that

the variance of the portfolio weights is influenced by all assets, it contains the inverse

of Σ. We also expect this weight to vary much more when COVID hits.

If we now increase the portfolio size, whose results are seen in Figure 3, we can see

that the mean and variance for these weights are quite different. We should now hold

very little of MTB and if any position is to be taken then it seems that on average, it

should be a short position. The mean for the CSCO weight is on a different scale from

before which is not necessarily surprising. Portfolios in general depend on a number of

assets and their relation to each other. The decrease is not the same though there is a

large drop in the mean of CSCO where we previously saw a drop in in MTB around

2019. The variance, on the second row of the same figure, decreases throughout the

whole period with the exception of an increase in 2019. The difference between the

two methods seem to be larger in the beginning of the investment period and decrease

as we go further into the period. When COVID-19 hits, the effect of using a large

portfolio, the diversification effect, can be noticed in almost no change in the mean of

these specific portfolio weights. However, it can be seen in the variance.
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Figure 2.: Window based sample moments for the TP weights when assuming that asset
returns are distributed according to the CSN distribution and its high-dimensional
asymptotic counterpart. The window size is equal to 300, α is taken to be 5 while p is
equal to 150.
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Figure 3.: Window based sample moments for the TP weights when assuming that asset
returns are distributed according to the CSN distribution and its high-dimensional
asymptotic counterpart. The window size is equal to 300, α is taken to be 5 while p is
equal to 200.
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5. Conclusions

In this paper, we investigated the implications of skewness on the sample TP weights

within the context of the CSN distribution. Using the finite-sample distribution we

computed the first two moments of the TP weights. Through these, we can see that

skewness has implications on the estimated TP. They are biased, which means that the

investor doesn’t hold the correct portfolio, on average. If returns are CSN distributed

then holding the sample TP implies that the investor holds the wrong portfolio. In the

high-dimensional asymptotic setting, the TP is especially sensitive to the concentration

ratio, the ratio between the number of assets and the number of observations used to

estimate the parameters. If the concentration ratio is close to one, then our portfolio

weights are extremely biased. This is common in high dimensional asymptotics, see

e.g. Karlsson et al. (2020).

In the simulation and empirical study, we investigated the application of our results.

The simulations showed that the finite-sample distribution can be well approximated

by the high-dimensional distribution in most cases. However, for increasing values

the concentration ratio the approximation becomes worse and most often in that is

seen in the tails. In the empirical study, we employed a set of generalised method

of moments estimators for the parameters in the CSN distribution and, thereafter,

showed the difference between the derived moments of the finite-sample and the high-

dimensional distribution. The mean between the two does not differ much between the

two methods. The variance, on the other hand, can differ quite a lot. The difference

also seems to increase with higher concentration ratios.

Throughout this paper we assumed that skewness parameter in the matrix-variate

CSN distribution takes the form of d⊤⊗e⊤ with d = 1n. This assumption on d means

that observations are independent in time and it is known to be a limiting factor in

higher-frequency data. This parameter can introduce a lot of flexibility and practical

relevance in the use of the CSN distribution for modelling asset returns. This restric-

tion is a simplification to derive the analytic results. A tradeoff between flexibility

and interpretability. We aim to investigate how to approach modelling matrix-variate

distributions with dependent components in future research.
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Appendix

In this section we state some results necessary for deriving the results in this paper.

Lemma 5.1. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤ ⊗ e⊤, 0, v) with n > p and

Σ ≻ 0. Also, let z̄ := x̄ − rf1p, where x̄ = X⊤1p/n. Furthermore, let µ̃ := µ − rf1p
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and B be a p× p symmetric matrix. It then holds that

E
[
z̄⊤Bz̄

]
= µ̃⊤Bµ̃+

tr(ΣB)

n
+ 2

√
2

π

e⊤ΣBµ̃

(v + ne⊤Σe)
1/2

. (5.1)

Proof of Lemma 5.1. From the properties of the trace we have that

E
[
z̄⊤Bz̄

]
= E

[
tr
(
z̄⊤Bz̄

)]
= E

[
tr
(
Bz̄z̄⊤

)]
= tr

(
BE

[
z̄z̄⊤

])
= tr (BVar(z̄)) + tr

(
BE [z̄] E [z̄]⊤

)
.

Using the moments from (3.1), we receive the desired results.
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