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          Abstract 

We employ a battery of model evaluation tests for a broad-set of GARCH-MIDAS models and account for data 
snooping bias. We document that inferences based on standard tests for GM variance components can be 
misleading. Our data mining free results show that the gains of macro-variables in forecasting total (long run) 
variance by GM models are overstated (understated). Estimation of different components of volatility is crucial 
for designing differentiated investing strategies, risk management plans and pricing of derivative securities. 
Therefore, researchers and practitioners should be wary of data mining bias, which may contaminate a forecast 
that may appear statistically validated using robust evaluation tests. 
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1 Introduction  

The new class of two component volatility models pioneered by Engle, Ghysels and Sohn (2013) incorporates a long run 

variance component in the modelling of volatility.1   The novel GARCH-MIDAS (GM) models combine transitory/short-

term GARCH volatility with the variability of the low frequency information channels, predominantly economic sources. 

This model is suitable   for modelling short and long- term volatilities in financial markets. 2  

Engle et al. (2013) use US equity and macroeconomic data to provide the first evidence for the utility of these models in 

forecasting volatility. They document that the GM total variance forecasts benefit from including information from 

aggregate macro variables. Asgharian, Hou and Javed (2013) and Conrad and Loch (2015) provide additional tests for 

volatility forecasting using GM models while expanding the set of economic variables. The evidence in both studies 

reinforce results in Engle et al. (2013) and document that GM models, which bundle common variability of several 

economic variables, using principal component (PC) analysis can enhance the forecasts of the GM   for both the total and 

the long term variance. Conrad and Loch (2015) report that term spread, housing starts and consumer sentiment are the 

leading predictive variables for the US stock volatility. 3 In forecasting the long run US equity volatility,  Lindblad (2017) 

shows that there gains for adding sentiment variables, whereas Conrad and Kleen (2020) reinforce the fact that housing 

starts is an excellent predictor for stock volatility. In sum, the evidence suggests that there are clear advantages for using 

macroeconomic information   in predicting volatility in the context of GM models. 

In the literature many researchers use GM models in volatility prediction.  Their work has been motivated by the lack of 

appropriate models that combine the short and the long components of the latent volatility process.4 However, there are 

three issues/gaps that need scrutiny when examining the overall gains of modelling volatility within the class of GM models. 

First, most GM volatility modelling evidence uses US equity data. There has been little, or no, application and evidence of 

GM models for volatility modelling from other global markets. Second, the emerging evidence displaying the utility of GM 

models compares the forecasts of GM with macro information   with the predictions of a GM model that is a function of 

lagged monthly realized variance (RV).5 RV, though unbiased and consistent, is still a noisy estimate of ex-post volatility. 

Andersen and Bollerslev (1998) illustrate that lower frequency forecasts of the latent volatility may benefit from 

constructing factors at higher frequencies to mitigate the idiosyncratic noisiness of the RV measure.6 Conjecturing from 

their evidence, we hypothesise that the use of cumulative monthly RV, computed from daily squared returns may provide 

better information container than is usually acknowledged in forecasting different variance components, especially at 

monthly and above lower time frequencies.  

 
1 The multiplicative component structure of these models combines the GARCH volatility with the long run approximations for long run 
variance – estimated by the innovative Mixed Data Sampling (MIDAS) approach of Ghysels, Santa-Clara and Valkanov (2004, 2006). 
Given the importance of long-memory dependence in financial market volatility, the long run variance smoothing by the MIDAS 
regressions – forecasting mismatched time frequency (e.g. monthly) variance from high frequency data points such as past daily squared 
returns or economic variables – has opened up new frontiers in examining the role of long memory processes in shaping financial volatility 
and how cross-market long run variances and correlations depict inter- and intra-market integration patterns. 
2 We invariably refer long-term variance to trend/secular/MIDAS component or variance to imply the same throughout the paper.  
3 In addition to modelling conditional variance, the extensions build on the GM framework have been utilised in studying the relationships 
between oil and stock market volatilities, oil-stock correlation, stock-bond correlation, oil-macroeconomic relationships, European equity 
market integration patterns and the  effect of investor sentiment on US stock-bond correlation patterns (Conrad, Loch and Rittler 2014; 
Asgharian, Christiansen and Hou 2016, Pan, Wang, Wu, and Libo 2017, and Virk and Javed 2017, Fang, Yu and Huang 2018). 
4 There are numerous stylized facts documented about financial market volatility, such as clustering, leverage effect, mean reversion and 
co-movement of volatilities among assets and across markets. 
5 Potentially, daily RV can be is a noisy estimate for forecasting volatility at high frequencies (Andersen and Bollerselv 1997, 1998). 
However, we argue that the same is not applicable to the low frequency RV estimates when we model low frequency variance 
components at monthly, quarterly and bi-annual along with the total variance forecasts. 
6 To this extent, Andersen and Bollerselev (1998) show that a well-specified, GARCH-type volatility filter smooth unconditional realised 
variance/volatility (RV), from high frequency intraday data, produces precise inter-daily predictions i.e. a latent volatility factor from high 
frequency intraday data improves out-of-sample forecasts at inter-daily variance predictions. 
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Thus, merging our conjecture with the findings from the prior empirical evidence that suggest a weak relationship between 

stock volatility and aggregate variables (Officer 1973, Shiller 1981a&b, Christie 1982, Schwert 1989, among others), leads 

us to question the evolving evidence on GM models: are there actual GM specifications that perform better than the common 

GM benchmark? 7 More succinctly, we inquire if (i) the evidence from GM models with macro variables is actually 

differentiable from the reported evidence   and (ii) if the forecasts that incorporate macro information really outperform the 

forecasts of the GM model that condition on lagged   RV to approximate the latent volatility.  

We identify that the forecasting exercises in the studies using GM models typically use weak, yet informative tests, to 

drawing inferences about the relative performance of the GM variance forecasts against the benchmark models.8 These tests 

mostly use mean squared error (MSE) type loss function.  In the spirit of Engle et al. (2013), an informative/relative MSE 

ratios test inform the efficiency gains of the competing model against the benchmark model or vice a versa.   However, 

Asgharian et al. (2013) have assessed the forecasting merits of GM model using the Diebold and Mariano (DM, 1995) test 

– a robust statistical test for forecast evaluation.9 We also note that prior studies, with the definite exception of Asgharian 

et al, have usually generalized the evidence coming from GM models for total volatility to long run variance forecasts. 

Finally, we observe that given the variety of economic sources as well as financial information variables and for that there 

are several candidate GM models to forecast volatility. The repetitive use of same equity data is bound to cast a shadow 

over the reliability and accuracy of the GM forecasting volatility inferences. Because of the data mining biases, we are 

sceptical about the reliability of the prior evidence on the forecasting efficiency of GM models particularly as it does not 

clearly differentiate between total variance and long run variance forecasts. In order to provide rigour to these forecasting 

comparisons using the GM models, we argue that the model comparisons of GM models should account for statistical tests 

that control for   data snooping biases before inferring on the value of GM macro models in volatility prediction.   

These identified research gaps motivate our work. To limit our study, we note that Engle et al. (2013) specify two types of 

GM models. The first type the one-sided filters where long-term volatility of daily stock returns is expressed as a weighted 

average of lagged values of lower-frequency financial/macroeconomic variables. The other type of models are the two-

sided filters that use lagged and future values of the MIDAS input variables. Our work only studies the first type of GM 

models. We provide new evidence in two ways.  First, we replicate research using the one-sided GM models across four 

leading global equity markets i.e. France, Germany, the UK and the US. Second, we assess the robustness of earlier evidence 

using tests that account for data snooping bias..  

To do this we investigate the gains of several macro-variables in the GM models to forecast total and long run variance 

components over the use of a common GM benchmark that only uses monthly RV. We carry out informative and robust 

statistical tests that correspond with prior research on GM models. Furthermore, we use a far larger set of macroeconomic 

variables than all previous studies that assessed the importance of information coming from different aggregated channels. 

The study by Conrad and Loch (2015) comes closest to ours in this respect. Nonetheless, our work extends evidence on 

GARCH-MIDAS modelling and forecasting for a cross-section of four developed equity markets and thus provide out of 

sample evidence. 

 
7 Although the importance of economic sources influencing market volatility is undeniable, there are limitations in the modelling the 
contribution of economic variables to the total and long run variance forecasts. These include identification of the aggregate variable(s) 
that contributes to the evolution of financial market variance and prediction of financial market volatility on the basis of an information set 
that is prone to measurement errors and revisions compared with other variables to proxy long run variations in the conditional variance 
such as RV. 
8 This applies to tests for both total variance and long run variance components regardless benchmark model is the GM model that 
smooth realized variance in MIDAS regressions (Engle et al. 2013 and Conrad and Loch 2015) or the baseline GARCH (1, 1) specification 
(Asgharian et al. 2013 and Conrad et al. 2015). 
9 The pairwise DM test examines the equal predictability (EPA) of the alternate model against the benchmark. 
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Second, we employ powerful (multiple/joint) tests that account for the data mining issues i.e. the White (2000) reality 

check (RC) test and Hansen (2005) superior predictive ability (SPA) test. Both tests assess the SPA of the benchmark 

model when contrasted against a host of alternative models and are robust against data mining biases. Specifically, these 

tests evaluate the amount of increase in the probability of finding SPA among the competing models when the number of 

competing model increases (White 2000 and Hansen 2005).10 Our evidence accounting for the data snooping bias for the 

class of GM models with one benchmark, is the first in this regard.  Here it is important to note that, contemporary work 

by Lindblad (2017) and Conrad and Kleen (2020) have made use of model confidence set (MCS) of Hansen et al. (2011) 

for forecast evaluation of GM models.11 The evidence in latter study shows that the GM RV model is outperformed by 

models that use macroeconomic information.Furthermore, the lag structure for the input MIDAS variables is given by the 

weighting scheme – unconstrained or constrained – adopted for the beta polynomial by which MIDAS variance evolves. 

Thus, the estimation of long run variance is dependent on the weights given to the lagged values of the input variable(s) in 

the MIDAS filter. Conrad and Loch (2015) confirm the evidence in Engle et al. (2013) that the optimal weighting scheme 

for the GM-RV (benchmark) model is the restricted one. The former study does show that some macroeconomic variables 

require an unrestricted scheme while RV does not.  

Nonetheless, there are studies that adopt an ad-hoc restricted weighted scheme even for macroeconomic variables in the 

MIDAS filter such as Asgharian et al. (2013) and Conrad et al. (2014) among others. We expect that imposing this 

weighting scheme for other low frequency input variables may not optimally forecast long run variance given the flexible 

requirement for weight convergence for them as shown in Conrad and Loch (2015). To add value to our empirical 

analysis, we estimate all GM models using both unrestricted and restricted weighting schemes for the MIDAS variance 

component across cross-section of four developed equity markets – just not the US equity volatility.  

In summary, we carry out a large-scale empirical exercise for the class of GM models, using one-sided filters, across four 

large global equity markets. Through this exercise we investigate the gains and efficacy of volatility forecasts when total 

and long run volatility evolves, using macro information in the MIDAS filter relative to the benchmark model, while 

controlling for the data snooping biases. We follow Engle et al. (2013) and make the GM model that uses rolling window 

(RW) monthly RV in the MIDAS filter as the benchmark model, referred as GM-RV model hereafter.  

Our analysis covers daily equity and monthly macro data from 1999 to 2016. For every market, we estimate 27 GM models 

resulting in the same number of forecasts for the total variance and trend component. This number is doubled since we use 

two weighting schemes in the MIDAS regressions. Using the informative MSE ratio test of Engle et al. (2013) and the 

Diebold and Mariano (1995) test, our results are congruent with the findings from the US equity data. All comparisons use 

one step ahead forecasts i.e., pseudo out-of-sample (POS) GM variance forecasts (unless otherwise stated). 

Our results show that the evidence using the MSE ratio and DM test overstates the gains of the total variance forecasts 

coming from GM macro models when contrasted against the benchmark model forecast: there are several competing models 

that outperform the benchmark model’s MSE. The DM test concurs when it uses an unconstrained weighting scheme. 

However, with the restricted weighting gains are limited to forecasts for the MIDAS/long run variance component only – 

 
10 Here we note that the model comparisons in our study are for long run variance and total variance as provided by the GM models. The 
comparability tests for volatility predictive ability tests for short run variance of GARCH type models have already been studied 
extensively, see Lunde and Hanen (2005) and Gonzalez, Lee and Mishra (2004) and  others, and therefore we refrain from reporting that 
evidence to conserve space.  
11 As mentioned earlier, initial work on GM modelling has used various pairwise tests e.g. Diebold-Mariano tests. Recent work on GM 
modelling and forecasting is transcending to evaluate its gains using stronger statistical tests. For example, Lindblad (2017) relies on the 
model confidence set approach of Hansen et al. (2011). Similarly, Conrad and Kleen (2020) also use MCS test for GM models. However, 
both the studies use only the US data. 
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an aspect that is typically overlooked in the GM model evaluation literature. These summary results from the DM test 

largely hold across all markets as we account for data snooping problems. The only exception is the fact that joint tests 

show that no competing model has SPA over the benchmark model total variance forecasts regardless of what weighting 

scheme is adopted. 

We examine the consistency of our results by using alternate variance proxies and an out-of-sample forecasting scheme. 12 

The generality of our results for the POS is maintained using alternate variance proxies. The results for the OS rolling 

forecasting comparisons – using any type of variance proxy – confirm our POS evidence. There are exceptions, however. 

We note that with the OS forecasting procedures the total (long run) variance forecast evaluations are sensitive to what type 

of weighting scheme is adopted, which endorses our scepticism on model comparison exercises using GM models with 

restricted weights. Our evidence shows that results from a particular weighting scheme cannot be generalized for forecasts 

coming from GM models with other weighting structures which is in accordance with Conrad and Loch (2015), where the 

authors estimated all models with a restricted and an unrestricted weighting scheme and used the likelihood ratio tests to 

identify the appropriate specification.  This also applies to using alternative forecasting schemes such as one step ahead or 

multiple step ahead forecasts. Most importantly, we should scrutinise the usefulness of the GM with respect to its two 

distinctive forecasts i.e. total variance and long run variance – neither of the two can substitute for the other. Finally, the 

use of powerful tests is suggested to examine the forecasting gains of a particular model over the benchmark model, e.g. 

when p-values of robust statistical tests reject the superiority of the forecasting performance of the benchmark model. 
Overall, we conclude that, although macroeconomic information may not improve the accuracy of total GM volatility 

forecasts, there is overwhelming evidence of its usefulness in improving the long-term equity volatility forecasts. 

Nonetheless, guided by the sum of our results from data mining free POS and OS forecasting comparisons, we broadly find 

that the existing literature over(under)-states the gains for forecasting GM total (long run) variance with aggregate variables. 

Our results have value academics, investors and practitioners alike when we know that financial volatility has different 

components. The emphasis is on the econometrician to be rigorous and liberal in their search for forecasts for the different 

components of conditional financial volatility: if GM-RV model has SPA over competing models its does not translate into 

superiority for the low frequency variance component and without limiting the evolution of the secular variance part. We 

know investors, money and risk managers with heterogeneous investment and risk management needs require volatility 

forecasts for different time horizons, investment mandates, and geographical presence as well as informational flow 

heterogeneity.  

The rest of the paper is organised as follows. Sections 2 and 3 discuss the GM methodology and the choice of latent variance 

proxy in the scope of our work. Section 4 details the forecasting comparison testing procedures. Section 5 specifies data, 

sources and summary statistics. The results are summarized in section 6. And section 7 concludes the findings and 

implications of work.    

2 GARCH-MIDAS models 

In this section, we outline the GARCH-MIDAS methodology.  The two-component GM volatility models break down the 

total variance for a financial asset into a short-term transitory component and trend/secular component. The multiplicative 

total variance is modelled by a unit variance GARCH (1, 1) and a secular component, which is estimated by the MIDAS 

filter.13  

 
12 The POS forecasting comparisons are one step ahead only and can be taken equivalent to fixed forecasting scheme, while our OS 
joint tests give multiple step ahead forecasts. More factually one year at time, for details see section 6.4. 
13 The estimates for secular volatility can be obtained through several economic, financial and sentiment related variables. 
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 To set up the model notations, we assume the compounded return for a price series on day 𝑖𝑖 in month 𝑡𝑡 is 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝜇𝜇 +

�𝜏𝜏𝑡𝑡𝑔𝑔𝑖𝑖,𝑡𝑡𝜀𝜀𝑖𝑖,𝑡𝑡 where 𝜀𝜀𝑖𝑖,𝑡𝑡|Φ𝑖𝑖−1,𝑡𝑡 ~ 𝑁𝑁(0,1) and Φ𝑖𝑖−1,𝑡𝑡 is the information set until day 𝑖𝑖 − 1 in period 𝑡𝑡 (month in our case). The 

compounded return series have mean 𝜇𝜇 as its location parameter and its scale parameter, i.e. the total conditional variance 

𝜎𝜎𝑡𝑡2 = 𝜏𝜏𝑡𝑡𝑔𝑔𝑖𝑖,𝑡𝑡 comprises a transitory (GARCH) component 𝑔𝑔𝑖𝑖,𝑡𝑡 and a long-run (MIDAS) component 𝜏𝜏𝑡𝑡 .  

Engle et al. (2013) specifies the short-term volatility component as a GARCH (1, 1) process: 

𝑔𝑔𝑖𝑖,𝑡𝑡 = (1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼 (𝑟𝑟𝑖𝑖−1,𝑡𝑡−𝜇𝜇)2

𝜏𝜏𝑡𝑡
+ 𝛽𝛽𝑔𝑔𝑖𝑖−1,𝑡𝑡       (1), 

where  𝛼𝛼 > 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Here, the long-term volatility process, 𝜏𝜏𝑡𝑡 ,  can evolve by a range of low frequency variables such as macroeconomic 

variables.  Under the MIDAS setting, this component is estimated: 

𝜏𝜏𝑡𝑡 = 𝜃𝜃0 + 𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝑤𝑤2)𝐾𝐾
𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘 ,        (2) 

where 𝑋𝑋 is any variable of interest, however, just as in any another regression, it can accommodate  more than one variable 

as well, around which the secular component should be determined:  

𝐸𝐸𝑡𝑡−1�𝑟𝑟𝑖𝑖,𝑡𝑡 − 𝜇𝜇�2 = 𝜏𝜏𝑡𝑡𝐸𝐸𝑡𝑡−1�𝑔𝑔𝑖𝑖,𝑡𝑡� = 𝜏𝜏𝑡𝑡. 

To estimate the long-term variance at 𝑡𝑡, 𝜙𝜙𝑘𝑘  (𝑤𝑤) is a smoothing function that provides a weighting scheme for the lagged 

values of the variable(s) of interest in the MIDAS filter. We choose the beta smoothing function that determines optimal 

weights with which the lags of the input variables in the MIDAS regressions are going to shape the secular volatility through 

the parameter 𝜃𝜃1. It is specified: 

𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝑤𝑤2) = �𝑘𝑘 𝐾𝐾� �
𝑤𝑤1−1(1−𝑘𝑘 𝐾𝐾� )𝑤𝑤2−1

∑ (𝑗𝑗 𝐾𝐾� )𝑤𝑤1−1𝐾𝐾𝜈𝜈
𝑗𝑗=1 (1−𝑗𝑗 𝐾𝐾� )𝑤𝑤2−1

        (3) 

where 𝑤𝑤1,𝑤𝑤2 are weights to be estimated.  Using the flexible/unrestricted beta smoothing function, the long-term volatility 

of daily returns in equation (2) is expressed as a weighted average of lower-frequency financial and/or macroeconomic 

variables. This beta-polynomial is independently estimated for each MIDAS regression and for each input variable therein. 

Studies have used restricted version of the above weighting scheme by fixing 𝑤𝑤1 = 1 (Engle et al. 2013, Asgharian et al. 

2013, Conrad et al. 2014, among others): 𝜙𝜙𝑘𝑘  (𝑤𝑤2) = (1−𝑘𝑘 𝐾𝐾� )𝑤𝑤2−1

∑ (1−𝑗𝑗 𝐾𝐾� )𝑤𝑤2−1𝐾𝐾
𝑗𝑗=1

. Ghysels, Sinko and Valkanov (2007) report that the 

unrestricted smoothing scheme allows for a hump-shaped decaying pattern. For restricted weighting scheme, the fixed 

weight of 𝑤𝑤1 = 1 ensures a decaying pattern whereas the size of 𝑤𝑤2 determines the speed of decay: large (small) values of 

𝑤𝑤2 generate an accelerating (decelerating) decaying pattern for the lagged values of input variable(s) in the MIDAS filter.  

It important to note that the unrestricted case is flexible in providing/estimating large weights for distant lags of MIDAS 

input variable (i.e. the hump shape decline), fixing 𝑤𝑤1 = 1 makes it a strictly declining case for the number of lags involved 

in the MIDAS smoothing.   

To clarify, we note that the parameter space for the baseline GM model using RV as input variable results in Θ =

{𝜇𝜇,𝛼𝛼,𝛽𝛽, 𝜃𝜃0,𝜃𝜃1,𝑤𝑤2} when we use the restricted weighting scheme. It is understood that the parameter space for the GM-RV 

model with the unrestricted weighting scheme will result in Θ = {𝜇𝜇,𝛼𝛼,𝛽𝛽,𝜃𝜃0,𝜃𝜃1,𝑤𝑤1,𝑤𝑤2} i.e. one more parameter estimate 

than the restricted case that fixes𝑤𝑤1 = 1. The parameter space changes accordingly for GM specifications that have more 

than one exogenous variable to smooth secular component. For example, the unrestricted parameter space for two 

exogenous variables in the MIDAS regression will become Θ = {𝜇𝜇,𝛼𝛼,𝛽𝛽,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2,𝑤𝑤1,𝜃𝜃1,,𝑤𝑤2,𝜃𝜃1,,𝑤𝑤1,𝜃𝜃2 ,𝑤𝑤2,𝜃𝜃2}. Analogously, 

the restricted version will contain 2𝑝𝑝  less parameters, where 𝑝𝑝 represents the number of input variables in the MIDAS 
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regression.  In the scope of our work, we estimate all the models using both weighting schemes. First, we let each MIDAS 

regression search for the properties of exogenous variable(s) in the MIDAS regressions using the flexible weighting scheme 

i.e. estimate 𝑤𝑤1 and 𝑤𝑤2. We then follow this by replicating all the MIDAS regressions using a constrained weighing scheme.  

For clarity, we specify the baseline long run component that uses rolling window (RW) monthly-realized volatility available 

at daily frequency: 

𝜏𝜏𝑖𝑖,𝑡𝑡 = 𝜃𝜃0 + 𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝑤𝑤2)𝐾𝐾
𝑘𝑘=1  𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡−𝑘𝑘        (4) 

where rolling window  𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖2𝑁𝑁
𝑖𝑖=1 , 𝑁𝑁 = 22   approximate monthly realized volatility, and 𝐾𝐾  lags of the input 

variable(s), are utilized to smooth trend component.14 The relation in equation (4) can also be specified as  

𝑙𝑙𝑙𝑙𝑔𝑔 (𝜏𝜏𝑡𝑡) = 𝜃𝜃0 + 𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘 (𝑤𝑤1,𝑤𝑤2)𝐾𝐾
𝑘𝑘=1  𝑅𝑅𝑅𝑅𝑡𝑡−𝑘𝑘        (5). 

Following Engle et al. (2013), we adhere to the log-specifications for all the models: a log version of GM-RW RV or simply 

GM-RV is directly comparable to the competing GM specifications that involve macroeconomic variables. The log 

transformation of equation (4) guarantees the non-negativity of the conditional variances when the input variables (e.g. term 

structure of interest rates, industrial production) can take negative values. The transformation of log (𝜏𝜏𝑡𝑡) specification gives 

𝜏𝜏𝑡𝑡 which is an exponential estimate of the right side of the equation (see Engle et al. 2013 eq. 19 on page 781).  

In a similar fashion, one can construct the long-term volatility component using the levels of macroeconomic variables: 

𝑋𝑋𝑡𝑡−𝑘𝑘𝑙𝑙  denotes the level of 𝑋𝑋 input variable in the MIDAS filter: 

log (𝜏𝜏𝑡𝑡) = 𝜃𝜃0 + 𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝑤𝑤2)𝐾𝐾
𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘𝑙𝑙          (6). 

Or further extend this model by incorporating the variance of macroeconomic information as well: 

log(𝜏𝜏𝑡𝑡) = 𝜃𝜃0 +  𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1𝜃𝜃1 ,𝑤𝑤2,𝜃𝜃1)𝐾𝐾
𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘𝑙𝑙 + 𝜃𝜃2 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝜃𝜃2 ,𝑤𝑤2,𝜃𝜃2)𝐾𝐾

𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘𝑣𝑣    (7) 

where 𝑋𝑋𝑡𝑡−𝑘𝑘𝑣𝑣  is the variance of 𝑋𝑋 input variable in the MIDAS filter. For generality, a specification by adding RV together 

with the macroeconomic information, both at level and variance is 

log(𝜏𝜏𝑡𝑡) = 𝜃𝜃0 + 𝜃𝜃1 ∑ 𝜙𝜙𝑘𝑘 �𝑤𝑤1𝜃𝜃1 ,𝑤𝑤2,𝜃𝜃1�
𝐾𝐾
𝑘𝑘=1  𝑅𝑅𝑅𝑅𝑡𝑡−𝑘𝑘 +  𝜃𝜃2 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝜃𝜃2 ,𝑤𝑤2,𝜃𝜃2)𝐾𝐾

𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘𝑙𝑙 + + 𝜃𝜃3 ∑ 𝜙𝜙𝑘𝑘  (𝑤𝑤1𝜃𝜃3 ,𝑤𝑤2,𝜃𝜃3)𝐾𝐾
𝑘𝑘=1  𝑋𝑋𝑡𝑡−𝑘𝑘𝑣𝑣   

        (8) 

Using the models implied by equations 5-8, the 26 MIDAS and GM log specification models are iterated to compute model 

forecasts for comparison with the benchmark GM-RV model. For simplicity and differentiation, we notate the benchmark 

model that involves RW-RV as GM-RV model and all remaining (competing𝑀𝑀) models are referred by GM models. 

3 Model Forecasts 

In this section, we discuss our forecasting strategy and the unbiased nature of RV to proxy latent variance in predicting 

future increments in quadratic variation.  Typically, when carrying out volatility forecast evaluations, researchers split the 

sample into the estimation and prediction samples where the estimation sample contains 𝑄𝑄 observations and the prediction 

sample contains 𝑃𝑃 observations, and they both add up to the total number of observations in the sample 𝑇𝑇, i.e., 𝑇𝑇 = 𝑄𝑄 + 𝑃𝑃. 

𝑃𝑃 is the number of observations that are reserved for out-of-sample comparisons.   

Since volatility is a latent variable this makes the selection of an evaluation criterion arbitrary when assessing which loss 

function is appropriate to evaluate volatility models, for detailed discussion, see Bollerslev et al. (1994), Diebold and Lopez 

(1996) and Lopez (2001). In our case, we maintain consistency across the several tests carried out in our work by applying 

 
14 In our baseline specification, we use RW-RV in the MIDAS smoothing at daily frequency: each daily realised variance is the rolling 
sum of 22-daily squared returns. Whereas, the long run variance smoothing for all other GM specifications including macro variables 
and/or principal components is at monthly frequencies only: long run variance component changes at monthly frequency and stays 
constant for the days in a month. 



8 
 

the MSE based loss function, a metric that has more often been utilized in GM forecast evaluation tests. These tests include 

informative comparability ratios and pairwise   comparison tests. Finally, to evaluate the closeness of the model forecasts, 

we require a valid measure of latent volatility, so we proxy the unobservable volatility using the realized volatility. The ex-

post monthly realized volatilities of the index returns are computed by adding the daily squared returns during the trading 

days of the month. The total conditional daily volatility of the GM models is compared against daily squared continuously 

compounded returns. 

Assuming that the variance proxy converges to the true volatility, both at daily and monthly frequencies15, therefore, despite 

the noisiness of squared returns, the proxy is still suitable if a quadratic loss function is used to evaluate the forecasts.16 It 

can be shown that under a quadratic loss, a correct inference on the relative accuracy of the models can be obtained. For 

instance, suppose that 𝜎𝜎𝑡𝑡2, 𝜎𝜎𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2 , and 𝜎𝜎𝑡𝑡,𝑚𝑚

2  are, respectively, true latent variance, the total variance forecasts for the true 

latent volatility from the benchmark GM-RV model and competing 𝑀𝑀 GM models.  For the ease of the discussion, we drop 

the daily 𝑖𝑖 subscript.17 Moreover, assume that the proxy for the unobservable volatility 𝜎𝜎𝑡𝑡2  is defined by squared returns 𝑟𝑟𝑡𝑡2. 

Hence, we may write for a competing 𝑚𝑚 GM forecast: 

𝐸𝐸 ��𝑟𝑟𝑡𝑡2 − 𝜎𝜎𝑡𝑡,𝑘𝑘
2 �2� = 𝐸𝐸 ���𝑟𝑟𝑡𝑡2 − 𝜎𝜎𝑡𝑡2) − (𝜎𝜎𝑡𝑡,𝑘𝑘

2 − 𝜎𝜎𝑡𝑡2��
2
� 

    = 𝐸𝐸((𝑟𝑟𝑡𝑡2 − 𝜎𝜎𝑡𝑡2)2) + 𝐸𝐸 ��𝜎𝜎𝑡𝑡,𝑘𝑘
2 − 𝜎𝜎𝑡𝑡 

2�2�  

Here the expectation of the cross product is zero due to the independence between the competing GM model’s error with 

the squared returns proxy error. Re-writing the above by including the benchmark forecast yields,  

1
𝑇𝑇
���𝑟𝑟𝑡𝑡2 − 𝜎𝜎𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅

2 �2� − ��𝑟𝑟𝑡𝑡2 − 𝜎𝜎𝑡𝑡,𝑘𝑘 
2 �2�

𝑇𝑇

𝑡𝑡=1

𝑝𝑝
→ 𝐸𝐸 ��𝜎𝜎𝑡𝑡 

2 − 𝜎𝜎𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2 �2� − 𝐸𝐸 ��𝜎𝜎𝑡𝑡2 − 𝜎𝜎𝑡𝑡,𝑘𝑘 

2 �2� 

where the left- hand side is only negative when  

𝐸𝐸 ��𝜎𝜎𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2 − 𝜎𝜎𝑡𝑡2�

2� < 𝐸𝐸 ��𝜎𝜎𝑡𝑡.𝑘𝑘
2 − 𝜎𝜎𝑡𝑡 

2�2� 

This proves that the squared returns proxy leads to a correct inference about the relative accuracy of the competing GM 

models, when economic information is incorporated, compared to the basic GM-RV benchmark model.  

In reality, the parameters and volatility forecasts of the models are not known and have to be estimated using, as noted 

earlier, a sample of 𝑄𝑄 data. If the estimated parameters are �𝑄𝑄 consistent and 𝑃𝑃
𝑄𝑄

 converges to 𝜋𝜋 < ∞ , then     

1
𝑃𝑃

� ��𝑟𝑟𝑡𝑡+12 − 𝜎𝜎�𝑡𝑡+1,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2 �2� − ��𝑟𝑟𝑡𝑡+12 − 𝜎𝜎�𝑡𝑡+1,𝑘𝑘 

2 �2�
𝑄𝑄+𝑃𝑃−1

𝑡𝑡=Q

=
1
𝑃𝑃
��𝑟𝑟𝑡𝑡+1 

2 − 𝜎𝜎𝑡𝑡+1,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2 �2� − ��𝑟𝑟𝑡𝑡+12 − 𝜎𝜎𝑡𝑡+1,𝑘𝑘 

2 �2� + 𝑂𝑂𝑃𝑃 �𝑃𝑃
−12� 

and hence, the comparison of the models is still valid as the ranking is preserved. For simplicity, we annotate the total and 

long run variance forecast comparisons using MSE based quadratic loss function:  

𝑅𝑅𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2 ≡ 1
𝑃𝑃

(𝑟𝑟𝑖𝑖,𝑡𝑡2 − 𝜎𝜎𝑖𝑖,𝑡𝑡,𝑚𝑚
2 )2     and    𝑅𝑅𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏 ≡ 1

𝑃𝑃
(𝑅𝑅𝑅𝑅𝑡𝑡 − 𝜏𝜏𝑡𝑡,𝑚𝑚)2. 

 
15 Note that the monthly measure here is only valid if the time series of returns is identically and independently distributed with zero mean. 
In that case, the monthly volatility is the mere sum of daily volatilities.   
16 A valid proxy that is widely used to measure the accuracy of volatility models is the daily realized volatility computed by summing intra-
day squared returns (See, Andersen et al., (2001a, 2001b); Barndorff-Nielsen and Shephard (2001, 2002); Meddahi, 2002 among others). 
It has been shown in these studies that as we compute over smaller and smaller intra- day intervals, it converges to the true integrated 
volatility process in continuous semi-martingale process. The measure has been also shown to be unbiased by Hansen and Lund (2005). 
However, the GM is a discrete time process and realized volatility computed over intraday data may not be consistent and hence, there 
isn’t much to choose between realized volatility and squared returns as both are unbiased and neither is consistent.        
17 Here, we assume that the volatility process is covariance stationary and that we know the parameters of the MIDAS models.    
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where 𝑅𝑅𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2  and 𝑅𝑅𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏  are the loss functions computed for total and long run variance, respectively for the competing 

GM models when latent variance is approximated by RV.  

4 Model Comparisons 

In our work, the conditional total and long run variance forecasts from the competing 𝑀𝑀 GM models are compared against 

the GM-RV forecasts, respectively  𝜎𝜎𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
2  and 𝜏𝜏𝑡𝑡,𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅. The parameters of the volatility models are estimated using the 

𝑄𝑄 sample observations. These estimates are then used to make one step ahead pseudo out-of-sample forecasts, in our 

case: 𝑃𝑃 = 1, which then are taken to different model comparisons tests.18 The model comparison tests are undertaken for 

both the total variance forecasts at daily frequency and the long run variance forecasts at monthly frequency. The forecasting 

errors are calculated with respect to monthly RV, from daily stock return series for each market for the secular components 

and using squared returns for the total variances. So, when evaluating model forecasts, we proxy latent conditional variances 

by squared returns for daily data, and use the sum of daily squared returns in month 𝑡𝑡 i.e. 𝜎𝜎�𝑡𝑡2 = 𝑅𝑅𝑅𝑅 for monthly data.  

Consider that there are 𝑀𝑀 competing models: 𝑀𝑀 = 1,2, … ,𝑚𝑚 and GM-RV is the benchmark model.  Each model m provides 

a forecast or series of forecasts {𝑔𝑔𝑚𝑚,𝑡𝑡𝜏𝜏𝑚𝑚,𝑡𝑡}𝑡𝑡=1𝑃𝑃 which are compared to{𝜎𝜎�𝑡𝑡2}𝑡𝑡=1𝑃𝑃 , yielding a MSE based loss function 𝐿𝐿. Each 

model leads to a sequence of losses/forecast errors i.e. the losses for benchmark model are defined as, 𝐿𝐿𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡 ≡

𝐿𝐿(𝜎𝜎�𝑡𝑡2,𝑔𝑔𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡𝜏𝜏𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡)  and losses for a competing 𝑘𝑘  model are defined as,  𝐿𝐿𝑚𝑚,𝑡𝑡 ≡ 𝐿𝐿(𝜎𝜎�𝑡𝑡2,𝑔𝑔𝑚𝑚,𝑡𝑡𝜏𝜏𝑚𝑚,𝑡𝑡) . Using these 

quadratic losses, we conduct numerous model comparisons tests that are briefly explained below.  

4.1 MSE ratios 

This informative forecasting comparison metric is presented in Engle et al. (2013) to assess model performance of the 

GARCH-MIDAS models. The statistic, which is the ratio of the MSE of conditional variance forecasts of the m-competing 

model e.g. 𝑅𝑅𝑅𝑅𝑚𝑚,𝐺𝐺𝑀𝑀𝑀𝑀
𝜎𝜎2  relative to MSE of the total variance forecast of the benchmark model i.e. GM-RV model, is defined 

as,  

𝑀𝑀𝑀𝑀𝐸𝐸 𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑙𝑙 ≡ 𝑅𝑅𝑅𝑅𝑚𝑚,𝐺𝐺𝑀𝑀𝑀𝑀/𝑅𝑅𝑅𝑅𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝐺𝐺𝑀𝑀𝑀𝑀, for 𝑀𝑀 = 1,2, … ,𝑚𝑚.  

These ratios are computed for both long-term and the total variances of all the competing models with reference to 

corresponding MSE of the benchmark model. Given that the benchmark model is in the denominator, a ratio of less than 

one implies an improvement over the benchmark model. . In other words, a ratio lower than 1 indicates a lower loss of 

accuracy in the sample of competing forecasts compared to the GM-RV benchmark model. 

4.2 Pairwise tests of equal predictive ability 

Tests for equal predictive ability (EPA), in a general setting, were proposed by Diebold and Mariano (1995) and West 

(1996). The DM test is used to compare the prediction accuracy of two competing models with the null hypothesis of no 

difference between the accuracy of two competing forecasts.  

The relative performance (RP) measure between the loss function, which in our case is quadratic, of two competing models 

is: 

𝑅𝑅𝑃𝑃𝑘𝑘,𝑡𝑡 ≡ 𝐿𝐿𝑚𝑚,𝑡𝑡 − 𝐿𝐿𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡, for 𝑀𝑀 = 1,2, … ,𝑚𝑚       (9) 

While the test proposed by Diebold and Mariano (1995) focuses on EPA and is pairwise, testing whether a particular 

forecasting procedure is superior to the alternative forecasts requires a test of superior predictive ability (SPA). Therefore, 

 
18 The POS, which could also be regarded in-sample fitting, is a  terminology that follows from Engle et al. (2013) and is adopted for 
ease of comparison.  
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we carry out robust tests of superior predictive ability proposed by White (2000) (hereafter, RC test) and Hansen (2005) 

(hereafter, SPA test). These tests are explained below. 

4.3 Tests for superior predictive ability 

Utilizing the terminologies set earlier, the null hypothesis under both White’s (2000) RC test and Hansen’s (2005) test states 

that among competing models, the one with the smallest loss i.e. 𝐿𝐿𝑚𝑚,𝑡𝑡  is not any better than the losses given by benchmark 

model i.e. 𝐿𝐿𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡. However, rejecting the null hypothesis means that at least one model produces smaller forecasting 

errors compared to the benchmark. The loss functions, 𝐿𝐿𝑚𝑚,𝑡𝑡 and 𝐿𝐿𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅,𝑡𝑡 for all the models are taken together via the 

relative measure as shown in equation (9), i.e. multiple testing is carried out to examine the superiority of the benchmark 

relative to the best performing model in the competing space or vice a versa.  

Using numerical results, Hansen (2005) shows that White’s reality check test is conservative at detecting the SPA of 

competing models relative to the benchmark model forecasts and aggressively favours the null hypothesis (the benchmark 

forecasts) when the alternate model space contains poor and/or irrelevant forecasts. Hansen articulates this drawback and 

states that the p-value can be spuriously increased when inferior models are present in the spectrum of models. This is due 

to the variance of the loss function of a poorly specified 𝑚𝑚-model 𝐿𝐿�𝑚𝑚,𝑡𝑡, which may remain large even after the inclusion of 

better models. He further proposes two modifications to the original RC test, the first uses studentized test statistic and the 

second specifies a sample-dependent null distribution for the test statistic.  

Hansen (2005) document that the approximate distribution of the Hansen’s SPA test-statistic is obtained using the stationary 

bootstrap of Politis and Romano (1994), similar to RC SPA test-statistic. Nonetheless, the resultant test-statistic has greater 

power and is less sensitive to poor or irrelevant specifications resulting in the non-rejection of the null hypothesis. Hansen 

(2005) considered different adjustments to equation (9) to get the three versions of the studentized test statistics that depend 

on the variance of 𝐿𝐿�𝑚𝑚,𝑡𝑡.  

5 Data 

Our data set contains the market MSCI equity indices (obtained from DataStream) of four major global markets: France, 

Germany, the UK and the US The daily and monthly dollar prices of these indices are retrieved from Thomson Reuters 

DataStream for the period from January 1994 to December 2016. We compute continuously compounded returns: 𝑟𝑟𝑖𝑖 =

ln(𝑃𝑃𝑖𝑖) − ln(𝑃𝑃𝑖𝑖−1) for all four equity indices, where P represents the daily closing index price levels and i is the day index.  

The equity markets considered in our study provide consistency and a coherent developed market perspective and therefore, 

are crucial for global investors, portfolio managers and institutional investors considering the criteria of investibility, 

replicability and cost efficiency. This is displayed by the fact that MSCI USA alone makes 54% of MSCI all country world 

index and France, Germany and the UK make up in aggregate 60.72% (17.34%, 15.02% and 28.36%, respectively) of the 

MSCI Europe index that covers 85 percent of free float capitalization of European equity markets. These indices underline 

many financial derivative products, exchange traded funds etc. and therefore forecasting its volatility is crucial for pricing, 

risk management and asset allocation decisions.  

[Insert Table 1] 

The macroeconomic variables, retrieved at the monthly frequency, for comparable periods are taken from three different 

sources. The data for France, Germany and the UK are taken from the Eurostat database, whereas the US data come from 

the Federal Reserve Bank of St. Louis i.e. the FRED database. If the macro data were unavailable from either Eurostat or 

the FRED, we used the Organization for Economic Co-operation and Development (OECD) database. From these monthly 

values the growth rate is computed as the natural log difference, except for the term structure of interest rates where we 
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take the simple difference of the yields 10-year maturity bond and monthly T-bills or any monthly duration interest bearing 

security.  To compute the macro-volatility of undertaken aggregate variables in our work, we use innovations from 

autoregressive-moving average (ARMA) models applied on each macro variable growth series (Schwert 1989). 19 

In total, we estimate GM models using eight macroeconomic variables: the term structure of interest rates (TermStr), the 

exchange rate (EXR), the narrow money (NM), the broad money (BM), the consumer price index (CPI), the industrial 

production (IP), crude oil prices (Oil) and the unemployment rate (UnEmp). 20  These macro variables are strongly 

interdependent, especially for developed countries and using them simultaneously, can cause issues pertaining to multi-

collinearity, over parameterisation and model convergence.21  To deal with these aspects, we employ dynamic principal 

component analysis (PCA) on these eight macro series, for each country, to assimilate information that explains the variance 

of these variables through meaningful and integrating components.22 Furthermore, Asgharian et al. (2013) and Virk and 

Javed (2017) have shown that integrated changes in the macro environment, as captured by the first two components coming 

from PCA analysis, have clear information benefits relative to GM model that uses a singular macro variable. Therefore, in 

addition to the eight macro variables, we take the first two components from the PCA analysis for each market when we 

estimate competing and benchmark models in this study. The summary statistics for the daily returns and squared returns 

on all four equity indices are presented in Appendix Table AI. 

[Insert Figures 1 and 2] 

[Insert Tables 2 and 3] 

6 Empirical results and discussions 

6.1 sections 5.2, 5.3. Tables 5 and 7 from IRFA. Plus Table 9. Put Tables 6, 8, 10 in the Appendix.  

We start our estimation period from January 1999 so we can capture recent trends in market volatility.23 To maximise on 

changing trends in the period prior to year 1999, we employ MIDAS lags of 5-year24 duration starting from January 1994. 

Hence, the one step ahead volatility is forecasted with 5 years of lagged RV and/or macroeconomic data depending on 

model specification.          

Table 1 shows the set of GM models that are competing against the benchmark GM-RV model. Furthermore, for all models, 

we estimate two GM models: the first in levels using the growth in the macro variables or the principal components, see 

equation (6) and the second is when the lagged volatilities of each of the macro variables or the principal components are 

taken together with the lagged levels, see equation (7). Finally, given the noted gains of principal components in improving 

the GM forecasting ability in Asgharian et al (2013) and Conrad and Loch (2015), we augment our benchmark model GM-

RV with PC1 or PC2, see models 12 and 13 in Table 1 and equation (8) for reference.  

 
19 We use innovations after fitting a best fit ARMA model as given by Bayesian information criterion. 
20 The exchange rate for France, Germany and the UK are taken against USD, whereas for the US we take it against a basket of 
currencies, as provided by FRED. 
21 The issues pertaining to convergence for MIDAS regressions was frequented quite often due to non-convex objective function when 
we employed flexible weighting in search of optimal weight structure to exploit the information content in each aggregate variable. 
22  PCA analysis has the benefits of over parametrization in model estimations when conditional variance can be influenced by a range 
of factors and effectively removes noise from the signal. We apply the dynamic PCA such that the stationary macro series are transformed 
to have standard normal distribution with zero mean and unit variance. We note that the first two components from dynamic PCA 
invariable explain 70-90 % of the variability in the total factor variance of the macro environment of economies investigated in our work. 
23 This choice is to alleviate any potential structural breaks that are potentially possible due to the changing patterns in the run to 
introduction of the Euro that may affect the estimation of conditional volatilities, both total and long term, when their evolution may depend 
on different macro variables. This is especially applicable to the European markets. 
24 Different lag structured are implemented in the estimation process, and based on optimal convergence of the model together with 
minimum use of data for smoothing, 5-year lag (K=5) is selected. 
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In sum, we compare the performance of 26 competing models against our benchmark GM-RV while using two different 

weighting schemes.25 That is, all GM models are estimated with unconstrained weights (both the 𝑤𝑤1 and 𝑤𝑤2 are estimated) 

or constrained weights (when only 𝑤𝑤2 is estimated and 𝑤𝑤1 is kept fixed, i.e., 𝑤𝑤1 = 1) for the beta smoothing function 

𝜙𝜙𝑘𝑘  (𝑤𝑤1,𝑤𝑤2) for each lagged input variable in the MIDAS filter. 26 

6.1 Forecasting errors of the competing models relative to benchmark model 

In this section, we compare the relative performance of the quadratic loss functions of all competing models relative to total 

and secular component forecasts coming from the benchmark GM-RV model. Table 2 presents these ratios using the 

unconstrained/flexible weighting scheme in the MIDAS filter for all four markets. As noted in Engle et al. (2013) the 

measure of forecasting, or relative performance covers POS forecasts: the parameters for all GM models are estimated using 

the full sample, and the forecasts for next month are computed using month end price data.  

The MSE ratios under the headings 𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  and 𝜏𝜏𝑤𝑤1,𝑤𝑤2 are, respectively, for the total variance forecasting errors and the 

secular components. As described earlier, we estimate two GM models for each MIDAS input variable. Therefore, columns 

under the heading of 𝑋𝑋𝑙𝑙 describe the ratios of the models that use the level of first order change in the input variables, while 

the columns under the heading 𝑋𝑋𝑙𝑙+𝑣𝑣 describe the ratios for models that use both the levels and the volatility of the input 

variables in the MIDAS filter.  

The vast majority of the ratios reported in the Table 2 across all four markets are less than one which indicates that several 

competing models outperform the conditional predictions given by the GM-RV model. This result highlights the benefit of 

incorporating macro information in forecasting total and long run variance component. 

However, there are exceptions – a higher quadratic loss is noted in some instances. For France, for both total and long run 

variance predictions, the MSE ratio is above one when the competing GM model’s MIDAS input variables are level and 

variance of TermStr or EXR, uses CPI related information variables, level of UEmp, PC2 or when PC1 and PC2 are taken 

together.  The same is observed for German data for competing GM models that include level of BM, level and volatility 

of PC1, either combination of input variables that use PC1 and PC2 in the MIDAS smoothing.  The best chance for the 

benchmark model, as shown by the MSE ratios, is reserved for GM estimations carried out for the UK: in 22 out of 52 MSE 

ratios the benchmark predictions brought smaller forecasting errors. In the US data, the benchmark model GM-RV is also 

outperformed by most of the competing GM models. Exceptions apply for GM models with CPI (both total conditional and 

long run variance forecasts), UEmp or PC1 (in either, only the total variance forecasts). 

The best model across the three European markets is the GM-RV+PC1 model using both level and volatility of the PC 

variable in the MIDAS smoothing.  Using this model, the quadratic loss of total and long run variance forecasts of the 

benchmark can be approximately reduced by 10% for France, by 7% for Germany and 10% for the UK. In the US, the 

model that brings largest efficiency in reducing forecasting errors, and in the prediction of conditional total and long run 

variances, is the GM-PC1+PC2 model that brings an efficiency of up to 15% and 17%, respectively.   This performance in 

the US market is followed by GM-RV+PC1 and GM-TermStr. 

 
25 We also compare the MSE forecasting errors of competing errors using another benchmark where we fix the RV in a month i.e. a fixed 
span GM-RV model. The results of these comparisons are available upon request and qualitatively resemble what we report using the 
benchmark GM-RV model in this study. 
26 The GM estimations show that, across all models and markets, the estimates in the GARCH model are usually significant at 5% or 
below critical t-values and estimate values are in line to the vastly available evidence for GARCH (1,1) models. The regression 
coefficients, in all models and across markets, on RV in the MIDAS regressions are positive and super significant regardless of the choice 
of weighting scheme. However, we note that MIDAS input variables in the competing GM models are more often significant with 
unrestricted weighting scheme at conventional 5% critical t-values. The significance of these estimates with the restricted weighting 
scheme reduces drastically. These results are not reported to conserve space for the large number of regressions, with even larger 
number of regression estimates, carried in our work and available upon request.  
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We replicate the results in Table 2 using restricted beta smoothing function: 𝑤𝑤1 = 1, where only 𝑤𝑤2 is estimated as a free 

parameter for each input variable in the MIDAS filter. Table 3 provides the MSE ratios with constrained beta smoothing 

and the evidence against the benchmark model forecasts is starker than that observed with the flexible weighting scheme in 

(Table 2). These results are almost entirely uniform across the four markets. There are two exceptions:  one for France, 

where the GM-RV+PC2 (either using level or level and volatility together in the MIDAS filter) has a larger MSE than the 

benchmark model and the other for the UK, where the RP ratio of the GM-BM using the level and volatility of the input 

variable is above 1.   

Within these general gains of using macro variables (on their own or through PCs), the improvements in predicting the 

volatility of the US equity market are relatively higher than improvements found in other markets. The ratios of the macro 

models in the US are relatively lower, and this applies to both the total and long run variance forecasts across all models. 

The largest improvement of almost 19% is observed, relative to the benchmark GM-RV model forecasting error, when the 

level of the term structure of interest rates is used in the GM model. Other notable GM models that bring large improvements 

(approximately 14-16%) include GM-Oil, GM-UEmp and GM-CPI against the common benchmarks for the total and 

secular variances coming from GM-RV model benchmarks.  

The gains in accuracy are lower for the UK market than gains seen in the conditional variance predictions for the US market, 

but they are higher than the accuracy gains observed for France and Germany. For instance, in the UK the maximum gain 

in predicting total volatility is around 10% and it is achieved when we use the information related to changes in TermStr or 

crude oil prices. The quadratic loss of the monthly secular trend in the conditional variance can also be reduced by a 

maximum of 10% by using growth in crude oil prices or the unemployment rates in the GM models. In Germany and France, 

the gains in forecasting total and long run volatilities by the competing GM models with IP or the UEmp (with levels only) 

bring meaningful differences. For France, other notable models outperforming the benchmark forecasts are GM-CPI (level 

and volatility) for the secular component and GM-PC2 and GM-PC1+PC2 (in either case, level only) for the total variance 

forecasts. The MSE efficiency gains for using these variables in the MIDAS regression are in the range of 8-9%.  

[Insert Tables 4 and 5] 

We also note that including the volatility of the input variables together with the levels does not necessarily result in a more 

accurate forecast while employing the restricted weighting scheme. For instance, in the US the model that uses the term 

structure level is preferable to all other models. However, the accuracy of this model is significantly reduced from 19% to 

13% when the volatility of the term structure is used as an additional predictor. 

If the imposed variance evolution structure is unrelated to the relatively unconvincing performance of GM models that add 

volatility of input variables, this drop in accuracy might be attributed to over-parametrisation, small sample bias and 

parameter estimation errors.27 Obviously, in our case, for most variables the levels seems to have more explanatory power 

than the volatilities. 

6.2 Pairwise model comparisons: tests of equal forecasting ability  

The quadratic losses reported in Tables 2 and 3 are only sample estimates and hence, we need to infer the accuracy of the 

models in the population. We proceed by conducting a pairwise comparison using the DM test, defined in equation (9), to 

compare the forecasts of the GM-RV benchmark for both total and long run variances in the set of competing models. These 

results are reported in Tables 4 and 5. 

 
27 Asymptotically, the larger model may not produce less accurate forecasts than the smaller model. But in finite samples this may occur 
due to small sample bias or parameter estimation errors.   
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The bold (negative) statistic values for the DM test in Table 4 imply that the competing model outperforms the benchmark 

model forecasts at conventional 5% or below significance levels. Thus, considering the bold and negative DM test statistic 

values in Table 4, there is overwhelming evidence that the competing models’ POS forecasts, for both total and long 

variances, bring efficiency gains in reducing MSE relative to the benchmark model. These results are consistent across the 

four countries in the sample. Furthermore, we note that the competing GM models that perform well in the MSE ratio tests 

have the largest DM test statistic values i.e. their ability to suppress MSE relative to benchmark model is super significant.  

Table 5 shows the results with the restricted weighting scheme. The EPA (beneath the heading 𝜎𝜎𝑤𝑤22 )  for the majority of the 

competing GM models’ total variance forecasts is rejected – Germany is only exception where 13 models reject GM-RV 

model’s total variance forecast.  

 This implies that the DM test statistic values are not statistically significant at conventional levels. There are scattered 

instances in which the DM test statistic values are significant e.g. for the long run variance in France GM models with 

changes in BM and CPI. In the UK, the GM models with the EXR changes and together with its volatility do the same. In 

the US, no competing GM models beats the benchmark in forecasting total volatility. Only for Germany do the total variance 

EPA tests show that a larger number of the competing GM models match to the benchmark model forecast: out of 26 there 

are 15 GM models in which the DM test statistic values are statistically significant. With respect to long run forecasts (under 

the columns 𝜏𝜏𝑤𝑤2) the results show the opposite picture. All competing models, across all markets, have EPA as of the 

benchmark model secular forecasts:  the DM test values reject the null at 5% or below significance values.  

We note that the DM tests with the restricted weighting scheme casts doubt on the proclaimed usefulness of macro 

information in the GM models: when it comes to total variance, the evidence against the benchmark model forecast weakens 

drastically. That is, as our results show that even the model that uses RV and PCs with restricted weighing does not 

outperform the benchmark forecast for the total variance these results question the inference coming from the so-called 

informative, MSE, ratios. Furthermore, given the statistical rigor of the DM test compared to the MSE ratios, we note that 

different weighting schemes generate different test values and consequent inferences. We make two interlinked 

observations. First, the non-EPA of the competing GM models for the total variance forecasts with the restricted weighting 

scheme is consistent with the results in Engle et al. (2013) and Conrad and Loch (2015): they report that the restricted 

weighting scheme is optimal for the GM-RV model. We show superimposing restricted weighting on competing GM 

models is potentially inapt. Second, this stresses the importance of estimating the best weighting combinations for GM 

models that incorporate macro variables to let these specifications have a full chance computing their variance forecasts 

relative to the benchmark forecasts. This is particularly applicable in the evaluation of the total-variance forecasts.  

Nonetheless, this does not appear to influence the evidence against the long run variance forecasts: macro information 

improves forecasting efficiency of MIDAS component using either weighting scheme. This aspect was previously noted 

with restricted weighing in Asgharian et al. (2013).  

[Insert Table 6] 

6.3 Multiple model comparisons: tests of superior predictive performance  

The previous sections have collected evidence that shows how (relatively) weak the benchmark model is: many models 

outperform the GM-RV model. Invariably, the DM test shows that the inferences from MSE ratios are sensitive to which 

type of weighting scheme is adopted when evaluating total variance forecasts. Although our specification search for a good 

forecasting model is extensive and has samples from four countries, it is possible they are the results of coincidence and 
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data mining. To deal with this, we carry out the reality check (RC) (White, 2000) and superior predictive ability (SPA) tests 

(Hansen, 2005).  

Following the null hypothesis that no model is better than the benchmark model, the RC and SPA tests are not only robust 

to data snooping issues but are also more powerful in their ability to jointly compare the performance of multiple models. 

A rejection of null implies that there is at least one model in the competing set of models which is better than the benchmark 

model.28  

Before examining the results of multiple testing using RC and Hansen SPA tests, we assess how many of the 26 competing 

models for each market outperform the benchmark model using the naïve p-values. Note that, the naïve p–values are the 

bi-model – a variant of DM test – bootstrapped RC test values that are computed as if the best model is the only model in 

the competing model space. These p-values are an important signal to check for the data snooping bias. White (2000) shows 

that the naïve p-values are the lower threshold for the RC multiple test p-values: therefore, he suggests it is only meaningful 

to test for data snooping bias when the p-values are small.  

[Insert Tables 7 and 8] 

As the RC test with naïve p-value below 0.05 implies rejecting null, we count all the instances for variance forecasts (both 

total and long run) and divide them by the total number of competing models (i.e., 26 in this case).  We report these 

proportions in Table 6 for the POS loss functions. Results show that no model has efficiency gains in forecasting total 

volatility using either of the two weighting schemes. This result is observed for all the four markets.  

However, there are quite a few competing GM models that outperform the benchmark model’s long run variance forecasts. 

The results for the US results are one exception. Further, we note that using naïve p-values results, there are more competing 

GM models with SPA when unrestricted weighting is used relative to restricted weighting scheme. This is again endorses 

our expectation that using the restricted weighting scheme can undermine the utility of macro information in GM models.  

These results, together with the findings reported in sections 6.1 and 6.2, show that there are competing GM models that 

can be more informative or can reduce MSE more than the benchmark model. However, this inference is not applicable for 

total variance forecasts when examined by DM test with restricted weighting scheme or by naïve p-values using either 

weighting scheme. Thus, this observation questions the practice of drawing inferences from of simplistic tests combined 

with a restricted weighting scheme, at least for the total variance comparisons. But it also suggests increased caution in 

evaluating GM forecasts coming from competing models. 

Therefore, robust SPA tests that account for multiple testing are critical when carrying out model comparisons to improve 

inferential reliability. Table 7 shows these results for the RC test and Hansen test. Following Hansen (2005), we compute 

three test statistics for the consistent (centre, c), upper (u) and lower (l) bounds for both RC test and Hansen test. A 

substantial difference between these upper and lower bounds indicate the presence of poor alternative specifications (for 

details, see Hansen 2005). Each test-statistic p-value is computed from 1000 bootstrap resamples and bootstrap parameter 

q= 0.25. 29 Nonetheless, for ease of discussion, we only refer to the consistent p-values in this section. The least naïve p-

value from the pairwise RC tests is also reported to see the full effect of the joint testing to capture the data mining bias.30 

 
28 Both are tests for superior predictive ability as ruled by the null hypotheses of RC/White test and SPA/Hansen test 
29 Our results remain unchanged if we increase the number of bootstrap samples to 10,000. Furthermore, we assess the sensitivity of 
the SPA results with different values for bootstrap parameter ‘q’ that controls for time dependence: a q=1 completely ignores the time 
dependence. The results using lower time dependence than q=0.25 do not alter our results in any manner. We also note that Hansen 
(2005) and Gonzalez et al. (2004) also use time dependence values of q=0.25 that accounts for substantial time dependence 
corresponding to the empirical observations in the time series modelling of the equity volatility.   
30 White (2000) reports that the difference between the naïve p-value and RC test can described as the data snooping bias in the 
specification search of better models than the benchmark model. 
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The provided p-values for the long run variance forecast comparison show that the naïve p-values are far lower than the 

test statistics that employ multiple testing and are thus, biased against the null. The p-values for all six test statistics i.e. 

RCL, RCC, RCU, HansenL, HansenC, and HansenU are fairly large and do not reject the null for the total variance forecast 

comparisons. In other words, the benchmark model’s total variance forecast cannot be out-performed given the RV based 

approximation of unobservable daily volatility. In most cases the data snooping bias is at least as large as the naïve p-value 

itself. This is a startling inference which, when linked with the results given by the DM test, especially with flexible 

weighting, shows that the results from even the DM test are untenable when the data snooping bias is considered.  

However, the picture is slightly different in the case of long-term volatility forecasts.  The joint testing substantiates the 

conjecture that at least one of the competing models, which incorporate economic information, generates a more accurate 

long-term volatility forecasts than benchmark. The null hypothesis is rejected by both RC and Hansen SPA tests when the 

flexible weighting scheme is employed. For the restricted weighting scheme, the same inference follows and again the only 

exception is the US results.  

For the US, the benchmark model’s prediction for the long run volatility show superior predictive ability: the naïve p-value 

for the best performing model is 0.143 which is a lower bound for the more stringent RC and Hansen test values for the 

null.   Here we also note the advantage of the Hansen test, as highlighted in Hansen (2005): its p-values are fairly lower 

than the corresponding RC test statistic values. For example, in the US secular variance forecast comparisons when 

restricted weighting is used RCc is 0.72 while Hansenc p-value is 0.467. 31 For the US data, our results are in accordance 

with findings reported in Conrad and Kleen (2020) that the GM RV model is outperformed by models involving 

macroeconomic information. 

Overall, we infer that GM models incorporating macroeconomic information may bring benefits in forecasting the long run 

variances but the same cannot be concluded with respect to their total variance forecasts.  

[Insert Table 9] 

In order to check the sensitivity of the results reported in Table 7, we replace RV with two other variance proxies i.e. 

conditional variance forecasts from GARCH (1, 1) model and variance of implied volatility indices of the markets 

undertaken in this study.32 We recalculate the MSEs as: 

 

ℎ𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2 ≡ 1
𝑇𝑇

(ℎ𝑖𝑖,𝑡𝑡 − 𝜎𝜎𝑖𝑖,𝑡𝑡,𝐺𝐺
2 )2    and   ℎ𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏 ≡ 1

𝑇𝑇
(ℎ𝑡𝑡2 − 𝜏𝜏𝑡𝑡,𝐺𝐺)2,  

𝐼𝐼𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2 ≡ 1
𝑇𝑇

(𝐼𝐼𝑅𝑅𝑖𝑖,𝑡𝑡2 − 𝜎𝜎𝑖𝑖,𝑡𝑡,𝐺𝐺
2 )2    and   𝐼𝐼𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏 ≡ 1

𝑇𝑇
(𝐼𝐼𝑅𝑅𝑡𝑡2 − 𝜏𝜏𝑡𝑡,𝐺𝐺)2. 

where the ℎ𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2 , ℎ𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏 , and 𝐼𝐼𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜎𝜎2 , 𝐼𝐼𝑅𝑅𝐺𝐺𝑀𝑀𝑀𝑀𝜏𝜏  are, respectively, the loss functions computed for total and long run variances 

using GARCH (1,1) and the square of implied volatilities of each of stock markets.33 

 
31 Hansen (2005) show that RC tests can be manipulated in the presence of poor and irrelevant alternatives in the sample of models. 
This results in less power and non-rejection of the null hypothesis. Hansen (2005) alleviated this problem in his version of the SPA test 
by invoking a sample-dependent distribution under the null hypothesis. 
32 The benchmark model gives total and long run variance forecasts by smoothing RV in the MIDAS regression, it is potentially true that 
choice of variance proxy is driving the results that we report in table 9 using robust tests that account for multiple testing. 
33 We retrieve data for the implied volatility proxies for respective country equity index from DataStream and Chicago Board of Exchange 
website. Both, daily and monthly implied volatility indices on CAC40, DAX30, FTSE100 and S&P500 for France, Germany, the UK and 
the US, respectively are downloaded. The implied volatilities indices on DAX30 and S&P500 are available for the matching period, 
whereas for CAC40 and FTSE100 these indices begin from January 2000.   The DataStream codes for the implied volatility of the CAC30, 
the DAX30, and the FTSE100 are the CACVOLI, the VDAXNEW, and the VFTSEIX respectively. 
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The results of multiple testing with these loss functions, for the total and long run variances and for the flexible and restricted 

weighting schemes, are presented in Table 8.  In summary, the crux of evidence reported in Table 7 is replicated in Table 

8. This implies that our results are insensitive to choice of variance proxy in the POS model forecast comparisons.  

6.4  Out-of-sample model forecast comparisons 

Until now we have carried out all tests on the pseudo out-of-sample forecasts (Engle et al. 2013, Conrad and Loch 2015). 

However, to test the full effect of our results reported in Tables 7 and 8, we compare the out-of-sample (OS) forecasts of 

all the competing models using a rolling window forecasting scheme. 34 To conduct the out of sample forecasts comparison, 

we get OS conditional total variance and long run variance forecasts for 2012-16 for one year at a time.  

[Insert Tables 10 and 11] 

Procedurally, the parameters are obtained using a rolling 13-year estimation window for each GM model, which are held 

constant during the subsequent year to compute daily (252 step-ahead) total variance and monthly (12 step-ahead) long run 

variance forecasts. The estimation sample is then moved one year ahead to re-estimate the parameters and the forecasts are 

made for the next subsequent year and so on. Thus, we perform this procedure five times to obtain total and secular variance 

forecasts for years 2012, 2013, 2014, 2015 and 2016. The estimation windows correspondingly cover rolling sample periods 

of 1999-2011, 2000-2012, 2001-2013, 2002-2014 and 2003-2015. 

Here again, before getting into the implications of robust multiple SPA tests, using the naïve p-values (below 0.05) we 

count the number of competing models’ forecasts, both for the total and long-term variances, that have SPA compared to 

the benchmark. The results are presented in Table 9 and these show that several competing models that might have SPA 

than the benchmark model. Can this be replicated using more powerful/robust tests?  

We present the p-values for the RC and Hansen tests in Table 10 for the out of sample forecasts. Table 10 shows that using 

the flexible weighting scheme the RC tests have large p-values and null cannot be rejected at 0.05 significance p-values for 

the total variance forecast errors for any market. On the contrary when it comes to the Hansenc statistic: the SPA of the 

benchmark total variance forecast is rejected for all except for Germany. However, even for Germany the null can be 

rejected at 10% confidence test values: p-value for the Hansenc test statistic is 0.088. With the restricted weighting scheme, 

both tests reject the notion that competing models’ forecast have SPA for the total variance relative to the benchmark model 

forecast.  

The OS forecasting comparisons for the long run variance forecasts, for either type of weighting scheme, is more similar to 

what we have seen in Table 7 for the POS comparisons. That is, using the flexible weighting scheme, the RCc and Hansenc 

statistic p-values reject null for all the markets. However, with fixed weights the SPA of the benchmark model’s long run 

forecasts are not rejected for France or the US. The non-rejection of the null for France is borderline and can only be rejected 

at 10% confidence levels using Hansen central test statistic p-values.  The non-rejection of the US long run variance forecast 

in POS and OS comparisons while adopting restricted weights signifies what we have asserted earlier: a simplified 

weighting scheme can contaminate the actual forecast evaluation inferences.  

We redo the OS multiple tests using alternate variance proxies coming from GARCH (1, 1) and implied volatility indices. 

The resultant p-values are presented in Table 11. Overall, there are no differences to what we reported using RV as a proxy 

for the latent variances. The only exception is the non-rejection of the null for France total variance forecast comparison, 

whereas with RV (Table 10 using Hansen central test statistic) we were able to reject the null hypothesis.  

 
34 Multiple step ahead forecasts for long periods such as five years are not feasible in the context of the models examined in our work, 
knowing latent variance is time varying and the expected future value of the macroeconomic growth and volatility is not measurable given 
the time of forecast information filter. 
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7 Summary of results and conclusions 

To summarize, we divide our results in two parts for ease of description. In the first part, we replicate evidence from Engle 

et al. (2013) and Asgharian et al. (2013) using pairwise MSE ratios and DM test and provide new results using French 

German and British financial and economic datasets. These tests are carried out using the one step ahead GM variance 

forecasts. In the second part, we complement new evidence in the GM variance forecasting literature by examining data 

snooping issues in making the forecast comparisons among GM models.   

Our results from the first part show that the MSE of the GM models that include macro information, alone or with the RV 

in the MIDAS regressions and with either type of weighting scheme, are smaller than the benchmark model. These findings 

are consistent with earlier studies. We find that total and long run variance forecasts from the GM model that use RV and 

PC1 give the best performance across all markets when we use a flexible weighing scheme. While results using restricted 

weighting scheme find even better results when using macro information in the GM models.   These findings are also 

confirmed by the EPA DM test – only problem found is the use of restricted weight in forecasting total variance. That is, 

the DM tests provide overwhelming evidence that the competing models POS forecasts, for both variance components, 

bring efficiency gains while using the flexible weighting scheme. These results are uniform across the four countries. 

However, when we adopt restricted weighted scheme the consistency in results is only witnessed for the long run variance 

forecasts.            

Drawing together the results of MSE ratios and the DM test, we note that there are differences in forecasting gains while 

using a particular weighting scheme in the MIDAS smoothing using either type of tests. However, the use of informative 

ratios in making reliable inferences is untenable. Furthermore, the DM test illustrates that the benchmark total variance 

forecasts underperform using unrestricted weighting scheme compared to the same tests with a restricted weighting scheme. 

This observation implies that projecting a weighting structure that is optimal for the GM-RV model may result in limiting 

the scope for the macro variables in the GM models to predict the secular variance component. Thus, we suggest that 

econometricians and practitioners should be wary of this simplification while searching for precise and reliable variance 

forecasts. Essentially, superimposing a particular evolutionary structure in MIDAS may yield results that favour null even 

when that is not the case. Therefore, incorporating relevant low frequency information, and the consequent evolution and 

approximation of variances, should not be comprised by resorting to a general weighting pattern that might not be suitable 

due to its data generating process. 

The low reliability of these results when assessed through powerful tests that account for data mining endorse our 

scepticism: joint testing shows that no model outperforms the benchmark model’s total variance forecast in all markets. 

However, evaluation of the long run variance coming from competing GM macro models there are clear gains over the 

benchmark model’s secular trend. With respect to multiple testing we also note the value of pairwise tests:  if the p-value 

for DM test or naïve robust test is large, there is no need to test for data snooping biases because, as White (2000) reports, 

p-values from multiple tests can only be larger than the naïve p-value. However, caution should be the primary concern 

when the p-values from the tests with EPA or naïve p-values are small. Overall, the generality of our main results with 

respect to scepticism to data snooping biases and adoption of a particular weighting scheme persists for using different 

proxies for latent variance and using a rolling OS forecasting scheme. 

We summarize our results by making the following four observations. First, our results show that inferences based on 

informative or pairwise model comparison tests can be misleading, especially when they are about the gain from using 
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macro information in projecting total GM variance. This is especially dangerous when we have seen the evolving evidence 

studying GM models have generalized the evidence for total variance to long run variance forecasts. Second, we show that 

GM models are an important addition in forecasting volatility at different time frequencies but we have to be cognizant of 

what type of variance forecast we are looking for. Third, we should not compromise the weighting scheme for the MIDAS 

input variables by making ad hoc choices and, fourth, we should be wary for data mining biases that may plague a forecast 

that otherwise appear statistically validated. 

These results are important given the demand for reliable, accurate variance forecasts for devising risk planning and 

management protocols at institutional and individual levels, especially since investors vary in their investment choices 

across time horizons; e.g. active and passive investment decisions require variance forecasts for two different investing 

styles. Therefore, using macro variables adds information that improve modelling and forecasting of long run or total 

variance, we should capitalize on it. This applies when there are several low frequency processes which contain the relevant, 

independent information needed to forecast latent variance for different time horizons. For example, the term structure of 

interest rates is widely used by analysts to predict economic expansions and contractions. Flattening of the yield curve 

predicts recessions while its steepening occurs prior to expansions. As equity markets become more nervous prior to an 

impending recession, volatility increases. These examples illustrate how the term structure is intuitively linked to the future 

volatility of financial markets. Furthermore, markets are always looking for employment figures in order to foresee the 

future performance of the economy. To this effect, our results pick up these independent information channels while taking 

appropriate caution to ascertain at what frequency these gains are established, and where the benefits are erroneously 

simplified. In the GM modelling, we recommend use of high frequency data to develop precise proxies for latent variance 

to compare forecasts and use of different dimensions of sentiment changes in varying market conditions are important areas 

for future research. 
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Table 1: The Set of Competing GARCH-MIDAS Macro Models 
The first line of the table shows the table benchmark model used in this study i.e. GARCH-MIDAS (GM) model that includes the 
monthly rolling window (RW) realized variance (RV) in the MIDAS filter. Models 1-11 only include the level of the listed macro 
variable in the GM model. The last two models, i.e. 12 and 13, add the level of the first and second principal components of all the 
macro variables shown in the table to the benchmark GM-RV model. We estimate 13 additional models that include both the level and 
the volatility of the explanatory variables in each of 13 competing models shown below. Hence, a set of 26 models compete against the 
benchmark GM-RV.  
Model  GARCH-MIDAS models  Acronym 
Benchmark model  realized variance (RV) GM-RV 
1 The Term Structure of Interest rates GM-TermStr. 
2 Exchange Rate GM-EXR 
3 Narrow Money GM-NM 
4 Broad Money GM-BM 
5 Consumer Price Index GM-CPI 
6 Industrial Production GM-IP 
7 Crude Oil Prices GM-Oil 
8 Unemployment GM-UEmp. 
9 First Principal Component, PC1 GM-PC1 
10 Second Principal Component, PC2 GM-PC2 
11 With PC1 and PC2 GM-PC1+PC2 
12 RV with PC1 GM-RV+PC1 
13 RV with PC2 GM-RV+PC2 
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Table 2 MSE Ratios using flexible weighting scheme in the GM models 
In all the estimated models, the MIDAS explanatory variables span the past five-year lagged data (from January 1994 to December 
1998). The models use monthly input variables except the benchmark model where we use monthly realized variance – 22 day rolling 
window – that is available daily. Thus, the two-component volatility models are fitted over the period of January 1999 to December 
2016 to carry out pseudo out-of-sample forecast comparisons using MSE ratios of competing model relative to GM-RV model i.e. the 
benchmark model. Results are presented in blocks for France, Germany, the UK and the USA. Here 𝜎𝜎𝒘𝒘2 and 𝜏𝜏𝒘𝒘 refer to the comparisons 
of total daily volatility and monthly secular volatility from competing k-models with the GM-RV model. The full sample parameters 
for each model are subsequently taken to compute the next period pseudo forecasts. The MSE of the forecasts given by each model is 
thus calculated, including the benchmark model, with respect to monthly RV. For each equity market, MSE ratios below 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and 
𝜏𝜏𝑤𝑤1,𝑤𝑤2 are computed when the parameters of the beta polynomial function are unconstrained (i.e. w1 and w2 for each input variable are 
allowed to be free parameters). The competing model is determined by the interaction of the models below the heading “competing 
models” with column headings 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑙𝑙+𝑣𝑣.  This implies that the MSE ratios are separated across k-models that use only the level of 
the MIDAS input variable i.e. 𝑋𝑋𝑙𝑙 and the ones that use the level and volatility of the input variables combined in the MIDAS filter i.e. 
𝑋𝑋𝑙𝑙+𝑣𝑣. All pseudo-forecasts are generated using fixed full sample parameter estimates as in Engle et al. (2013).  
    France Germany 
  𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 

Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. 0.988 1.004 0.992 1.008 0.971 0.987 0.970 0.986 
GM-EXR 0.995 1.004 0.999 1.008 0.994 0.981 0.992 0.980 
GM-NM 0.984 0.954 0.988 0.958 0.998 0.968 0.997 0.967 
GM-BM 0.986 0.989 0.990 0.993 1.003 0.994 1.001 0.992 
GM-CPI 1.009 1.008 1.013 1.012 0.967 0.967 0.965 0.965 
GM-IP 0.981 0.959 0.985 0.963 0.994 0.935 0.993 0.934 
GM-Oil 0.979 0.983 0.983 0.987 0.982 0.995 0.981 0.993 
GM-UEmp. 1.005 0.958 1.009 0.962 0.995 0.968 0.993 0.967 
GM-PC1 0.995 0.977 0.999 0.981 0.995 1.059 0.994 1.058 
GM-PC2 1.028 0.998 1.032 1.002 1.009 1.003 1.008 1.001 
GM-PC1+PC2 1.025 0.930 1.030 0.934 1.011 0.945 1.010 0.944 
GM-RV+PC1 0.916 0.901 0.920 0.905 0.972 0.934 0.970 0.933 
GM-RV+PC2 0.933 0.902 0.937 0.906 0.953 0.939 0.951 0.938 
 UK USA 
  𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 

Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. 0.977 1.001 0.992 1.017 0.899 0.904 0.882 0.887 
GM-EXR 0.998 1.031 1.014 1.047 0.964 0.966 0.945 0.947 
GM-NM 1.013 0.986 1.028 1.001 0.947 0.969 0.929 0.950 
GM-BM 0.999 0.999 1.014 1.015 0.992 0.988 0.973 0.970 
GM-CPI 1.014 0.991 1.030 1.006 1.028 1.023 1.008 1.004 
GM-IP 1.014 0.959 1.030 0.974 0.992 0.931 0.973 0.914 
GM-Oil 1.011 0.979 1.027 0.994 0.975 0.996 0.956 0.977 
GM-UEmp. 0.979 0.966 0.994 0.981 1.026 0.928 1.006 0.910 
GM-PC1 1.007 0.992 1.022 1.007 1.006 1.014 0.987 0.994 
GM-PC2 0.980 0.986 0.995 1.001 0.933 0.896 0.916 0.879 
GM-PC1+PC2 1.019 0.962 1.035 0.977 0.944 0.846 0.926 0.830 
GM-RV+PC1 0.932 0.901 0.946 0.915 0.939 0.898 0.921 0.881 
GM-RV+PC2 0.922 0.910 0.936 0.924 0.912 0.926 0.894 0.909 
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Table 3 MSE Ratios using constrained weighting scheme in the GM models 
In all the estimated models, the MIDAS explanatory variables span the past five-year lagged data (from January 1994 to December 
1998). The models use monthly input variables except the benchmark model where we use monthly realized variance – 22 day rolling 
window – that is available daily. Thus, the two-component volatility models are fitted over the period of January 1999 to December 
2016 to carry out pseudo out-of-sample forecast comparisons using MSE ratios of competing model relative to GM-RV model i.e. the 
benchmark model. Results are presented in blocks for France, Germany, the UK and the USA,. Here 𝜎𝜎𝒘𝒘2 and 𝜏𝜏𝒘𝒘 refer to the comparisons 
of total daily volatility and monthly secular volatility from competing k-models with the GM-RV model. The full sample parameters 
for each model are subsequently taken to compute the next period pseudo forecasts. The MSE of the forecasts given by each model is 
thus calculated, including the benchmark model, with respect to monthly RV – rolling window or monthly sum- as applicable to the 
sample of all models. For each equity market, MSE ratios below 𝜎𝜎𝑤𝑤22  and 𝜏𝜏𝑤𝑤2 are computed when the parameters of the beta polynomial 
function are constrained: weighting scheme fixes w1= 1 and w2 for each input variable in the MIDAS filter is estimated as a free 
parameter. The competing model is determined by the interaction of the models below the heading “competing models” with column 
headings 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑙𝑙+𝑣𝑣.  This implies that the MSE ratios are separated across k-models that use only the level of the MIDAS input 
variable i.e. 𝑋𝑋𝑙𝑙 and the ones that use the level and volatility of the input variables combined in the MIDAS filter i.e. 𝑋𝑋𝑙𝑙+𝑣𝑣. All pseudo-
forecasts are generated using fixed full sample parameter estimates as in Engle et al. (2013).  
 France Germany 
  𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Competing models 𝑿𝑿𝒍𝒍 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. 0.951 0.950 0.951 0.950 0.962 0.953 0.966 0.958 
GM-EXR 0.943 0.975 0.943 0.975 0.963 0.981 0.967 0.985 
GM-NM 0.960 0.958 0.960 0.958 0.968 0.967 0.973 0.971 
GM-BM 0.952 0.955 0.952 0.955 0.963 0.963 0.967 0.967 
GM-CPI 0.966 0.920 0.966 0.920 0.988 0.958 0.992 0.963 
GM-IP 0.937 0.971 0.937 0.971 0.946 0.944 0.950 0.948 
GM-Oil 0.944 0.972 0.944 0.972 0.955 0.971 0.960 0.976 
GM-UEmp. 0.934 0.949 0.934 0.949 0.952 0.964 0.956 0.968 
GM-PC1 0.974 0.963 0.974 0.963 0.987 0.980 0.992 0.985 
GM-PC2 0.914 0.983 0.914 0.983 0.950 0.960 0.954 0.965 
GM-PC1+PC2 0.931 0.974 0.931 0.974 0.963 0.985 0.967 0.989 
GM-RV+PC1 0.946 0.942 0.946 0.942 0.956 0.955 0.961 0.959 
GM-RV+PC2 1.018 1.020 1.018 1.020 0.952 0.957 0.957 0.962 
 UK USA 
  𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. 0.907 0.914 0.908 0.916 0.808 0.873 0.813 0.878 
GM-EXR 0.931 0.945 0.933 0.947 0.886 0.906 0.891 0.911 
GM-NM 0.932 0.932 0.934 0.934 0.900 0.901 0.905 0.906 
GM-BM 0.948 1.484 0.950 1.487 0.889 0.890 0.894 0.895 
GM-CPI 0.896 0.895 0.898 0.897 0.854 0.851 0.858 0.855 
GM-IP 0.916 0.919 0.918 0.921 0.882 0.864 0.887 0.869 
GM-Oil 0.889 0.918 0.891 0.920 0.862 0.914 0.867 0.919 
GM-UEmp. 0.910 0.906 0.912 0.908 0.847 0.865 0.852 0.869 
GM-PC1 0.942 0.937 0.944 0.939 0.921 0.920 0.926 0.925 
GM-PC2 0.895 0.922 0.897 0.923 0.860 0.863 0.865 0.868 
GM-PC1+PC2 0.905 0.929 0.906 0.930 0.872 0.878 0.877 0.883 
GM-RV+PC1 0.913 0.933 0.915 0.935 0.889 0.828 0.894 0.833 
GM-RV+PC2 0.895 0.910 0.897 0.911 0.883 0.882 0.888 0.887 
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Table 4 The Diebold Mariano test using unconstrained weighting scheme 
The table presents the t statistics of the Diebold Mariano (1995) test of equal predictive accuracy between pseudo out of sample forecasts 
from the GM-RV model and the competing k-models. The competing model is determined by the interaction of the models below the 
heading “competing models” with column headings 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑙𝑙+𝑣𝑣. Here the GM model below column 𝑋𝑋𝑙𝑙 refers to the specification using 
the levels of the MIDAS input variables only, while  𝑋𝑋𝑙𝑙+𝑣𝑣 refers to the GM model that uses the level of the input variable together with 
its volatility in the MIDAS filter. The 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  refers to testing the predictive ability of the total daily volatility forecasts of the macro 
model while the 𝜏𝜏𝑤𝑤1,𝑤𝑤2refers to testing the accuracy of monthly volatility forecasts. This implies that MIDAS beta polynomial across 
all models are estimated unconstrained. The test-statistic value significant at 0.05 or below p-values are presented in bold. 
 France Germany 
  𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 

Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. -2.209 -2.650 -2.557 -2.579 -4.197 -4.265 -12.815 -12.477 
GM-EXR -2.164 -3.138 -2.008 -2.873 -5.022 -6.146 -10.333 -9.833 
GM-NM -3.156 -4.460 -2.611 -3.740 -4.683 -5.327 -8.831 -6.899 
GM-BM -3.131 -3.321 -2.260 -2.237 -6.293 -4.568 -6.693 -9.461 
GM-CPI -2.378 -2.408 -2.128 -2.061 -3.904 -3.967 -4.148 -4.285 
GM-IP -2.247 -2.401 -2.394 -2.593 -4.404 -2.443 -9.221 -5.089 
GM-Oil -2.134 -3.623 -2.151 -3.287 -3.137 -4.390 -4.957 -9.711 
GM-UEmp. -2.955 -3.839 -2.655 -2.507 -5.849 -3.615 -9.658 -6.359 
GM-PC1 -2.286 -3.419 -2.209 -2.796 -5.743 -2.099 -7.451 -8.704 
GM-PC2 -2.582 -2.348 -2.430 -2.927 -4.745 -1.881 -11.584 -3.228 
GM-PC1+PC2 -2.698 -3.837 -2.390 -4.233 -5.308 -5.790 -11.266 -7.976 
GM-RV+PC1 -3.492 -3.562 -4.567 -2.426 -6.165 -3.481 -2.685 -4.778 
GM-RV+PC2 -3.543 -3.369 -4.038 -5.113 -4.498 -3.918 -2.443 -1.410 
 UK USA 
  𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  𝜏𝜏𝑤𝑤1,𝑤𝑤2 

Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. -2.201 -2.667 -2.597 -2.651 -2.371 -2.512 -19.330 -17.760 
GM-EXR -2.054 -3.484 -2.607 -3.220 -2.620 -2.631 -13.931 -8.475 
GM-NM -2.634 -3.472 -2.498 -3.646 -2.381 -3.830 -11.464 -4.743 
GM-BM -3.357 -3.142 -2.463 -2.467 -3.532 -3.530 -9.481 -10.069 
GM-CPI -2.740 -2.436 -2.435 -2.417 -1.914 -2.081 -11.884 -8.539 
GM-IP -2.455 -1.951 -2.586 -3.827 -3.100 -1.940 -5.995 -3.034 
GM-Oil -2.596 -3.513 -2.313 -2.999 -2.370 -4.941 -5.076 -4.107 
GM-UEmp. -2.716 -3.004 -2.931 -2.955 -2.605 -3.140 -8.616 -6.892 
GM-PC1 -2.364 -3.068 -2.611 -3.097 -5.216 -5.872 -10.694 -10.088 
GM-PC2 -1.515 -3.335 -2.096 -3.083 -2.655 -2.411 -12.358 -8.768 
GM-PC1+PC2 -3.036 -1.639 -2.672 -3.252 -3.052 -2.548 -10.939 -5.825 
GM-RV+PC1 -3.032 -2.616 -6.374 -6.154 -2.783 -2.325 -16.167 -31.927 
GM-RV+PC2 -2.684 -2.778 -3.425 -2.603 -2.335 -2.647 -3.014 -1.962 
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Table 5 The Diebold Mariano test using constrained weighting scheme 
The table presents the t statistics of the Diebold Mariano (1995) test of equal predictive accuracy between the GM-RV model and the 
competing k-models. The competing model is determined by the interaction of the models below the heading “competing models” with 
column headings 𝑋𝑋𝑙𝑙 and 𝑋𝑋𝑙𝑙+𝑣𝑣. Here the GM model below column 𝑋𝑋𝑙𝑙 refers to the specification using the levels of the MIDAS input 
variables only, while  𝑋𝑋𝑙𝑙+𝑣𝑣 refers to the GM model that uses the level of the input variable together with its volatility in the MIDAs 
filter. The 𝜎𝜎𝑤𝑤22  refers to testing the predictive ability of the total daily volatility forecasts of the macro model while the 𝜏𝜏𝑤𝑤2refers to 
testing the accuracy of monthly volatility forecasts. This implies that MIDAS beta polynomial across all models is where weighting 
scheme fixes w1= 1 and w2 is estimated as a free parameter. The test-statistic value significant at 0.05 or below p-values are presented 
in bold. 
 France Germany 
  𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. -1.968 -1.893 -7.039 -7.074 -1.771 -1.873 -8.635 -9.581 
GM-EXR -1.459 -2.979 -7.774 -6.790 -2.701 -2.652 -9.019 -8.983 
GM-NM -1.672 -1.643 -6.186 -6.032 -1.589 -1.609 -8.758 -8.778 
GM-BM -2.428 -2.574 -7.119 -7.086 -2.114 -2.128 -9.313 -9.375 
GM-CPI -2.018 -1.576 -6.575 -7.406 -2.247 -1.568 -8.427 -9.459 
GM-IP -1.224 -1.719 -8.978 -6.737 -1.433 -1.219 -7.923 -9.579 
GM-Oil -1.498 -2.552 -7.771 -7.221 -1.333 -3.723 -9.933 -9.444 
GM-UEmp. -1.840 -1.904 -8.515 -9.021 -2.413 -2.667 -7.804 -7.509 
GM-PC1 -2.436 -1.689 -8.369 -7.552 -2.834 -2.100 -10.873 -4.412 
GM-PC2 -1.303 -2.333 -7.161 -5.158 -1.209 -2.705 -9.957 -7.548 
GM-PC1+PC2 -1.328 -3.537 -8.745 -8.245 -1.828 -2.670 -11.644 -6.274 
GM-RV+PC1 -1.898 -1.992 -6.924 -6.703 -1.733 -1.929 -11.440 -13.601 
GM-RV+PC2 -3.418 -3.414 -14.874 -1.211 -1.727 -1.809 -7.018 -1.196 
 UK USA 
  𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Competing models 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 𝑋𝑋𝑙𝑙 𝑋𝑋𝑙𝑙+𝑣𝑣 
GM-TermStr. -1.633 -1.653 -4.506 -5.080 -1.804 -1.649 -5.430 -3.810 
GM-EXR -2.091 -2.461 -4.710 -4.716 -1.782 -1.612 -3.604 -3.613 
GM-NM -1.283 -1.272 -4.551 -4.463 -1.260 -1.448 -3.466 -3.404 
GM-BM -2.542 -2.457 -4.784 -4.811 -1.789 -1.799 -3.624 -3.637 
GM-CPI -1.383 -1.379 -4.691 -4.666 -1.578 -1.566 -3.354 -3.355 
GM-IP -1.100 -1.215 -5.210 -4.663 -1.292 -1.303 -3.810 -3.708 
GM-Oil -1.274 -1.793 -4.549 -4.197 -1.521 -1.674 -3.323 -4.102 
GM-UEmp. -1.661 -1.669 -4.446 -4.342 -1.837 -1.760 -4.784 -5.415 
GM-PC1 -1.705 -1.187 -4.495 -4.216 -1.572 -1.313 -3.864 -3.983 
GM-PC2 -1.126 -1.219 -4.615 -3.750 -1.898 -1.568 -4.672 -2.967 
GM-PC1+PC2 -1.117 -1.740 -4.506 -3.609 -1.330 -1.366 -4.040 -5.299 
GM-RV+PC1 -1.567 -1.707 -3.382 -6.947 -1.638 -1.788 -3.392 -7.692 
GM-RV+PC2 -1.604 -1.694 -2.526 -6.318 -1.655 -1.720 -3.700 -7.335 
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Table 6 Robust pairwise testing for pseudo out-of-sample MSE losses 
In this table, we report the proportion of variance forecasts – total and long run – that outperform the benchmark model’s corresponding 
forecasts using the naïve p-values. The naïve p–values are the bi-model – a variant of DM test – bootstrapped RC test values that are 
computed as if the best model is the only model in the competing model space. Thus, we count all the instances for variance forecasts 
and divide them by the total number of competing models (i.e., 26 in this case).  To exemplify, a proportion of 0 implies that there no 
model that outperforms the forecast given by the benchmark model and a proportion of 1 will imply all models from the alternate model 
space outperform the benchmark model’s prediction. The proportions below the header 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and 𝜏𝜏𝑤𝑤1,𝑤𝑤2 are for the total variance and 
the secular variance while employing an unconstrained weighting scheme, whereas below headers 𝜎𝜎𝑤𝑤22  and 𝜏𝜏𝑤𝑤2 the same is provided 
while using a constrained weighting scheme in the MIDAS smoothing. 
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2   𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
 𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅   𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅  
France 0.000  0.615   0.000  0.192  
Germany 0.000  0.385   0.000  0.192  
The UK 0.000  0.231   0.000  0.192  
The US 0.000  0.038   0.000  0.000  
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Table 7 Multiple testing for pseudo out-of-sample MSE losses 
The table presents the p-values of the White’s (2000) reality check (RC) test and the Hansen’s (2005) superior predictive ability (SPA) 
test. The forecasting errors i.e. MSE of the competing models are compared against the GM-RV benchmark model using the pseudo 
put-of-sample model forecasts following Engle et al. (2013). The sample period is January 1999- December 2016. Panels A, B, C and 
D present results for France, Germany, the UK and the US, respectively. First, we present naïve p-values that are the bootstrap RC p-
values for the bi-model predictive ability test: bootstrapped p-values by comparing forecasting errors of the best model among 𝑘𝑘 = 26 
competing models relative to the benchmark model. Following Hansen, we compute three test statistics for the consistent (centre, c), 
upper (u) and lower (l) bounds for both RC test and Hansen test. Each test-statistic p-value is computed from 1000 bootstraps resamples 
and smoothing parameter q = 0.25. For clarity a p-value larger than 0.05 shows that no competing model outperforms the benchmark 
model i.e. null hypothesis cannot be rejected, whereas value <0.05 shows that at least one model has superior predictive ability (lower 
MSE or forecasting errors) than the benchmark GM-RV model, i.e. null is rejected. The 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and the 𝜏𝜏𝑤𝑤1,𝑤𝑤2 refers to the testing 
results of the forecasting errors of daily total and monthly long run volatilities when the weights for the beta polynomial for each input 
variable in the MIDAS filter are estimated, while  𝜎𝜎𝑤𝑤22  and 𝜏𝜏,𝑤𝑤2 refers to the testing results when 𝑤𝑤1 = 1 and 𝑤𝑤2 is estimated for the 
beta polynomial of each input variable in the MIDAS filter, respectively. These tests are carried out using daily squared returns and 
monthly RV as the latent variance proxies to calculate the loss functions for the full set of models across the four markets for the 26 
competing models and the benchmark model GM-RV for each equity market index.  
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2  

 
RP metric France Germany UK US France Germany UK US 

Panel A: flexible weighting scheme      
Naive 0.388 0.350 0.244 0.250 0.000 0.000 0.000 0.005 
RCl 0.766 0.905 0.574 0.690 0.020 0.001 0.002 0.004 
RCc 0.881 0.982 0.786 0.924 0.033 0.002 0.003 0.004 
RCu 0.883 0.982 0.786 0.924 0.036 0.004 0.004 0.004 
Hansenl 0.768 0.898 0.602 0.603 0.007 0.000 <0.001 0.004 
Hansenc 0.887 0.978 0.778 0.753 0.008 0.001 <0.001 0.004 
Hansenu 0.890 0.979 0.778 0.853 0.008 0.002 <0.001 0.004 
Panel B: restricted weighting scheme  

 

      
 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Naive 0.130 0.600 0.420 0.540 0.001 0.001 0.020 0.143 
RCl 0.227 0.850 0.860 0.950 0.007 0.002 0.026 0.671 
RCc 0.470 0.800 0.760 0.880 0.008 0.003 0.039 0.720 
RCu 0.470 0.810 0.790 0.860 0.009 0.004 0.044 0.741 
Hansenl 0.134 0.780 0.550 0.400 0.003 0.000 0.021 0.467 
Hansenc 0.134 0.780 0.670 0.710 0.003 0.001 0.022 0.508 
Hansenu 0.134 0.750 0.630 0.780 0.005 0.002 0.029 0.526 
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Table 8 Multiple testing for pseudo out-of-sample MSE losses using alternate variance proxies 
The table presents the p-values of the White’s (2000) reality check (RC) test and the Hansen’s (2005) superior predictive ability (SPA) 
test when we use variance proxies of GARCH (1, 1) i.e. ℎ𝑖𝑖,𝑡𝑡  and the square of implied volatility indices i.e. 𝐼𝐼𝑅𝑅2 for  markets replacing 
RV. Panels A, B, C and D present results for France, Germany, the UK and the US, respectively. First, we present naïve p-values that 
are the bootstrap RC p-values for bi-model predictive ability test: bootstrapped p-values by comparing forecasting errors of the best 
model among 𝑘𝑘 = 26 competing models relative to the benchmark model. Following Hansen (2005), we compute three test statistics 
for the consistent (centre, c), upper (u) and lower (l) bounds for both RC test and Hansen test. Each test-statistic p-value is computed 
from 1000 bootstraps resamples and smoothing parameter q = 0.25. For clarity a p-value larger than 0.05 shows that no competing 
model outperforms the benchmark model i.e.the null hypothesis cannot be rejected, whereas value <0.05 shows that at least there is one 
model that has superior predictive ability (lower MSE or forecasting errors) than the benchmark GM-RV model i.e. null is rejected. The 
𝜎𝜎𝑤𝑤1,𝑤𝑤2
2  and the 𝜏𝜏𝑤𝑤1,𝑤𝑤2 refers to the results of the forecasting errors of daily total and monthly long run volatilities when the weights for 

the beta polynomial for each input variable in the MIDAS filter are estimated, while  𝜎𝜎𝑤𝑤22  and 𝜏𝜏,𝑤𝑤2 refers to the model comparison results 
when 𝑤𝑤1 = 1 and 𝑤𝑤2 is estimated for the beta polynomial of each input variable in the MIDAS filter, respectively.  
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2   𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
RP metirc ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2  ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 
Panel A: France         
Naive 0.367 0.454 0.001 0.001   0.143 0.208 0.000 0.000 
RCl 0.731 0.799 0.013 0.023   0.231 0.338 0.007 0.002 
RCc 0.873 0.910 0.029 0.036   0.511 0.603 0.014 0.002 
RCu 0.873 0.910 0.029 0.036   0.511 0.603 0.016 0.003 
Hansenl 0.722 0.793 0.002 0.002   0.147 0.212 <0.001 <0.001 
Hansenc 0.877 0.916 0.004 0.006   0.147 0.214 0.001 0.001 
Hansenu 0.877 0.916 0.007 0.007   0.147 0.214 0.001 0.002 
Panel B: Germany 

  

           
Naive 0.304 0.335 0.002 0.000   0.450 0.590 0.000 0.001 
RCl 0.870 0.892 0.003 0.001   0.800 0.790 0.003 0.003 
RCc 0.976 0.976 0.007 0.003   0.810 0.780 0.005 0.004 
RCu 0.976 0.976 0.009 0.005   0.830 0.820 0.005 0.004 
Hansenl 0.871 0.879 0.003 0.001   0.670 0.740 <0.001 0.001 
Hansenc 0.972 0.968 0.003 0.002   0.710 0.650 <0.001 0.001 
Hansenu 0.972 0.968 0.004 0.002   0.790 0.710 0.001 0.002 
Panel C: the UK  

  

           
Naive 0.217 0.204 0.000 0.000   0.350 0.390 0.023 0.019 
RCl 0.531 0.488 0.003 0.001   0.860 0.830 0.021 0.013 
RCc 0.781 0.743 0.003 0.002   0.850 0.780 0.031 0.023 
RCu 0.781 0.743 0.003 0.002   0.860 0.840 0.035 0.026 
Hansenl 0.586 0.533 0.002 <0.001   0.640 0.620 0.024 0.002 
Hansenc 0.752 0.729 0.002 <0.001   0.660 0.680 0.026 0.003 
Hansenu 0.752 0.729 0.002 <0.001   0.670 0.650 0.029 0.006 
Panel D: the USA 

  

           
Naive 0.272 0.241 0.005 0.004   0.510 0.480 0.140 0.078 
RCl 0.737 0.693 0.004 0.004   0.870 0.880 0.666 0.556 
RCc 0.935 0.910 0.004 0.005   0.930 0.920 0.705 0.630 
RCu 0.935 0.910 0.005 0.005   0.930 0.890 0.717 0.639 
Hansenl 0.613 0.612 0.004 0.005   0.680 0.740 0.463 0.255 
Hansenc 0.799 0.691 0.004 0.004   0.700 0.530 0.506 0.309 
Hansenu 0.839 0.850 0.005 0.005   0.830 0.460 0.526 0.322 
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Table 9 Robust pairwise testing for out-of-sample MSE losses 
In this table, we report the proportion of variance forecasts – total and long run – that outperform the benchmark model’s corresponding 
forecasts using the naïve p-values. The naïve p–values are the bi-model – a variant of DM test – bootstrapped RC test values that are 
computed considering that the best model is the only model in the competing model space. Thus, we count all the instances for variance 
forecasts and divide them by the total number of competing models (i.e., 26 in this case).  To exemplify a proportion of 0 implies that 
there no model that outperforms the forecast given by the benchmark model and a proportion of 1 will imply all models from the 
alternate model space outperform the benchmark model’s prediction. The proportions below the header 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and 𝜏𝜏𝑤𝑤1,𝑤𝑤2 are for the 
total variance and the secular variance while employing an unconstrained weighting scheme, whereas below headers 𝜎𝜎𝑤𝑤22  and 𝜏𝜏𝑤𝑤2 the 
same is provided while using a constrained weighting scheme in the MIDAS smoothing. 
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2   𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
 𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅   𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅  
France 0.615  0.462   0.615  0.577  
Germany 0.577  0.385   0.654  0.538  
The UK 0.577  0.500   0.654  0.654  
The US 0.500  0.423   0.615  0.615  
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Table 10 Multiple testing for out-of-sample MSE losses 
The table presents the p-values of the White’s (2000) reality check (RC) test and the Hansen’s (2005) superior predictive ability (SPA) 
test. The forecasting errors i.e. MSE of the competing models are compared against the GM-RV benchmark model using a fixed out-
of-sample forecasting scheme. Parameters are estimated using for sample period January 1999- December 2011 and forecasting period 
is January 2012-December 2016. Panels A, B, C and D present results for France, Germany, the UK and the US, respectively. First, we 
present naïve p-values that are the bootstrap RC p-values for bi-model predictive ability test: bootstrapped p-values by comparing 
forecasting errors of the best model among 𝑘𝑘 = 26 competing models relative to the benchmark model. Following Hansen (2005), we 
compute three test statistics for the consistent (center, c), upper (u) and lower (l) bounds for both RC test and Hansen test. Each test-
statistic p-value is computed from 1000 bootstraps resamples and smoothing parameter q = 0.25. For clarity a p-value larger than 0.05 
shows that no competing model outperforms the benchmark model i.e. null hypothesis cannot be rejected, whereas value <0.05 shows 
that at least there is one model that has superior predictive ability (lower MSE or forecasting errors) than the benchmark GM-RV model 
i.e. null is rejected. The 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and the 𝜏𝜏𝑤𝑤1,𝑤𝑤2 refers to the testing results of the forecasting errors of daily total and monthly long run 
volatilities when the weights for the beta polynomial for each input variable in the MIDAS filter are estimated, while  𝜎𝜎𝑤𝑤22  and 𝜏𝜏,𝑤𝑤2 
refers to the testing results when 𝑤𝑤1 = 1 and 𝑤𝑤2  is estimated for the beta polynomial of each input variable in the MIDAS filter, 
respectively. These tests are carried out using daily squared returns and monthly RV as the latent variance proxies to calculate the loss 
functions for the full set of models across the four markets for the 26 competing models and the benchmark model GM-RV for each 
equity market index.  
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2  

 
RP metric France Germany UK US France Germany UK US 
Panel A: flexible weighting scheme      
Naive 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 
RCl 0.096 0.380 0.061 0.094 0.334 0.002 0.061 0.063 
RCc 0.259 0.407 0.061 0.108 0.333 0.003 0.265 0.063 
RCu 0.435 0.440 0.230 0.444 0.407 0.004 0.308 0.333 
Hansenl 0.002 0.088 0.005 0.022 0.079 0.000 <0.001 <0.001 
Hansenc 0.004 0.088 0.005 0.022 0.083 0.001 <0.001 <0.001 
Hansenu 0.004 0.202 0.005 0.022 0.098 0.002 <0.001 <0.001 
Panel B: restricted weighting scheme  

 

      
 𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
Naive 0.000 0.600 0.451 0.000 0.000 0.000 0.000 0.000 
RCl 0.198 0.750 0.520 0.137 0.277 0.001 0.068 0.466 
RCc 0.209 0.800 0.526 0.143 0.234 0.003 0.127 0.478 
RCu 0.219 0.810 0.790 0.215 0.492 0.004 0.257 0.602 
Hansenl 0.108 0.780 0.594 0.096 0.092 0.000 0.004 0.111 
Hansenc 0.108 0.780 0.626 0.096 0.083 0.002 0.004 0.147 
Hansenu 0.109 0.793 0.641 0.159 0.147 0.002 0.007 0.234 
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Table 11 Multiple testing for out-of-sample MSE losses using alternate variance proxies 
The table presents the p-values of the White’s (2000) reality check (RC) test and the Hansen’s (2005) superior predictive ability (SPA) 
test when we use variance proxies of GARCH (1, 1) i.e. ℎ𝑖𝑖,𝑡𝑡  and square of implied volatility indices i.e. 𝐼𝐼𝑅𝑅2 for respective markets 
replacing RV. The forecasting errors i.e. MSE of the competing models are compared against the GM-RV benchmark model using a 
fixed out-of-sample forecasting scheme. Parameters are estimated using for sample period January 1999- December 2011 and 
forecasting period is January 2012-December 2016. Panels A, B, C and D present results for France, Germany, the UK and the US, 
respectively.  First we present naïve p-values that are the bootstrap RC p-values for bi-model predictive ability test: bootstrapped p-
values by comparing forecasting errors of the best model among 𝑘𝑘 = 26 competing models relative to the benchmark model. Following 
Hansen (2005) we compute three test statistics for the consistent (center, c), upper (u) and lower (l) bounds for both RC test and Hansen 
test. Each test-statistic p-value is computed from 1000 bootstraps resamples and smoothing parameter q = 0.25. For clarity a p-value 
larger than 0.05 shows that no competing model outperforms the benchmark model i.e. null hypothesis cannot be rejected, whereas 
value <0.05 shows that at least there is one model that has superior predictive ability (lower MSE or forecasting errors) than the 
benchmark GM-RV model i.e. null is rejected. The 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  and the 𝜏𝜏𝑤𝑤1,𝑤𝑤2 refers to the results of the forecasting errors of daily total and 
monthly long run volatilities when the weights for the beta polynomial for each input variable in the MIDAS filter are estimated, while  
𝜎𝜎𝑤𝑤22  and 𝜏𝜏,𝑤𝑤2 refers to the model comparison results when 𝑤𝑤1 = 1 and 𝑤𝑤2 is estimated for the beta polynomial of each input variable in 
the MIDAS filter, respectively.  
 𝜎𝜎𝑤𝑤1,𝑤𝑤2

2  𝜏𝜏𝑤𝑤1,𝑤𝑤2   𝜎𝜎𝑤𝑤22  𝜏𝜏𝑤𝑤2 
RP metirc ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2  ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 ℎ𝑖𝑖 𝑡𝑡 𝐼𝐼𝑅𝑅2 
Panel A: France         
Naive 0.001 0.034 0.000 0.001   0.000 0.001 0.000 0.000 
RCl 0.731 0.821 0.331 0.298   0.205 0325 0.213 0.323 
RCc 0.873 0.773 0.331 0.345   0.205 0.232 0.267 0.317 
RCu 0.873 0.693 0.400 0.387   0.240 0.261 0.487 0.457 
Hansenl 0.222 0.342 0.101 0.092   0.118 0.131 0.081 0.079 
Hansenc 0.277 0.417 0.101 0.097   0.123 0.142 0.097 0.089 
Hansenu 0.277 0.439 0.101 0.108   0.126 0.166 0.147 0.134 
Panel B: Germany 

  

          
Naive 0.000 0.002 0.000 0.000   0.450 0.423 0.002 0.003 
RCl 0.337 0.297 0.003 0.002   0.800 0.783 0.003 0.001 
RCc 0.413 0.421 0.005 0.002   0.810 0.880 0.007 0.004 
RCu 0.443 0.450 0.005 0.007   0.830 0.798 0.009 0.008 
Hansenl 0.073 0.077 <0.001 <0.002   0.670 0.621 0.003 0.001 
Hansenc 0.081 0.091 <0.001 <0.003   0.710 0.690 0.003 0.001 
Hansenu 0.116 0.120 0.001 0.007   0.790 0.743 0.004 0.008 
Panel C: the UK  

  

          
Naive 0.000 0.002 0.000 0.001   0.350 0.330 0.000 0.001 
RCl 0.058 0.052 0.079 0.082   0.860 0.910 0.067 0.062 
RCc 0.059 0.057 0.137 0.101   0.850 0.920 0.153 0.193 
RCu 0.718 0.671 0.194 0.124   0.860 0.870 0.267 0.327 
Hansenl 0.006 0.002 <0.001 <0.001   0.640 0.662 0.004 0.003 
Hansenc 0.006 0.007 <0.001 0.002   0.660 0.711 0.004 0.003 
Hansenu 0.007 0.009 <0.001 0.002   0.670 0.742 0.004 0.001 
Panel D: the USA 

  

          
Naive 0.000 0.001 0.000 0.001   0.000 0.000 0.000 0.001 
RCl 0.087 0.082 0.057 0.073   0.114 0.124 0.473 0.523 
RCc 0.137 0.141 0.057 0.092   0.133 0.154 0.504 0.484 
RCu 0.218 0.282 0.117 0.092   0.205 0.185 0.593 0.633 
Hansenl 0.020 0.031 <0.001 <0.001   0.073 0.077 0.108 0.098 
Hansenc 0.020 0.043 <0.001 0.002   0.073 0.081 0.149 0.123 
Hansenu 0.031 0.093 <0.001 0.004   0.437 0.399 0.411 0.401 
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Figure 1 

 

The daily logarithmic returns are computed from the France, Germany, the UK and the US price indices and are presented for the 
sample period from January 1999 to December 2016. 
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Figure 2 

 

The squared returns are computed from the France, Germany, the UK and the US price indices and are presented for the sample 
period from January 1999 to December 2016. 
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Appendix A  

Table AI Summary statistics 

 Index returns   Realized variance (RV) 

  France Germany UK USA France Germany UK USA 

average 0.010 0.014 -0.007 0.025 0.050 0.075 0.050 0.025 

standard deviation 0.253 0.253 0.206 0.190 0.011 0.011 0.009 0.008 

Skewness -0.074 -0.080 -0.227 -0.201 10.043 8.529 12.495 12.144 

Kurtosis 8.921 7.546 11.861 11.225 149.17 117.4 217.34 221.3 

JB test 6862.7 4048.5 15400 13266 4.3e+06 2.2e+06 9.1e+06 9.4e+06 

  [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] 

Auto-correlations -1 -0.012 0.002 -0.010 -0.071 0.170 0.152 0.209 0.205 

  [0.431] [0.838] [0.483] [0.000] [0.000] [0.000] [0.000] [0.000] 

Auto-correlations -3 -0.055 -0.029 -0.069 -0.0009 0.225 0.236 0.259 0.206 

  [0.000] [0.041] [0.000] [0.948] [0.000] [0.000] [0.000] [0.000] 

Auto-correlations -6 -0.008 -0.003 -0.028 -0.004 0.175 0.149 0.199 0.281 

  [0.570] [0.841] [0.054] [0.782] [0.000] [0.000] [0.000] [0.000] 

Auto-correlations -12 0.005 0.002 -0.0008 -0.002 0.238 0.236 0.260 0.284 

  [0.712] [0.874] [0.953] [0.901] [0.000] [0.000] [0.000] [0.000] 
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