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Abstract

Stock returns are considered as a convolution of two random processes that are the return

innovation and the volatility innovation. The correlation of these two processes tends to be nega-

tive which is the so-called leverage effect. In this study, we propose a dynamic leverage stochastic

volatility (DLSV) model where the correlation structure between the return innovation and the

volatility innovation is assumed to follow a generalized autoregressive score (GAS) process. We

find that the leverage effect is reinforced in the market downturn period and weakened in the

market upturn period.
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1 Introduction

Stock returns are considered as a convolution of two random processes that are the volatility and the

return innovation. The correlation of these two processes tends to be negative which is the so-called

leverage effect. One explanation for this leverage effect is that the negative shock to the return may

increase the financial leverage ratio between debt and equity. Therefore, the stock becomes riskier

which results in a higher volatility. The leverage response between volatility and return news was

initially analyzed by Black (1976) and further supported by the research of Christie (1982), Nelson

(1991), and Harvey and Shephard (1996), among others. However, a majority of studies consider

a constant leverage over time which is a rather restrictive assumption. On the other hand, time

varying leverage has been documented in several studies, see Bandi and Renò (2012), Yu (2012),

Bretó (2014), among others. The dynamic leverage not only helps to derive a better prediction of

the volatility process but also can influence asymmetrically on the volatility smiles (Veraart and

Veraart, 2012).

In this study, we propose a dynamic leverage stochastic volatility (DLSV) model where the

correlation structure between the return innovation and the volatility innovation is assumed to

follow a generalized autoregressive score (GAS) process; see Creal et al. (2013) and Harvey (2013)

for an introduction to GAS. As the correlation is driven by an observation driven process, the

number of latent parameters needed to be estimated is significantly smaller than that of a parameter

driven process, hence the estimation is computationally less expensive. It is also straightforward to

extend the current proposed inference algorithm for the fixed leverage stochastic volatility (LSV)

model to a dynamic setting with a small marginal cost of computation. We find that the sign and

magnitude of the temporal return innovations are the main factors that encourage the leverage

effect. The leverage effect is strengthened in the market downturn period and is weakened in the

market upturn period. The DLSV model improves both in-sample fit and out-of-sample forecast

in comparison to the fixed leverage stochastic volatility (LSV) model.

The LSV model was first considered by Harvey and Shephard (1996). The model assumes a

fixed intertemporal correlation between the lag return innovation and the volatility innovation.

Jacquier et al. (2004) propose an alternative specification for the contemporaneous relation. Yu

(2005) compares these two models and concludes that the model of Harvey and Shephard (1996)
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is a Euler approximation of the continuous time SV model which is also supported by empirical

analysis. Recently, Catania (2020) introduces a generalization of these two models by adding more

temporal return innovation lags in the volatility innovation equation. However, there is evidence

that the relation between the return innovation and the volatility innovation is dynamic. Yu (2012)

generalizes the correlation structure in the LSV model using a linear spline and finds a strong

evidence against the fixed leverage effect. On the other hand, Bandi and Renò (2012) analyze the

jump diffusion SV models and allow the leverage to depend on the state condition of the firm, e.g.

the spot volatility, hence time varying. Veraart and Veraart (2012) propose a theoretical framework

for the stochastic leverage in the LSV models. Bretó (2014) analyzes the S&P 500 return using a

idiosyncratic stochastic leverage model and confirms the random walk LSV model outperforms the

fixed LSV model. Chon and Kim (2020) propose a regime dependence leverage effect where the

leverage can be different among volatility regimes.

We take a Bayesian approach for statistical inference in DLSV, and employ the Annealing

Sequential Monte Carlo (ASMC) algorithm of Tran et al. (2014) and Duan and Fulop (2015) for

posterior approximation. ASMC is an efficient sampler for Bayesian inference that combines the

Anneal important sampling of Neal (2001) and the Sequential Monte Carlo method of Del Moral

et al. (2006).

The rest of the paper is organized as follows. Section 2 introduces the DLSV model and its

Bayesian inference is presented in Section 3. Section 4 illustrates the dynamic leverage effects of

several stock market indexes, and Section 5 concludes. The Appendix contains some technical

details.

2 Dynamic leverage stochastic volatility model

Let {yt, t = 1, ..., T} be the time series of financial returns. Harvey and Shephard (1996) propose

the LSV model based on the SV model of Taylor (1986) as follows,

yt = exp(0.5ht)εt,

ht = µh(1− φ) + φht−1 + σηηt,

ηt = ρεt−1 +
√

1− ρ2ζt,

(1)
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where ht is the log volatility of the financial return, εt is the return innovation and ηt is the volatility

innovation which correlates with εt−1. The innovations εt and ζt are assumed to be mutually

independent variables that follow standardized Normal distributions. The latent volatility process

ht is specified by the mean parameter µh, the persistence parameter |φ| < 1, and the volatility

parameter ση > 0. The leverage effect between shocks and volatility is captured through the

dependence between εt−1 and ηt in the sense that given ρ < 0, a negative shock to the returns is

likely to result in an increase in the volatility. We extend Equation 1 and allow for the dynamic

leverage effect by allowing ρt to follow a GAS process as follows,

ηt = ρtεt−1 +
√

1− ρ2
t ζt,

ρt =
exp(ft)− 1

exp(ft) + 1
,

ft = ω(1− b) + ast−1 + bft−1,

st−1 =
∂ log p(yt−1|ft−1)

∂ft−1
,

(2)

so that Corr(ηt, εt−1) = ρt. We ensure the value of ρt ∈ [−1, 1] by using a transformation function

of a GAS process ft. The process ft is an observation driven process that is specified by the mean

parameter ω, the persistence parameter b and an adjustment term calculated as a score function

st−1. Here, we restrict 0 6 b < 1 for the stationary condition, see Creal et al. (2013). Appendix

A shows the closed-form formula of the updated score. The updated score depends on both the

sign and magnitude of the return innovations which leads to the change in the leverage effect. This

model is different from the proposal of Bretó (2014) where ft is a parameter driven process. One

of the advantages is that our model reduces the number of latent parameters. Moreover, Blasques

et al. (2015) show that the use of the score functions is robust to the model misspecification and

leads to the minimization of the Kullback–Leibler divergence between the true conditional density

and the model-implied conditional density. Koopman et al. (2016) provide empirical evidence that

the GAS process is a good competitor for other parameter driven processes. We note that when

a = b = 0, the model becomes a fixed LSV model. Also, when a = b = ω = 0, we obtain the SV

model without leverage effect.
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3 Bayesian Estimation

Let’s denote θ = (µh, φ, ση, ω, a, b) be the set of fixed parameters in the DLSV model. We employ

the ASMC algorithm of Tran et al. (2014) and Duan and Fulop (2015) to make Bayesian inference

on the parameters of interest; see Appendix B for the details of ASMC. The ASMC also provides

the marginal likelihood estimate, which is useful for model comparison.

We use vague but proper prior distributions for the parameters of the DLSV model. The

priors are more informative in comparison to Kastner and Frühwirth-Schnatter (2014) to prevent

the bad particles at the early stage of tempering. For the parameters in the volatility process,

their priors are µh ∼ N (0, 1), φ ∼ Beta(20, 1.5) and σ2
η ∼ Gamma(1

2 ,
1

2Bσ
) which is equivalent to

±
√
σ2
η ∼ N (0, Bσ). The choice of prior for ση makes it less influential when the true value is small,

see Kastner and Frühwirth-Schnatter (2014). For the parameters in the GAS process, we consider

the following priors: ω ∼ N (0, 2), a ∼ N (0, 1)I{a>0}, b ∼ Beta(30, 1). For the fixed LSV model, we

assume that the fixed parameter ρ ∼ U(−1, 1).

4 Empirical Illustration

This section illustrates the performance of the proposed DLSV model using three daily stock return

indexes: the Dow Jones Industrial Average index (DJI), the Financial Times Stock Exchange 100

index (FTSE) and the Nikkei 225 stock index (NIKKEI). The data is obtained from Macrobond

database during the period from 01/01/1990 to 31/12/2020. The returns are calculated as the

first difference of the log of the stock index multiplied by 100. Table 1 describes their summary

statistics. All the return series show some degree of heavier tails than the normal distribution and

serial correlations.

Table 1: Summary statistics of the three stock returns (01/01/1990 - 31/12/2020)

Mean Std. Skewness Kurtosis Minimum Maximum J-B test Ljung-Box(12) ARCH(12)

DJI 0.031 1.117 -0.402 12.946 -13.842 10.764 54.704*** 109.846*** 2263.322***
FTSE 0.013 1.116 -0.277 7.561 -11.512 9.384 18.773*** 71.521*** 1610.268***
NIKKEI -0.005 1.500 -0.132 5.457 -12.111 13.235 9.476*** 21.414*** 1322.883***

Table reports the summary statistics of the three stock indexes. The returns are calculated as the log difference of the stock indexes multiplied

by 100. We report the test statistics of the Jarque-Bera test for normality, the Ljung-Box test for the serial correlation and ARCH test for

the GARCH effect. ***,**,* denote significant at 1%, 5%, 10% level.

Next, we divide the series into an in-sample period from 01/01/1990 to 31/12/2017 and an
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out-of-sample period from 01/01/2018 to 31/12/2020 . We demean each of the return series for the

whole sample size and estimate the model parameters of the SV model without leverage, the LSV

model and the proposed DLSV model using the in-sample datasets with the ASMC sampler. Table

2 reports the posterior mean estimates of the parameters. The credible interval of parameter a and

b is significantly different from 0 which shows that the leverage effect is time-varying. The averages

of the leverage effect are very similar between the LSV model and the DLSV model. However, the

DLSV improves the marginal likelihood over the SV and the LSV model.

Table 2: Posterior estimates for the in-sample data (01/01/1990 - 31/12/2017)

Model µh φ ση ρ a b LLH

(a) DJI
SV -0.387 0.976 0.044 -8973.318

(-0.514;-0.258) (0.972;0.981) (0.037;0.051)
LSV -0.364 0.975 0.042 -0.650 -8852.364

(-0.462;-0.265) (0.971;0.979) (0.036;0.049) (-0.688;-0.609)
DLSV -0.371 0.977 0.039 -0.639 0.486 0.983 -8844.172

(-0.456;-0.286) (0.973;0.981) (0.033;0.045) (-0.695;-0.547) (0.172;0.787) (0.946;0.999)
(b) FTSE
SV -0.231 0.980 0.029 -9468.208

(-0.356;-0.106) (0.976;0.984) (0.025;0.034)
LSV -0.237 0.983 0.025 -0.685 -9359.464

(-0.352;-0.123) (0.980;0.986) (0.021;0.029) (-0.726;-0.640)
DLSV -0.246 0.985 0.024 -0.702 0.700 0.990 -9347.305

(-0.354;-0.139) (0.983;0.988) (0.020;0.028) (-0.750;-0.646) (0.259;1.203) (0.980;0.999)
(c) NIKKEI
SV 0.469 0.966 0.044 -11792.990

(0.372;0.565) (0.961;0.972) (0.038;0.051)
LSV 0.467 0.964 0.047 -0.563 -11692.408

(0.392;0.543) (0.958;0.969) (0.040;0.054) (-0.607;-0.519)
DLSV 0.482 0.965 0.045 -0.565 0.516 0.973 -11686.520

(0.395;0.565) (0.959;0.969) (0.039;0.052) (-0.612;-0.510) (0.141;0.950) (0.932;0.997)

Table reports the posterior means of the parameters of SV, LSV and DLSV models, together with the marginal likelihood estimates in the

last column. The average leverage effect in the DLSV model is computed as ρ = exp(ω)−1
exp(ω)+1

for the ease of comparison. The ASMC sampler

is run with M = 1000 particles. The numbers in the bracket show the [10% - 90%] credible intervals.

Figure 1 shows the filtered volatility and the filtered dynamic leverage effect. The patterns of

the filtered volatility are similar among all series. Even though, the leverage effect of the NIKKEI

series is weakest and it is more volatile at the end of the sample. On the other hand, the dynamic

leverage effect of the DJI is quite stable through time while that of the FTSE is decreasing. We

do not observe a strong relation between the change in the dynamic leverage effect and the level of

the volatility which is similar to findings of Yu (2012) and Bretó (2014).
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Figure 1: The filtered volatility and the filtered dynamic leverage effect.

The left hand side figure plots the filtered volatility and the right hand side figure plots the filtered dynamic leverage effect in

red color with their 50% credible interval in the blue color. The results were obtained using a particle filter with 10000 particles.
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We analyze the effect of the temporal return innovations (εt, εt−1) on the correlation ρt+1. Using

Equation 2 and 3, we show the contour plot of the correlation ρt+1 on the DJI temporal return

innovations in Figure 2. Here, the GAS process ft is assumed to stay at its long term mean ω and

ζt = 0. According to the sign and magnitude of (εt, εt−1), the leverage effect is reinforced when

observing both strong temporal negative return shocks which is in contrast to when observing both

strong temporal positive return shocks. The leverage is weaken during the uncertain market gain

(εt−1 > 0, εt < 0) and it is strengthened during the uncertain market loss (εt−1 < 0, εt > 0).

Leverage effect

εt

ε t−
1

 −0.8  −
0.
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Figure 2: The contour plot shows the impact of the temporal return innovations (εt, εt−1) on the
dynamic leverage correlation ρt+1 for the DJI data. The current GAS process ft is assumed to stay
at its long term mean ω and ζt = 0.

Table 3 compares the forecast of the competing models using the out-of-sample datasets. For

predictive performance measurement, we employ the continuous ranked probability score (CRPS),

the partial predicted score (PPS) and the quantile score (QS); see their detailed definition in

Appendix C. The DLSV model is preferred overall which results in a higher CRPS, a higher PPS

and a lower QS.

8



Table 3: Comparison of out-of-sample forecast (01/01/2018 - 31/12/2020)

(a) DJI (b) FTSE (c) NIKKEI
Model CRPS PPS QS CRPS PPS QS CRPS PPS QS

SV -0.6740 -1.4792 0.0612 -0.5858 -1.3997 0.0493 -0.6494 -1.5513 0.0452
LSV -0.6691 -1.4571 0.0611 -0.5833 -1.3834 0.0470 -0.6430 -1.5146 0.0407
DLSV -0.6689 -1.4560 0.0607 -0.5832 -1.3833 0.0472 -0.6430 -1.5133 0.0408

Table reports the CRPS, PPS and QS scores. The model with higher CRPS, higher PPS and lower QS is

preferred.

5 Conclusion

In this study, we propose a dynamic LSV model where the correlation structure between the return

innovation and the volatility innovation is assumed to follow a GAS process. Bayesian inference in

DLSV is performed using the ASMC sampler of Tran et al. (2014) and Duan and Fulop (2015). We

find that the DLSV model improves both in-sample fit and out-of-sample forecast in comparison

to the fixed leverage effect LSV model and the standard SV model. Our key finding is that the

leverage effect is reinforced in the market downturn period and is weakened in the market upturn

period.
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Appendix

A Derivation of the score function

We apply the chain rule to derive the score function as,

st =
∂ log p(yt|ft)

∂ft
=
∂ log p(yt|ft)

∂ht

∂ht
∂ρt

∂ρt
∂ft

=
1

2
(ε2t − 1)ση

(
εt−1 −

ρt√
1− ρ2

t

ζt

)
2 exp(ft)

(exp(ft) + 1)2
.

(3)

B Annealing Sequential Monte Carlo algorithm

The ASMC algorithm combines the Anneal important sampling of Neal (2001) and the Sequential

Monte Carlo method of Del Moral et al. (2006). The ASMC algorithm samples sequentially from the

prior distribution p(θ) to the posterior distribution p(θ|y1:T ) through a sequence of distributions that

smoothly interpolate between the prior and the posterior distribution. The sequence of interpolation

distributions is defined as,

πi(θ) := πi(θ|y1:T ) ∝ p̂(y1:T |θ, u)γip(θ),

where γi is referred as the level temperature for i = 0, . . . ,K and 0 = γ0 < γ1 < . . . < γK = 1,

p̂(y1:T |θ, u) is the unbiased estimator of the integrated likelihood p(y1:T |θ) and u is the set of the

pseudo random numbers used in the particle filter to estimate the integrated likelihood p(y1:T |θ).

Algorithm 1 summarizes the main steps in the ASMC algorithm. We start to sample a set of M

weighted particles {W j
0 , θ

j
0}Mj=1 from the prior distribution p(θ). At each iteration i of the ASMC

algorithm, we reweight the set of M weighted particles {W j
i−1, θ

j
i−1}Mj=1 obtained from the previous

interpolation density πi−1(θ) to approximate the target interpolation density πi(θ). If the efficiency

of these weighted particles measured by the effective sample size (ESS) is below a threshold, the

particles are resampled. Then, in order to protect from weight degeneracy, the particles are refreshed

by a Markov kernel whose invariant distribution is πi(θ). We incorporate the Correlated Pseudo

Marginal (CPM) approach by Deligiannidis et al. (2015) into the Markov move step to deviate

from the unstable estimated integrated likelihood caused by particle filter, and use a random walk
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proposal for the new value of θ. The ASMC algorithm can be run in parallel for the particle moves

in the Markov move step, so we can take advantage of the fast computation in a high-performance

computing server. The ASMC algorithm also provides an estimate of log marginal likelihood. The

pseudo-code implementation of ASMC is given in Algorithm 1.

C Predictive scores

The continuous ranked probability score (CRPS), partial predicted score (PPS) and the quantile

score (QS) are defined as follows

CRPS =
1

T

T∑
t=1

σ̂t

[
1√
π
− 2φ

(
yt
σ̂t

)
− yt
σ̂t

(
2Φ

(
yt
σ̂t

)
− 1

)]
,

PPS =
1

T

T∑
t=1

log p(yt|y0:t−1, θ̂),

QS =
1

T

T∑
t=1

(α− Iyt<qt,α)(yt − qt,α),

where φ and Φ denote the probability density function and the cumulative distribution function

of a standard Normal variable, T is the number of out-of-sample periods, σ̂t is the mean predicted

volatility, θ̂ is the posterior mean estimate of the model parameters, and qt,α is the quantile forecast

of yt given y0:t−1 at the probability level α = 0.1. The interested reader is refered to Gneiting and

Raftery (2007) and Taylor (2019) for more details.
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