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Abstract

Objective Bayesian inference procedures are derived for the parameters of the mul-

tivariate random effects model generalized to elliptically contoured distributions. The

posterior for the overall mean vector and the between-study covariance matrix is deduced

by assigning two noninformative priors to the model parameter, namely the Berger and

Bernardo reference prior and the Jeffreys prior, whose analytical expressions are obtained

under weak distributional assumptions. It is shown that the only condition needed for

the posterior to be proper is that the sample size is larger than the dimension of the

data-generating model, independently of the class of elliptically contoured distributions

used in the definition of the generalized multivariate random effects model. The theo-

retical findings of the paper are applied to real data consisting of ten studies about the

effectiveness of hypertension treatment for reducing blood pressure where the treatment

effects on both the systolic blood pressure and diastolic blood pressure are investigated.
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1 Introduction

Random effects model is a well established quantitative tool when the results of several studies are

combined in a single values as it is usually done in meta-analysis and interlaboratory comparison

studies which are widely spread in medicine, physics, chemistry, and in many other fields of science

(see, e.g., Brockwell and Gordon (2001); Ades et al. (2005); Viechtbauer (2005, 2007); Sutton and

Higgins (2008); Riley et al. (2010); Strawderman and Rukhin (2010); Cornell et al. (2014); Novianti

et al. (2014); Roever (2016); Bodnar et al. (2017); Rukhin (2017a,b); Wynants et al. (2018); Michael

et al. (2019); Veroniki et al. (2019)). In most of applications considered in the literature, the aim is to

infer the common mean of the measurement results on a single variable, while the inference procedures

for the hetorogeneity parameter have recently been derived by Rukhin (2013); Langan et al. (2017);

Ma et al. (2018); Bodnar (2019) among others. Both methods of the frequentist and Bayesian statistics

have been established to deal with the problem and applied in practice (see, Paule and Mandel (1982);

DerSimonian and Laird (1986); Lambert et al. (2005); Guolo (2012); Turner et al. (2015); Bodnar

et al. (2017)).

Although statistical theory to analyse the univariate random effects model has been developed

and successfully implemented in many applications, new challenges arise when several features are

measured simultaneously and have to be combined into a single (multivariate) result. One possibility

is based on the application of the univariate random effects to each feature separately. However,

important information about the dependence structure present in the joint distribution of the fea-

tures might be lost in this case. Another approach is to generalize the existent univariate methods

to the multivariate case by deriving new statistical procedures which can capture the dependencies

present between several features and efficiently combine the (multivariate) results of several studies.

Moreover, the assumption of normality, which is commonly imposed in meta-analysis or in interlabora-

tory comparison studies, is not obviously fulfilled (see, Baker and Jackson (2008); Lee and Thompson

(2008); Bodnar et al. (2016); Jackson and White (2018); Wang and Lee (2020)) and more sophisticated

statistical models which take the heavy-tailed behaviour into account should be considered in many

applications. This makes an additional difficult in the practical implementation of the random effects

model, since only a few observations are present in most cases and the advanced asymptotic methods

cannot be longer used. For instance, Davey et al. (2011) pointed out that 75 % of meta-analyses

reported in the Cochrane Database of Systematic Reviews (CDSR) contained five or fewer studies.

Multivariate random effects model has increased its popularity in the literature recently (see,

Gasparrini et al. (2012), Wei and Higgins (2013), Jackson and Riley (2014), Liu et al. (2015), Noma

et al. (2019), Negeri and Beyene (2020), Jackson et al. (2020)). Statistical inferences for the model

parameters, which are the common mean vector and the heterogeneity matrix, were initially derived

from the viewpoint of the frequentist statistics. Jackson et al. (2010) extended the DerSimonian and

Laird approach to the multivariate data, while Chen et al. (2012) presented the method based on the

restricted maximum likelihood approach. These two procedures from frequentist statistics constitute

the commonly used methods in multivariate meta-analysis (see, e.g., Jackson et al. (2013), Schwarzer

et al. (2015), Jackson et al. (2020)). Paul et al. (2010) derived Bayesian inferences procedures for

the parameters of the two-dimensional random effects model based on the Laplace approximation,

while Nam et al. (2003) provided results in a multivariate case. Both the papers discussed Bayesian

inference obtained when informative priors are employed.

Following Bernstein-von Mises theorem (see, Bernardo and Smith (2000)), a prior has a minor

2



impact on the posterior when the sample size is large. When a sample of a small size is available,

which is a common situation in practice (cf., Davey et al. (2011)), the application of an incorrectly

chosen informative prior can be very influential on the resulting Bayesian inference procedures for the

model parameters. This challenge becomes even more pronounced in case of Bayesian inference for

parameters of a multivariate model.

The contribution of the paper to the existent literature on multivariate random effects model

and multivariate meta-analysis is done in several directions. First, we develop objective Bayesian

inference procedures for the parameters of the multivariate random effects model. In particular, we

derive the analytical expression of the Fisher information matrix and the two noninformative priors:

Berger and Bernardo reference prior and Jeffreys prior. Employing these two priors, the expressions

of the corresponding posterior distributions are obtained and the conditions for their propriety are

established. Second, we weaken the assumption of multivariate normal distribution and replace it

by a general class of multivariate distributions, the so-called elliptically contoured distributions (see,

Gupta et al. (2013)).

The rest of the paper is structured as follows. In Section 2, the generalized multivariate random

effects model is introduced and two noninformative priors, Berger and Bernardo reference prior and

Jeffreys prior, are derived. The posterior distribution for model parameters are obtained in Section

3, while the conditions for posterior propriety are stated in Section 3.1. In Section 4 numerical

procedures are developed to draw samples from the derived posterior distributions. Results for two

special families of elliptically contoured distributions are provided in Section 5, while an empirical

illustration is presented in Section 6. Final remarks are given in Section 7. The proofs of technical

results are moved to the appendix (Section 8).

2 Model and noninformative priors

We consider an extension of the (normal) multivariate random effects model with density function

given by

p(X|µ,Ψ) =
1√

det(Ψ⊗ I + U)
f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
)
, (1)

where X is a (p×n) matrix, µ is a p-dimensional vector, Ψ is a (p× p) matrix, 1 is a vector of ones, I

is the identity matrix of an appropriate order, and U is a (pn× pn) deterministic matrix. The symbol

⊗ denotes the Kronecker product, while vec stands for the vec operator. The model (1) extends the

univariate approach suggested in Bodnar et al. (2016) to the multivariate case and can also be used

when several correlated features obtained from different studies should be combined together.

In a special case of f(z) = exp (−z/2) /(2π)pn/2 and U = diag(U1, ...,Un) with Ui: p × p for

i = 1, ..., n, the model (1) can be written as

xi = µ+ λi + εi with λ ∼ Np(0,Ψ) and ε ∼ Np(0,Ui), (2)

where {λi}i=1,...,n and {εi}i=1,...,n are mutually independent. The presentation (2) defines the normal

multivariate random effects model. Motivated by the normal multivariate random effects model, it is

assumed that U = diag(U1, ...,Un) holds in (1).

In many applications in medicine, physics, and chemistry the aim is to infer µ given observation

matrix X = (x1, . . . ,xn). In the applications of these fields the information about the scale matrix U
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is usually provided by the participating organizations (see, Lambert et al. (2005), Turner et al. (2015),

Bodnar and Elster (2014b), Jackson et al. (2020)). As a result, it is assumed to be a known symmetric

positive definite matrix. On the other side, the matrix Ψ is treated as an unknown quantity with the

aim to capture the additional variability in data when several observations taken at different places

and times are pooled together. The matrix Ψ is usually treated as an additional nuisance parameter

of the model.

By (1), the conditional distribution of X given µ and Ψ belongs the class of the matrix-variate

elliptical contoured distributions (see, e.g., Gupta et al. (2013) for the definition and properties of this

matrix-variate family of distributions). This assertion will be denoted by X|µ,Ψ ∼ Ep,n(µ1>,Ψ⊗I+

U, f) (p× n-dimensional matrix-variate elliptically contoured distribution with location matrix µ1>,

dispersion matrix (Ψ⊗ I + U), and density generator f(.). Following the definition of matrix-variate

elliptically contoured distributions (see, Gupta et al. (2013, Theorem 2.7)), the function f(.) should

be a non-negative Lebesgue measurable function on [0,∞) such that

∞∫
0

tpn−1f(t2)dt <∞.

2.1 Noninformative priors: Berger and Bernardo reference prior

and Jeffreys prior

In many practical applications no information or only vague information is available about the model

parameters. In such cases, especially when additionally the sample size is small or the model dimension

is large in comparison to the sample size, the usage of an informative prior can be questionable. As a

possible solution to this problem, noninformative priors were developed and employed in the derivation

of Bayesian inference. Historically, the first noninformative prior was suggested by Laplace (1812) who

proposed to assign a constant prior to the parameters of the model. This prior is also known in the

literature as the constant prior or the uniform prior. Although the uniform prior works well when

Bayesian inference is determined for location parameters of a statistical model, its application does not

obviously lead to good results for other types of model parameters. One of the most crucial critiques

of the uniform prior is that it is invariant under transformations of parameters.

As a solution, Jeffreys (1946) proposed to compute a non-informative prior as the square root of

the determinant of the Fisher information matrix. Although this approach leads to a prior which

is invariant under transformations of model parameters, some difficulties arise in the case of multi-

parameter statistical models (see, Held and Bové (2014)). The approach of Jeffreys was further

extended in Berger and Bernardo (1992) who suggested the so-called reference prior (see, also Berger

et al. (2009) for the properties of the reference prior). The idea used in the derivation of the reference

prior is based on the sequential maximization of the Shannon mutual information (see, Bodnar and

Elster (2014a)) which determines the distance between the prior and posterior.

In Theorem 1 the analytical expression of the Fisher information matrix is provided, which is then

used in the derivation of both the Berger and Bernardo reference prior and the Jeffreys prior for the

parameters of the generalized multivariate random effects model (1).

Theorem 1. The Fisher information matrix for model (1) with U = diag(U1, ...,Un) is given by

F =

(
F11 O

O F22

)
(3)
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where

F11 =
4J1
pn

n∑
i=1

(Ψ + Ui)
−1, (4)

F22 = G>p

[(
J2

2pn+ p2n2
− 1

4

)
vec

(
n∑
i=1

(Ψ + Ui)
−1

)
vec

 n∑
j=1

(Ψ + Uj)
−1

>

+
2J2

2pn+ p2n2

n∑
i=1

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1) ]Gp (5)

with

Ji = E

(R2)i

(
f ′
(
R2
)

f (R2)

)2
 , (6)

where R2 = vec(Z)>vec(Z) with Z ∼ Ep,n(Op,n, Ip×n, f) standard matrix-variate elliptically contoured

distribution with density generator f(.) and Gp stands for the duplication matrix.

The results of Theorem 1 show that the Fisher information matrix depends on the type of elliptical

distribution only over the two univariate constants J1 and J2 which are fully determined by density

generator f(.). Moreover, the Fisher information matrix F is finite if J1 <∞ and J2 <∞. Thus, it is

assumed throughout the paper that the density generator f(.) is chosen such that these two conditions

are fulfilled. Although the expectations in the definition of J1 and J2 cannot always be analytically

computed, they can easily be approximated via simulations by drawing samples from the corresponding

standard elliptically contoured distribution. Finally, J1 is present in F11 as a multiplicative constant

and, thus, both the Berger and Bernardo reference prior and the Jeffreys prior depend on J2 only as

shown below.

Since F is block-diagonal and it does not depend on µ, the Jeffreys prior for µ and Ψ depends on

Ψ only and it is given by

πJ(µ,Ψ) = πJ(Ψ) ∝
√

det(F) =
√

det(F11)
√

det(F22), (7)

where F11 and F22 are given in (4) and (5), respectively.

Moreover, using the block-diagonal structure of F and the fact that F does not depend on µ, we

immediately obtain the Berger and Bernardo reference prior πR(µ,Ψ) for the generalized multivariate

random effects model (1) from the corollary to Proposition 5.29 in Bernardo and Smith (2000). This

result is summarized in Theorem 2.

Theorem 2. For model (1) with U = diag(U1, ...,Un) and grouping {µ,Ψ} (i.e. with Ψ as the

nuisance parameter), the Berger and Bernardo reference prior is given by

πR(µ,Ψ) = πR(Ψ) ∝
√

det(F22), (8)

where F22 is given in (5).

Under additional restrictions imposed on matrix U and density generator f(.), several simplifi-

cations of the expressions of both the Jeffreys prior and the reference prior are obtained and are

presented in Corollary 1 and Corollary 2. For example, when the normal multivariate random effects

model (2) is assumed, then we get
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Corollary 1. For model (2) and grouping {µ,Ψ} (i.e. with Ψ as the nuisance parameter), the

following results hold:

(i) the Berger and Bernardo reference prior is given by

πR(µ,Ψ) = πR(Ψ) ∝

√√√√det

(
G>p

[
n∑
i=1

((Ψ + Ui)−1 ⊗ (Ψ + Ui)−1)

]
Gp

)
, (9)

(ii) the Jeffreys prior is given by

πJ(µ,Ψ) = πJ(Ψ) ∝ πR(Ψ)

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)
. (10)

Proof of Corollary 1: (i) Using that f(u) = exp(−u/2)/(2π)pn/2, we get that f ′(u) = −1
2f(u) and,

consequently,

J2 =
1

4
E
(

(vec(Z)>vec(Z))2
)

=
2pn+ p2n2

4

Hence, under model (2) we obtain

F22 = G>p

[
2J2

2pn+ p2n2

n∑
i=1

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1) ]Gp,

which leads to the expression presented in the statement of the corollary.

(ii) The result follows from the part (i) and the block-diagonality of F.

If the generalized multivariate random effects model is assumed to be homoscedastic, that is the

equality U1 = ... = Un = V holds, then the Berger and Bernardo reference prior and the Jeffreys

prior are given by

Corollary 2. Under the assumption of Theorem 2, assume that U1 = ... = Un = V. Then

(i) the Berger & Bernardo reference prior is given by

πR(µ,Ψ) = πR(Ψ) ∝ det (Ψ + V)−(p+1)/2 , (11)

(ii) the Jeffreys prior is given by

πJ(µ,Ψ) = πJ(Ψ) ∝ det (Ψ + V)−(p+2)/2 . (12)

Proof of Corollary 2: (i) Under the condition U1 = ... = Un = V, we get

F22 = G>p

[(
J2

2pn+ p2n2
− 1

4

)
vec
(
n(Ψ + V)−1

)
vec
(
n(Ψ + V)−1

)>
+

2nJ2
2pn+ p2n2

(
(Ψ + V)−1 ⊗ (Ψ + V)−1

) ]
Gp.
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The application of the properties of determinants involving the duplication matrix Gp (see,

Lütkepohl (1996, Section 4.2.3)), we obtain

det

{
(G>p Gp)

−1G>p

[(
J2

2pn+ p2n2
− 1

4

)
vec
(
n(Ψ + V)−1

)
vec
(
n(Ψ + V)−1

)>
+

2nJ2
2pn+ p2n2

(
(Ψ + V)−1 ⊗ (Ψ + V)−1

) ]
Gp

}

=

(
2nJ2

2pn+ p2n2

) p(p+1)
2
(

1 +

(
1

2
− 2pn+ p2n2

8J2

)
pn

)
det (Ψ + V)−(p+1) ,

from which the expression of the Berger and Bernardo reference prior follows.

(ii) The result for the Jeffreys prior follows from part (i) and the equality

det(F11) =

(
4J1
p

)p
det(Ψ + V)−1.

It is remarkable that both the Berger and Bernardo reference prior and the Jeffreys prior under

the assumption of homoscedasticity do not depend on the type of elliptically contoured distribution.

In particular, the formulas from Corollary 2 can be used for the normal multivariate random effects

model (2).

3 Posterior

In the derivation of the posterior we consider a prior for µ and Ψ which is a function of Ψ only, that

is π(Ψ). Such a prior is an extension of both the Berger and Bernardo reference prior and the Jeffreys

prior and, consequently, the derived posterior can be used to deduce the posteriors obtained when the

Berger and Bernardo reference prior and the Jeffreys prior are employed as important special cases.

Under such a general prior the joint posterior for µ and Ψ is obtained from (1) and it is given by

π(µ,Ψ|X) ∝ π(Ψ)p(X|µ,Ψ)

=
π(Ψ)√

det(Ψ⊗ I + U)
f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
)
, (13)

with U = diag(U1, ...,Un). In Theorem 3 it shown that the conditional reference posterior for µ

belongs to the family of elliptically contoured distributions.

Theorem 3. Under the generalized multivariate random effects model (1) with U = diag(U1, ...,Un),

the conditional posterior π(µ|Ψ,x) is given by

π(µ|Ψ,X) ∝ fΨ,X

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
, (14)

where

fΨ,X (u) = f

(
n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ)) + u

)
u ≥ 0 , (15)

7



with

x̃(Ψ) =

(
n∑
i=1

(Ψ + Ui)
−1

)−1 n∑
i=1

(Ψ + Ui)
−1xi. (16)

Proof of Theorem 3: It holds that

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1) =
n∑
i=1

(xi − µ)>(Ψ + Ui)
−1(xi − µ)

= (µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ)) +

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

with x̃(Ψ) as in (16).

Hence,

π(µ|Ψ,X) ∝ π(Ψ)√
det(Ψ⊗ I + U)

× f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ)) +

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)

∝ fΨ,X

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
,

where fΨ,X(.) is given in (15).

As a straightforward consequence of the result in Theorem 3 by substituting π(Ψ) with πR(Ψ)

and πJ(Ψ) from (8) and (7) respectively, we get the conditional reference posterior π(µ|Ψ,x) for

the generalized multivariate random effects model (1) and the conditional posterior when the Jeffreys

prior is used.

Moreover, from the proof of Theorem 3 we also get the marginal posterior for Ψ as given by

Corollary 3. Under the generalized multivariate random effects model (1) with U = diag(U1, ...,Un),

the conditional posterior π(Ψ|X) is given by

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)

×
∞∫
0

up−1f

(
u2 +

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)
du , (17)

Proof of Corollary 3: Using the transformation ν = (
∑n

i=1 Ψ + Ui)
−1 (µ − x̃(Ψ)) with the Jacobian

1/
√

det(
∑n

i=1(Ψ + Ui)−1), the marginal posterior for Ψ is expressed as

π(Ψ|X) ∝
∫
Rp

π(Ψ)∏n
i=1

√
det(Ψ + Ui)

f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
)

dµ

=
π(Ψ)√

det(
∑n

i=1(Ψ + Ui)−1)
∏n
i=1

√
det(Ψ + Ui)

×
∫
Rp

f

(
ν>ν +

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)
dν.
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The rest of the proof follows by noting that (cf., Gupta et al. (2013, Lemma 2.1)):∫
Rp

g(t>t)dt =
2πp/2

Γ(p/2)

∞∫
0

up−1g(u2)du,

where Γ(.) stands for the gamma function.

The posterior mean vector and the posterior covariance matrix of µ are derived from Theorem 3

by using the rule of iterated expectations. They are given by

E (µ|X) = E(E(µ|Ψ,X)|X) = E(x̃(Ψ)|X)

= E

( n∑
i=1

(Ψ + Ui)
−1

)−1 n∑
i=1

(Ψ + Ui)
−1xi

∣∣∣∣∣X
 (18)

and

Var (µ|X) = E(Var(µ|Ψ,X)|X) +Var(E(µ|Ψ,X)|X)

= E

C(Ψ)

(
n∑
i=1

(Ψ + Ui)
−1

)−1 ∣∣∣∣∣X


+ Var

( n∑
i=1

(Ψ + Ui)
−1

)−1 n∑
i=1

(Ψ + Ui)
−1xi

∣∣∣∣∣X
 , (19)

where

C(Ψ) = E
(
R2

Ψ,X

)
with R2

Ψ,X = z>Ψ,XzΨ,X, (20)

where zΨ,X ∼ Ep(0p, Ip, fΨ,X).

3.1 Propriety

For the derivation of the conditions required for the propriety of the posterior π(µ,Ψ|X), we use the

following lemma:

Lemma 1. Let A > 0 be a symmetric and positive definite matrix, and let B ≥ 0 be a symmetric and

positive semidefinite matrix. Then

A−1 ⊗A−1 − (A + B)−1 ⊗ (A + B)−1 ≥ 0

is positive semidefinite.

The proof of Lemma 1 is given in the appendix. In Theorem 4 we formulate the conditions required

for the propriety of the posterior.

Theorem 4. Consider the generalized multivariate random effects model (1) with U = diag(U1, ...,Un).

Let f(u) be a non-increasing function in u ≥ 0 and J2
2pn+p2n2 − 1

4 ≤ 0 where J2 is defined in (6).

1. If n ≥ p, then the posterior π(µ,Ψ|X) derived under the Jeffreys prior πJ(Ψ) is proper.

2. If n ≥ p + 1, then the posterior π(µ,Ψ|X) derived under the Berger and Bernardo reference

prior πR(Ψ) is proper.
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Proof of Theorem 4: First, we derive an upper bound for the determinant of two diagonal blocks of

the Fisher information matrix derived in Theorem 1. Let φ̃ = mini=1,...,n minj=1,...,p φi,j denote the

minimum of the eigenvalues {φi,j}j=1,...,p computed for the matrices Ui, i = 1, ..., n. Since Ψ+ φ̃I and

Ui − φ̃I are symmetric and positive semi-definitewe obtain from Lemma 1.(ii) that

(Ψ + φ̃I)−1 ⊗ (Ψ + φ̃I)−1 − (Ψ + Ui)
−1 ⊗ (Ψ + Ui)

−1 ≥ 0,

for i = 1, ..., n and, hence,

n(Ψ + φ̃I)−1 ⊗ (Ψ + φ̃I)−1 −
n∑
i=1

(Ψ + Ui)
−1 ⊗ (Ψ + Ui)

−1 ≥ 0.

The inequality J2/(2pn+ p2n2)− 1/4 ≤ 0 yields

det(F22) ≤ det

(
2J2

2pn+ p2n2
G>p

n∑
i=1

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)Gp

)
,

while the application of Theorem 18.1.6 of Harville (1997) implies

det(F22) ≤ det

(
2nJ2

2pn+ p2n2
G>p

(
(Ψ + φ̃I)−1 ⊗ (Ψ + φ̃I)−1

)
Gp

)

=

(
2J2

2p+ p2n

)p(p+1)/2

det(Ψ + φ̃I)−(p+1). (21)

Let

c11(p, n) =

(
4J1
p

)p/2
and c22(p, n) =

(
2J2

2p+ p2n

)p(p+1)/2

.

Using that

(det(Ψ⊗ I + U))−1 =

n∏
i=1

det
(
(Ψ + Ui)

−1) ≤ det
(

(Ψ + φ̃I)−1
)n

= det(Ψ + φ̃I)−n (22)

and that f(.) is non-increasing, we get that the kernel of the posterior π(µ,Ψ|X) derived under the

Jeffreys prior is bounded by

gJ(µ,Ψ|X) =
πJ(Ψ)√

det(Ψ⊗ I + U)
f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
)

= c11(p, n)c22(p, n)

√
det(F22)√

det(Ψ⊗ I + U)

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)

× f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ)) +

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)
≤ c11(p, n)c22(p, n)det(Ψ + φ̃I)−(n+p+1)/2

×

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)
f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
, (23)

where (23) is proportional to the kernel of a generalized matrix-variate beta type II distribution with

parameters (p + 1)/2, n/2, and φ̃I (see, e.g., Gupta and Nagar (2000)), which is a proper density as

soon as p ≤ n. The expression (23) is the kernel of the p-dimensional elliptically countered distribution

with density generator f(.). Since f(.) is a density generator of a p × n-dimensional matrix-variate
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elliptically contoured distribution, the integral of (23) over µ ∈ Rp converges. Hence, the joint

posterior π(µ,Ψ|X) derived under the Jeffreys prior is proper under the condition p ≤ n.

In the case of the Berger and Bernardo reference prior we get that the posterior for µ and Ψ is

bounded by

gR(µ,Ψ|X) =
πR(Ψ)√

det(Ψ⊗ I + U)
f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
)

= c22(p, n)

√
det(F22)√

det(Ψ⊗ I + U)

1√
det (

∑n
i=1(Ψ + Ui)−1)

×

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)
f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
.

It holds that (see, Lütkepohl (1996, p.55))

npdet

(
1

n

n∑
i=1

(Ψ + Ui)
−1

)
≥ np

n∏
i=1

det
(
(Ψ + Ui)

−1)1/n = np
n∏
i=1

det(Ψ + Ui)
−1/n,

which together with (22) implies that

gR(µ,Ψ|X) ≤ n−p/2c22(p, n)

√
det(F22)√

det(Ψ⊗ I + U)1−1/n

×

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)
f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
≤ n−p/2c22(p, n)det(Ψ + φ̃I)−(n+p)/2 (24)

×

√√√√det

(
n∑
i=1

(Ψ + Ui)−1

)
f

(
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)
. (25)

The last line coincides with (23) and it is integrable in Rp. Moreover, (24) is proportional to the

kernel of a generalized matrix-variate beta type II distribution with parameters (p+ 1)/2, (n− 1)/2,

and φ̃I (see, e.g., Gupta and Nagar (2000)), which is a proper density as soon as p+ 1 ≤ n. Thus, the

joint posterior π(µ,Ψ|X) derived under the Berger and Bernardo reference prior is proper under the

condition p+ 1 ≤ n.

4 Drawing samples from the posterior distribution:

Metropolis-Hastings algorithm

In this section we develop algorithms to draw samples (µ(b),Ψ(b)) from the posterior derived under

the Berger and Bernardo reference prior and the Jeffreys prior. The idea is based on the application

of the Markov chain Monte Carlo based on the Metropolis-Hastings algorithm, a popular approach is

Bayesian statistics (see, e.g., Givens and Hoeting (2012)). Recently, Hill and Spall (2019) provided a

comprehensive discussion of the stationarity and convergence of the algorithm, that depends on the

chosen proposal from which the samples are generated. A good proposal distribution should have the

support which covers the support of the target distribution, i.e., of the posterior for µ and Ψ. Also,

it should ensure that that the constructed Markov chain has good mixing properties and it will not

stack in a single point.
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As a proposal, we suggest to use the special case of the posterior distribution derived under each

of the considered prior in the case U1 = ... = Un = O. The two proposals are then defined for all

positive semi-definite matrices, thus having the same supports as the two posteriors derived under the

Berger and Bernardo reference prior and the Jeffreys prior. More precisely, ignoring the normalizing

constants the proposal under the Berger and Bernardo reference prior is given by

qR(µ,Ψ|X) = det(Ψ)−(n+p+1)/2f

(
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))
,

and it is expressed as

qJ(µ,Ψ|X) = det(Ψ)−(n+p+2)/2f

(
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))

under the Jeffreys prior.

Let

x̄ =
1

n

n∑
i=1

xi and S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>, (26)

In using that

n∑
i=1

(xi − µ)(xi − µ)> = (n− 1)S + n(µ− x̄)(µ− x̄)>, (27)

which implies

det(
n∑
i=1

(xi − µ)(xi − µ)>) = det((n− 1)S)

(
1 +

n

n− 1
(µ− x̄)>S−1(µ− x̄)

)
we get

qR(µ,Ψ|X) ∝
(

1 +
1

n− p
n(n− p)
n− 1

(µ− x̄)>S−1(µ− x̄)

)−n/2
(28)

× det(Ψ)−(n+p+1)/2det(
n∑
i=1

(xi − µ)(xi − µ)>)n/2f

(
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))

and

qJ(µ,Ψ|X) ∝
(

1 +
1

n− p+ 1

n(n− p+ 1)

n− 1
(µ− x̄)>S−1(µ− x̄)

)−(n+1)/2

(29)

× det(Ψ)−(n+p+2)/2det(
n∑
i=1

(xi − µ)(xi − µ)>)(n+1)/2f

(
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))
.

The expression of the proposal qR(µ,Ψ|X) derived under the Berger and Bernardo reference prior

is proportional to the joint density function of µ and Ψ with Ψ|µ,X ∼ GIWp(n + p + 1,
∑n

i=1(xi −
µ)(xi − µ)>, f) (generalized p-dimensional inverse Wishart distribution with n + p + 1 degrees of

freedom, scale matrix
∑n

i=1(xi − µ)(xi − µ)>, and density generator f , see, e.g., Sutradhar and

Ali (1989)) and µ|X ∼ tp

(
n− p, x̄, (n− 1)S

n(n− p)

)
(p-dimensional multivariate t-distribution with n − p

degrees of freedom, location vector x̄, and scale matrix
(n− 1)S

n(n− p)
). Similarly, we get that the proposal

12



under the Jeffreys prior is proportional to the joint density function of µ and Ψ with Ψ|µ,X ∼

GIWp(n+ p+ 2,
∑n

i=1(xi − µ)(xi − µ)>, f) and µ|X ∼ tp
(
n− p+ 1, x̄,

(n− 1)S

n(n− p+ 1)

)
.

We finally note that both proposals (28) and (29) are proper under the conditions n ≥ p + 1 and

n ≥ p, respectively, which coincides with the conditions needed for the propriety of the posteriors

derived under the Berger and Bernardo reference prior and the Jeffreys prior in Theorem 4. As a

result, the suggested proposal possesses the similar tail behaviour as the corresponding posteriors

and, thus, they are good candidates for the construction of the Markov chains.

Algorithm 1 Metropolis-Hastings algorithm for drawing realizations from π(µ,Ψ|X) as in

(13) under the Berger and Bernardo reference prior (8)

(1) Initialization: Choose the initial values µ(0) and Ψ(0) for µ and Ψ and set b = 0.

(2) Generating new values of µ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, ...,xn), generate µ(w) from tp

(
n− p, x̄, (n− 1)S

n(n− p)

)
with x̄

and S as in (26);

(ii) Using data X and the drawn in step (i) µ(w), generate Ψ(w) from Ψ|µ = µ(w),X ∼
GIWp(n+ p+ 1,

∑n
i=1(xi − µ(w))(xi − µ(w))>, f).

(3) Computation of the Metropolis-Hastings ratio:

MH(b) =
π(µ(w),Ψ(w)|X)qR(µ(b−1),Ψ(b−1)|X)

π(µ(b−1),Ψ(b−1)|X)qR(µ(w),Ψ(w)|X)
.

(4) Moving to the next state of the Markov chain:

(i) Generate U (b) from the uniform distribution on [0, 1];

(ii) If U b < min
{

1,MH(b)
}
π(µ(b), then set µ(b) = µ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set µ(b) = µ(b−1) and Ψ(b) = Ψ(b−1) (Markov

chain stays in the previous state).

(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accumulated.

The Metropolis-Hastings algorithm for generating a draw from π(µ,Ψ|X) derived under the Berger

and Bernardo reference prior is given in Algorithm 1. A similar algorithm with minor changes is

constructed to draw a sample from the posterior π(µ,Ψ|X) derived under the Jeffreys prior. It is

summarized in Algorithm 2.

5 Several families of elliptical distributions

In this section we apply the obtained theoretical results in case of two special families of elliptically

contoured distribution: normal distribution and t-distribution.
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Algorithm 2 Metropolis-Hastings algorithm for drawing realizations from π(µ,Ψ|X) as in

(13) under the Jeffreys prior (7)

(1) Initialization: Choose the initial values µ(0) and Ψ(0) for µ and Ψ and set b = 0.

(2) Generating new values of µ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, ...,xn), generate µ(w) from tp

(
n− p+ 1, x̄,

(n− 1)S

n(n− p+ 1)

)
with x̄ and S as in (26);

(ii) Using data X and the drawn in step (i) µ(w), generate Ψ(w) from Ψ|µ = µ(w),X ∼
GIWp(n+ p+ 2,

∑n
i=1(xi − µ(w))(xi − µ(w))>, f).

(3) Computation of the Metropolis-Hastings ratio:

MH(b) =
π(µ(w),Ψ(w)|X)qJ(µ(b−1),Ψ(b−1)|X)

π(µ(b−1),Ψ(b−1)|X)qJ(µ(w),Ψ(w)|X)
.

(4) Moving to the next state of the Markov chain:

(i) Generate U (b) from the uniform distribution on [0, 1];

(ii) If U b < min
{

1,MH(b)
}
π(µ(b), then set µ(b) = µ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set µ(b) = µ(b−1) and Ψ(b) = Ψ(b−1) (Markov

chain stays in the previous state).

(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accumulated.
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5.1 Normal multivariate random effects model

In the case of the normal multivariate random effects model (2), we have

f(u) = Kp,n exp(−u/2) with Kp,n = (2π)−pn/2, (30)

which directly yields

fΨ,X (u) =
1

(2π)pn/2
exp

(
−u

2

)
exp

(
−1

2

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)
.

The last equality leads to the conclusion that the conditional posterior for µ given Ψ is a multi-

variate normal distribution expressed as

µ|Ψ,X ∼ N

( n∑
i=1

(Ψ + Ui)
−1

)−1 n∑
i=1

(Ψ + Ui)
−1xi,

(
n∑
i=1

(Ψ + Ui)
−1

)−1 , (31)

while the marginal posterior for Ψ is given by

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)

× exp

(
−1

2

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)
. (32)

The posterior mean vector and the posterior covariance matrix of µ are obtained as in (18) and (19)

with C(Ψ) = 1. Finally, we note that the posterior π(µ,Ψ|X) is proper for n ≥ p+ 1 for the Berger

and Bernardo reference prior and for n ≥ p for the Jeffreys prior following Theorem 4, since exp(−u/2)

is a decreasing function in u and J2
2pn+p2n2 − 1

4 = 0.

All the derived expressions for the normal multivariate random effects model, like conditional

posterior for µ, posterior mean vector, etc., depend on the marginal posterior for Ψ and thus cannot

be computed analytically. In the univariate case, Bodnar et al. (2016) suggested a numerical procedure

for the computation of such quantities based on the evaluation of one-dimensional integral. In the

multivariate case Ψ is a matrix now and since it should be positive semidefinite it imposes further

complications on the numerical integration. For that reason we opt for the simulation-based approach

as described in Section 4.

For generating samples from the posterior π(µ,Ψ|X) we apply Algorithm 1 under the Berger

and Bernardo reference prior and Algorithm 2 under the Jeffreys prior where the inverse generalized

Wishart distribution becomes the inverse Wishart distribution with n + p + 1 and n + p + 2 degrees

of freedom, respectively. Other parts of the algorithms remain the same without changes.

Alternatively, one can modify these two algorithms using the properties of the normal distribution.

Under the Berger and Bernardo reference prior, another proposal distribution can be constructed by

using (28) with (30). Namely, from (26) and (27) we get

exp

(
−1

2
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))

= exp

(
−n− 1

2
tr
(
Ψ−1S

))
exp

(
−n

2
(µ− x̄)>Ψ−1(µ− x̄)

)
.

This leads to the algorithm derived under the Berger and Bernardo reference prior which is summarized

in Algorithm 3. A similar approach can also be used when the Jeffreys prior is employed with the
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Algorithm 3 Metropolis-Hastings algorithm for drawing realizations from π(µ,Ψ|X) as in

(13) under the Berger and Bernardo reference prior (8) in the normal multivariate random

effects model

(1) Initialization: Choose the initial values µ(0) and Ψ(0) for µ and Ψ and set b = 0.

(2) Generating new values of µ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, ...,xn), generate Ψ(w) from Ψ(w)|X ∼ IWp(n+ p, (n− 1)S);

(ii) using data X and the drawn in step (i) Ψ(w), generate µ(w) from µ|Ψ = Ψ(w),X ∼

Np

(
x̄,

Ψ(w)

n

)
with x̄ and S as in (26).

(3) Computation of the Metropolis-Hastings ratio:

MH(b) =
π(µ(w),Ψ(w)|X)qR(µ(b−1),Ψ(b−1)|X)

π(µ(b−1),Ψ(b−1)|X)qR(µ(w),Ψ(w)|X)
.

(4) Moving to the next state of the Markov chain:

(i) Generate U (b) from the uniform distribution on [0, 1];

(ii) If U b < min
{

1,MH(b)
}
π(µ(b), then set µ(b) = µ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set µ(b) = µ(b−1) and Ψ(b) = Ψ(b−1) (Markov

chain stays in the previous state).

(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accumulated.
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only change in step (2) of Algorithm 3, where Ψ(w)|X ∼ IWp(n+ p, (n− 1)S) should be replaced by

Ψ(w)|X ∼ IWp(n+ p+ 1, (n− 1)S).

The performance of two algorithms for drawing samples from the posterior distribution is studied

in Figures 1 for the normal multivariate random effects model when the Berger and Bernardo reference

prior and the Jeffreys prior are employed. The notation ’Algorithm A’ corresponds to the case where

µ is drawn from the marginal distribution and Ψ is generated from the conditional distribution as in

Algorithms 1 and 2 with density generator f(.) as in (30), while the notation ’Algorithm B’ corresponds

to the case when Ψ is generated from the marginal distribution and µ is obtained from the conditional

distribution as in Algorithm 3.
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Figure 1: Coverage probabilities of the 95% credible intervals for the first component of µ as

a function of τ 2 under the assumption of the normal multivariate random effects model when

the Berger and Bernardo reference prior and the Jeffreys prior are employed. We set p ∈ {2, 5}
and n ∈ {10, 20}.

As a performance measure we use the empirical coverage probability of the credible interval con-

structed for µ1, which is computed based on 5000 independent repetitions. In each simulation run,

the data matrix X is drawn from the normal multivariate random effects model (2) with the same µ,

Ψ = τ2Ξ, and U = diag(U1, ...,Up). The elements of µ are generated from the uniform distribution

on [1, 5]. The eigenvalues of Ξ, U1, ... , Up−1, and Up are generated from the uniform distribution

on [1, 4], while the eigenvectors are simulated from the Haar distribution. The results in Figure 1 are
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obtained for p ∈ {2, 5}, n ∈ {10, 20}, and τ2 ∈ {0.25, 0.5, 0.75, 1, 2}.
In Figure 1 we observe that the credible intervals obtained by employing the Berger and Bernardo

reference prior leads to wider credible intervals constructed for µ1, although the difference between

the two non-informative priors is not large. The empirical coverage probabilities computed by using

the two numerical procedures of drawing samples from the posterior distribution are above the chosen

significance level of 95% in almost all of the considered cases. Furthermore, when the sample size in-

creases to n = 20, then the constructed credible intervals possess almost perfect coverage probabilities

of 95% for both considered dimensions p ∈ {2, 5}.

5.2 t multivariate random effects model

In the case of the t multivariate random effects model it holds that

f(u) = Kp,n,d(1 + u/d)−(pn+d)/2 with Kp,n,d = (πd)−pn/2
Γ ((d+ pn)/2)

Γ (d/2)
. (33)

Hence,

π(µ,Ψ|X) ∝ π(Ψ)√∏n
i=1 det(Ψ + Ui)

×

(
1 +

1

d
(µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

+
1

d

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)−(pn+d)/2

=
π(Ψ)√∏n

i=1 det(Ψ + Ui)

(
1 +

1

d

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)−(pn+d)/2

×

(
1 +

1

pn+ d− p
pn+ d− p

d+
∑n

i=1(xi − x̃(Ψ))>(Ψ + Ui)−1(xi − x̃(Ψ))

× (µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)−(pn+d)/2
,

which shows that the conditional posterior of µ given Ψ is

π(µ|Ψ,X) ∝

(
1 +

1

pn+ d− p
pn+ d− p

d+
∑n

i=1(xi − x̃(Ψ))>(Ψ + Ui)−1(xi − x̃(Ψ))
(34)

× (µ− x̃(Ψ))>

(
n∑
i=1

(Ψ + Ui)
−1

)
(µ− x̃(Ψ))

)−(pn+d)/2
, (35)

i.e., µ conditionally on Ψ and X has a p-dimensional t-distribution with pn+d−p degrees of freedom,

location parameter x̃(Ψ) and dispersion matrix

d+
∑n

i=1(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

pn+ d− p

(
n∑
i=1

(Ψ + Ui)
−1

)−1
.

Moreover, the marginal posterior for Ψ can also be deduced and it is expressed as

π(Ψ|X) ∝ π(Ψ)√
det(

∑n
i=1(Ψ + Ui)−1)

∏n
i=1

√
det(Ψ + Ui)

×

(
1 +

1

d

n∑
i=1

(xi − x̃(Ψ))>(Ψ + Ui)
−1(xi − x̃(Ψ))

)−(pn+d)/2
. (36)
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To this end, the posterior mean vector and the covariance matrix of µ are obtained as in (18) and

(19) with

C(Ψ) =
d+

∑n
i=1(xi − x̃(Ψ))>(Ψ + Ui)

−1(xi − x̃(Ψ))

pn+ d− p− 2
.

Finally, we note that the constant J2 can analytically be computed in the case of the t multivariate

random effects model and it is expressed as (see, Bodnar (2019, Section 3.2))

J2 =
pn(pn+ 2)(pn+ d)

4(pn+ 2 + d)

The application of the last expression leads to the following formulas of the Berger and Bernardo

reference prior

πR(Ψ) ∝

(
det

{
G>p

[
pn+ d

2(pn+ 2 + d)

n∑
i=1

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1) (37)

− 1

2(pn+ 2 + d)
vec

(
n∑
i=1

(Ψ + Ui)
−1

)
vec

 n∑
j=1

(Ψ + Uj)
−1

> ]Gp

})1/2

,

while the Jeffreys prior is given by (7) with πR(Ψ) as in (37). Furthermore, since (1 + u/d)−(pn+d)/2

is a decreasing function in u and

J2
2pn+ p2n2

− 1

4
=

1

4

(
pn+ d

pn+ d+ 2
− 1

)
< 0,

the posterior π(µ,Ψ|X) is proper for n ≥ p + 1 for the Berger and Bernardo reference prior and for

n ≥ p for the Jeffreys prior due to Theorem 4.

Algorithm 1 and Algorithm 2 are used to draw samples from the posterior π(µ,Ψ|X) derived

by employing the Berger and Bernardo reference prior and the Jeffreys prior, respectively. Under the

special case of the t multivariate random effects model, the step (ii) of the both algorithm is performed

by computing Ψ(b) = ξ(b)

d Ω(b) where ξ(b) and Ω(b) are simulated independently from χ2
d-distribution

and the inverse Wishart distribution with parameter matrix (n− 1)
∑n

i=1(xi − µ(b))(xi − µ(b))> and

degrees of freedom equal to n + p + 1 under the Berger and Bernardo reference prior and n + p + 2

under the Jeffreys prior.

The modification of Algorithms 1 and 2 similar to the one derived for the normal multivariate

random effects model can also be obtained under the assumption of the t-distribution. The application

of the equality(
1 +

1

d
tr

(
Ψ−1

n∑
i=1

(xi − µ)(xi − µ)>

))−(pn+d)/2
=

(
1 +

n− 1

d
tr
(
Ψ−1S

))−(pn+d)/2
×

(
1 +

1

np+ d− p
n(np+ d− p)

d+ (n− 1)tr (Ψ−1S)
(µ− x̄)>Ψ−1(µ− x̄)

)−(pn+d)/2
leads to another numerical procedure described in Algorithm 4 when the posterior π(µ,Ψ|X) is derived

by applying the the Berger and Bernardo reference prior. Under the Jeffreys prior the step (2) of

Algorithm 4 should be modified by generating Ω(w) from IWp(n+ p+ 1, (n− 1)S).

In order to investigate the properties of the two proposed algorithms, we conduct a simulation

study for the t multivariate random effects model designed similarly to the one presented in Section

19



Algorithm 4 Metropolis-Hastings algorithm for drawing realizations from π(µ,Ψ|X) as in

(13) under the Berger and Bernardo reference prior (8) in the t multivariate random effects

model

(1) Initialization: Choose the initial values µ(0) and Ψ(0) for µ and Ψ and set b = 0.

(2) Generating new values of µ(w) and Ψ(w) from the proposal:

(i) For given data X = (x1, ...,xn), generate Ψ(w) = ξ(w)

d
Ω(w) where ξ(w) and Ω(w) are

simulated independently with from ξw ∼ χ2
d from Ω(w)|X ∼ IWp(n+ p, (n− 1)S);

(ii) Using data X and the drawn in step (i) Ψ(w), generate µ(w) from µ|Ψ = Ψ(w),X ∼

tp

(
pn+ d− p, x̄, d+(n−1)tr((Ψ(w))−1S)

n(np+d−p) Ψ(w)

)
with x̄ and S as in (26) and the symbol

tp(m, r,R) stands for the multivariate p-dimensional t-distribution with m degrees of

freedom, location vector r, and scale matrix R.

(3) Computation of the Metropolis-Hastings ratio:

MH(b) =
π(µ(w),Ψ(w)|X)qR(µ(b−1),Ψ(b−1)|X)

π(µ(b−1),Ψ(b−1)|X)qR(µ(w),Ψ(w)|X)
.

(4) Moving to the next state of the Markov chain:

(i) Generate U (b) from the uniform distribution on [0, 1];

(ii) If U b < min
{

1,MH(b)
}
π(µ(b), then set µ(b) = µ(w) and Ψ(b) = Ψ(w) (Markov chain

moves to the new state). Otherwise, set µ(b) = µ(b−1) and Ψ(b) = Ψ(b−1) (Markov

chain stays in the previous state).

(5) Return to step (2), increase b by 1, and repeat until the sample of size B is accumulated.
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Figure 2: Coverage probabilities of the 95% credible intervals for the first element of µ as

a function of τ 2 under the assumption of the t multivariate random effects model when the

Berger and Bernardo reference prior and the Jeffreys prior are employed. We set p ∈ {2, 5}
and n ∈ {10, 20}.

5.1 for the normal multivariate random effect models. Also, we use the same notations ’Algorithm A’

and ’Algorithm B’ to distinguish between the two procedures to draw the sample from the posterior

distributions derived by employing the Berger and Bernardo reference prior and the Jeffreys prior.

We use the empirical coverage probability of the credible interval constructed for µ1 as a perfor-

mance measure and compute it based on 5000 independent repetitions. In each simulation run, the

data matrix X is simulated from the t multivariate random effects model, i.e., from the model (1) with

f(.) as in (33). The model parameters µ, Ψ = τ2Ξ, and U = diag(U1, ...,Up) are chosen in the same

way as the corresponding parameters of the normal multivariate random effects model in Section 5.1.

Finally, we set p ∈ {2, 5}, n ∈ {10, 20}, and τ2 ∈ {0.25, 0.5, 0.75, 1, 2}.
The results of the simulation study are depicted in Figure 2. Similarly to the findings obtained

for the normal multivariate random effects model, the empirical coverage probabilities are larger than

the chosen significance level of 95% in almost all of the considered cases, independently whether the

Markov chains are constructed following Algorithm A or Algorithm B. The application of the Berger

and Bernardo reference prior leads to a slightly larger values of the empirical coverage probabilities.

Finally, the coverage probabilities are close to 95% when the sample size is n = 20 independently of
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the chosen values of p ∈ {2, 5}.

6 Empirical illustration

In this section we illustrate the derived theoretical findings on real data consisting of results obtained

in ten studies that assess the effectiveness of hypertension treatment for reducing blood pressure. The

treatment effects on the systolic blood pressure and diastolic blood pressure are investigated in the

studies where the negative values document positive effect of the treatment. The data are provided

in Table 1 and are taken from Jackson et al. (2013) where the treatment effects in each study are

provided together with the covariance matrices Ui which are assumed to be known throughout this

section.

Study Xi;1 (SBP) Xi;2 (DBP)
√
Ui;11 (SBP) ρi;12 =

Ui;12√
Ui;11Ui;22

√
Ui;22 (DBP)

1 -6.66 -2.99 0.72 0.78 0.27

2 -14.17 -7.87 4.73 0.45 1.44

3 -12.88 -6.01 10.31 0.59 1.77

4 -8.71 -5.11 0.30 0.77 0.10

5 -8.70 -4.64 0.14 0.66 0.05

6 -10.60 -5.56 0.58 0.49 0.18

7 -11.36 -3.98 0.30 0.50 0.27

8 -17.93 -6.54 5.82 0.61 1.31

9 -6.55 -2.08 0.41 0.45 0.11

10 -10.26 -3.49 0.20 0.51 0.04

Table 1: Data collected in 10 studies about the effectiveness of hypertension treatment with

the aim to reduce blood pressure. The variables Xi;1 and Xi;2 denote the treatment effects on

the systolic blood pressure (SBP) and the diastolic blood pressures (DBP) from the ith study,

while Ui = (Ui;lj)lj=1,2 is the corresponding covariance matrix.

Multivariate meta-analysis is performed by using data from Table 1 under the assumption of the

normal multivariate random effects model (Section 5.1) and the t multivariate random effects model

(Section 5.2) when the Berger and Bernardo reference prior and the Jeffreys prior are employed. The

samples from the joint posterior distribution π(µ,Ψ|X) are drawn by applying two versions of the

Metropolis-Hastings algorithm which are described in Section 5.1 for the normal multivariate random

effects model and denoted by Algorithm A and Algorithm B, respectively. For each type of the

Metropolis-Hastings algorithm, the distributional class of the multivariate random effects model, and

the chosen prior, 105 realizations from the posterior distribution π(µ,Ψ|X) are drawn with 10% used

as burn-in sample.

The first two columns of Table 2 present the results for the normal multivariate random effects

model, while the results for the t multivariate random effects model with d = 3 degrees of freedom

are shown in the third and the fourth columns of the table. For each chosen prior, random effects

model, and numerical algorithm to draw a sample from the posterior distribution, we compute the

posterior mean and posterior median as two Bayesian point estimators for the overall mean vector
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Normal random effects model t random effects model

µ1 (SBP) µ2 (DBP) µ1 (SBP) µ2 (DBP)

Jeffreys prior, Algorithm A

post. mean -9.79 -4.05 -10.15 -4.67

post. median -9.60 -4.27 -10.10 -4.66

post. sd. 0.88 0.93 1.08 0.60

cred. inter. [-11.73, -8.00] [-5.61, -2.66] [-12.44,-8.11] [-5.87,-3.51]

Jeffreys prior, Algorithm B

post. mean -9.78 -4.37 -10.03 -4.66

post. median -9.84 -4.37 -9.97 -4.65

post. sd. 0.74 0.50 1.13 0.61

cred. inter. [-11.46, -8.39] [-5.38, -3.38] [-12.46, -7.99] [-5.90, -3.51]

Berger and Bernardo reference prior, Algorithm A

post. mean -9.81 -4.49 -10.11 -4.67

post. median -9.87 -4.44 -10.06 -4.66

post. sd. 1.04 0.59 1.16 0.64

cred. inter. [-12.06, -8.00] [-5.78, -3.42] [-12.58, -7.97] [-5.96, -3.43]

Berger and Bernardo reference prior, Algorithm B

post. mean -9.70 -4.51 -10.08 -4.68

post. median -9.72 -4.53 -10.03 -4.65

post. sd. 1.01 0.58 1.13 0.64

cred. inter. [-11.88, -8.06] [-5.67, -3.49] [-12.50, -7.97] [-5.94, -3.42]

REML

estimator -9.50 -4.43 – –

stand. error 0.77 0.48 – –

Method of moments, Jackson et al. (2010)

estimator -9.13 -4.30 – –

stand. error 0.54 0.36 – –

Method of moments, Jackson et al. (2013)

estimator -9.17 -4.31 – –

stand. error 0.55 0.36 – –

Table 2: Results of Bayesian inference (posterior mean, posterior median, posterior standard

deviation, 95% credible interval) for the parameters of the normal multivariate random effects

model obtained for the data from Table 1 by employing the Berger and Bernardo reference prior

and the Jeffrey prior. The samples from the posterior distributions are drawn by Algorithm A

and Algorithm B defined in Section 5.1. The last three panels of the table include the results

of the restrictive maximum likelihood estimator of Chen et al. (2012), and two methods of

moment estimators from Jackson et al. (2010) and Jackson et al. (2013).
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together with the posterior standard deviation and 95% probability symmetric credible interval. In

the case of the t multivariate random effects model we multiply Ui by d−2
d in order to ensure that the

within-study covariance matrix calculated under the assumption of the t multivariate random effects

model coincides with the one given in Table 1. Finally, for comparison purposes, we also include the

results obtained by three approaches of the frequentist statistics which are given in Table 3 of Jackson

et al. (2013).
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Figure 3: Credible sets for µ1 (SBP) and µ2 (DBP) obtained from the posterior distribution

π(µ|X) derived for the location parameters of the normal multivariate random effects model

by employing the Berger and Bernardo reference prior and the Jeffrey prior and using data

from Table 1. The samples from the posterior distributions are drawn by Algorithm A and

Algorithm B defined in Section 5.1.

All Bayesian point estimators derived under the assumption of the normal multivariate random

effects model are very similar and they are almost always slightly smaller than those obtained by

the frequentist approaches. In contrast, the computed Bayesian standard errors are larger than those

computed by the frequentist approaches, especially when the two methods of moments are used in

their computation. These results are in line with statistical theory and reflect the fact that the

Bayesian methods in contrast to the frequentist approaches take automatically the uncertainty about

the between-study covariance matrix Ψ into account, while the frequentist methods usually ignore that

Ψ is an unknown nuisance parameter of the model which has to be estimated before the inferences
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for the overall mean vector are constructed. Finally, we have that the credible intervals obtained by

employing the Berger and Bernardo reference prior are wider than those obtained by using the Jeffreys

prior. Similar results are also obtained in the simulation study of Section 5.1 (see, Figure 1), where

the larger values of the coverage probabilities are documented for the Berger and Bernardo reference

prior. Such a result was also documented in the univariate case in Bodnar (2019). Finally, in the

case of the t multivariate random effects model, the estimated elements of the overall mean vector µ

become even smaller than those observed under the of the normal multivariate random effects model,

while the corresponding Bayesian standard deviations increase reflecting the impact of heavy tails of

the t-distribution.
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Figure 4: Credible sets for µ1 (SBP) and µ2 (DBP) obtained from the posterior distribution

π(µ|X) derived for the location parameters of the normal multivariate random effects model

by employing the Berger and Bernardo reference prior and the Jeffrey prior and using data

from Table 1. The samples from the posterior distributions are drawn by Algorithm A and

Algorithm B defined in Section 5.2.

The two-dimensional credible regions at significance levels 0.9 (dark blue), 0.95 (light blue), and

0.99 (green) for the elements of the mean vector µ are depicted in Figure 3 for the normal multivariate

random effects model and in Figure 4 for the t multivariate random effects model with d = 3 degrees

of freedom. The credible regions obtained under the assumption of the t-distribution are very similar,

independently whether the Berger and Bernardo reference prior or the Jeffreys prior is employed, and
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the chosen algorithm to draw samples from the posterior distribution. That is not longer the case in

Figure 3, where the credible regions computed for the normal multivariate random effects model with

Jeffreys prior and using Algorithm B appear to be slightly narrower. Finally, the credible intervals

obtained under the assumption of the t-distribution are always wider reflecting the influence of heavy

tails.

7 Summary

Multivariate random effects model is one of the mostly used statistical tool in multivariate meta-

analysis where the aim is to combine multiple values obtained in several studies into a single value.

The parameters of the multivariate random effects model are usually estimated from the viewpoint

of frequentist statistics, while several subjective Bayesian approaches based on the informative priors

exist in the literature. Although both methods provide a good fit of the model to real data when

the sample size is relatively large due to the asymptotic theorems of the frequentist statistics and

the Bernstein-von-Mises theorem in Bayesian statistics, the results might be different when a sample

of small size is present which is the case in the majority of meta-analyses. When the sample size

is not large enough the asymptotic approximation might deviate considerable from the exact sample

distribution of the estimated parameters or/and the influence of the chosen informative prior might

have a significant impact on the posterior. Methods of the objective Bayesian statistics propose a

solution to the challenges related to the insufficient sample size by endowing the models parameters

with noninformative prior. In particular, the Berger and Bernardo reference prior is derived by

maximizing the Shannon mutual information, i.e. by choosing the prior with the smallest impact on

the posterior.

Flexible objective Bayesian procedures for the parameters of the multivariate random effects model

are developed by employing two noninformative priors, the Berger and Bernardo reference prior and

the Jeffreys prior. The analytical expressions of both the priors are obtained and the corresponding

posteriors are derived. The results are established for a general class of multivariate random effects

models which include the normal multivariate random effects model as a special case. Moreover, the

propriety of the posteriors is proved under a weak condition, which requires that the sample size is

larger than the dimension of the data generating-model only, independently of the specific class of the

multivariate random effects model. Finally, the Metropolis-Hastings algorithm has been developed in

the paper to draw samples from the posterior derived for the parameters of the model. Via simulations,

it is shown that the considered numerical procedures lead to similar results in the case of the normal

multivariate random effects model and the t multivariate random effects model. In an empirical

illustration based on data consisting of ten studies about the effectiveness of hypertension treatment

for reducing blood pressure, a positive effect of the treatments on both the systolic blood pressure and

diastolic blood pressure are found.
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8 Appendix

In this section the proofs of theoretical results are given.

Proof of Theorem 1: Under model (1) the log-likelihood ignoring the constant term is given by

L(µ,Ψ; X) = −1

2
log(det(Ψ⊗ I + U)) + log

(
f
(

vec(X− µ1>)>(Ψ⊗ I + U)−1vec(X− µ1)
))

= −1

2

n∑
i=1

log(det(Ψ + Ui)) + log

(
f

(
n∑
i=1

(xi − µ)>(Ψ + Ui)
−1(xi − µ)

))
. (38)

Hence,

∂L(µ,Ψ; X)

∂µ>
= −2

f ′
(∑n

i=1(xi − µ)>(Ψ + Ui)
−1(xi − µ)

)
f (
∑n

i=1(xi − µ)>(Ψ + Ui)−1(xi − µ))

n∑
i=1

(xi − µ)>(Ψ + Ui)
−1.

Next, we compute the partial derivative of the log-likelihood function with respect to vech(Ψ),

where vech denote for the vech operator with the following relation to vec (see, Harville (1997, p.

365))

vec(Ψ) = Gpvech(Ψ),

where Gp is the duplication matrix (see, Magnus and Neudecker (2019, Section 3)).

From the properties of the differential of a determinant (see, Magnus and Neudecker (2019, Section

8)) we get

d det(Ψ + Ui) = det(Ψ + Ui)(vec((Ψ + Ui)
−1))>d vec(Ψ + Ui)

= det(Ψ + Ui)(vec((Ψ + Ui)
−1))>d vec(Ψ)

= det(Ψ + Ui)(vech((Ψ + Ui)
−1))>G>p Gpd vech(Ψ).

Thus,

∂det(Ψ + Ui)

∂vech(Ψ)>
= det(Ψ + Ui)vech((Ψ + Ui)

−1)>G>p Gp

and

∂ log det(Ψ + Ui)

∂vech(Ψ)>
= vech((Ψ + Ui)

−1)>G>p Gp. (39)

Similar, using the properties of the differential of inverse matrix (see, Magnus and Neudecker (2019,

Section 8)), we obtain

d (Ψ + Ui)
−1 = −(Ψ + Ui)

−1d (Ψ + Ui)(Ψ + Ui)
−1 = −(Ψ + Ui)

−1d Ψ(Ψ + Ui)
−1
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and, consequently,

vec(d (Ψ + Ui)
−1) = d vec((Ψ + Ui)

−1)

= −vec((Ψ + Ui)
−1d Ψ(Ψ + Ui)

−1)

= −
(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)dvec(Ψ)

= −
(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)Gpd vech(Ψ).

Hence,

∂vec(Ψ + Ui)
−1

∂vech(Ψ)>
= −

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)Gp. (40)

The application of (39) and (40) leads to

∂L(µ,Ψ; X)

∂vech(Ψ)>
= −1

2

n∑
i=1

∂ log(det(Ψ + Ui))

∂vech(Ψ)>

+
∂

∂vech(Ψ)>
log

(
f

(
n∑
i=1

(xi − µ)>(Ψ + Ui)
−1(xi − µ)

))

= −1

2

n∑
i=1

vech((Ψ + Ui)
−1)>G>p Gp +

f ′
(∑n

i=1(xi − µ)>(Ψ + Ui)
−1(xi − µ)

)
f (
∑n

i=1(xi − µ)>(Ψ + Ui)−1(xi − µ))

×
n∑
i=1

(
(xi − µ)> ⊗ (xi − µ)>

) ∂vec(Ψ + Ui)
−1

∂vech(Ψ)>

= −1

2

n∑
i=1

vec((Ψ + Ui)
−1)>Gp −

f ′
(∑n

i=1(xi − µ)>(Ψ + Ui)
−1(xi − µ)

)
f (
∑n

i=1(xi − µ)>(Ψ + Ui)−1(xi − µ))

×
n∑
i=1

(
(xi − µ)> ⊗ (xi − µ)>

) (
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)Gp ,

The first block of the Fisher information matrix is given by

F11 = E

[(
∂L(µ,Ψ; X)

∂µ>

)> ∂L(µ,Ψ; X)

∂µ>

]
= 4

n∑
i=1

n∑
j=1

(Ψ + Ui)
−1Hij(Ψ + Uj)

−1 (41)

with

Hij =

(
n∏
k=1

√
det(Ψ + Uk)

−1/2
) ∫
Rnp

(xi − µ)(xj − µ)>

×

(
f ′
(∑n

k=1(xk − µ)>(Ψ + Uk)
−1(xk − µ)

)
f (
∑n

k=1(xk − µ)>(Ψ + Uk)−1(xk − µ))

)2

f

(
n∑
k=1

(xk − µ)>(Ψ + Uk)
−1(xk − µ)

)
dX

=

∫
Rnp

(Ψ + Ui)
1/2ziz

>
j (Ψ + Uj)

1/2

(
f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) )2

f

(
n∑
k=1

z>k zk

)
dZ,

where the last equality follows from the transformation xk = µ+ (Ψ + Uk)
1/2zk for k = 1, ..., n with

the Jacobian equal to
(∏n

k=1

√
det(Ψ + Uk)

1/2
)

and Z = (z1, . . . , zn). Moreover, we get that

vec(Z) = (Ψ⊗ I + U)−1/2vec(X− µ1)

and, consequently, Z ∼ Ep,n(Op,n, Ip×n, f) with Op,n p× n zero matrix (see, Theorem 2.13 in Gupta

et al. (2013)).
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Since

z>j (Ψ + Uj)
1/2

(
f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) )2

f

(
n∑
k=1

z>k zk

)

is an odd function on a symmetric region, we get that Hij = Op,p. Furthermore, using that

zi/
√

vec(Z)>vec(Z) and vec(Z)>vec(Z) with vec(Z)>vec(Z) =
∑n

k=1 z>k zk are independent (see,

Gupta et al. (2013, Theorem 2.15)), we obtain

Hii = J1(Ψ + Ui)
1/2E

(
ziz
>
i

vec(Z)>vec(Z)

)
(Ψ + Uj)

1/2, (42)

where

J1 = E

vec(Z)>vec(Z)

(
f ′
(
vec(Z)>vec(Z)

)
f (vec(Z)>vec(Z))

)2
 . (43)

To this end, we note that the distribution of zi/
√

vec(Z)>vec(Z) does not depend on the type

of elliptical distribution, i.e., on density generator f(.), and it is the same as in case of the normal

distribution. Let ZN ∼ Np,n(Op,n, Ip×n) (standard matrix-variate normal distribution) and let zi,N

denote its ith column. Then, it holds that

E

(
ziz
>
i

vec(Z)>vec(Z)

)
= E

(
zi,Nz>i,N

vec(ZN )>vec(ZN )

)
E(vec(ZN )>vec(ZN ))

E(vec(ZN )>vec(ZN ))

=
E
(
zi,Nz>i,N

)
E(vec(ZN )>vec(ZN ))

=
1

pn
Ip, (44)

where we used that vec(ZN )>vec(ZN ) ∼ χ2
pn (χ2-distribution with pn degrees of freedom).

Summarizing (41), (42), and (43), we get

F11 =
4J1
pn

n∑
i=1

(Ψ + Ui)
−1.

Next, we compute the nondiagonal block F21 of the Fisher information matrix. The transformation

xk = µ+ (Ψ + Uk)
1/2zk for k = 1, ..., n yields

F21 = E

[(
∂L(µ,Ψ; X)

∂µ>

)> ∂L(µ,Ψ; X)

∂vech(Ψ)>

]
=

n∑
i=1

n∑
j=1

(Ψ + Ui)
−1/2

 ∫
Rpn

Mij(Z)dZ

Gp,

where

Mij(Z) =
f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) zi

[
vec((Ψ + Uj)

−1)>

+ 2
f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) (z>j ⊗ z>j

)(
(Ψ + Uj)

−1/2 ⊗ (Ψ + Uj)
−1/2

)]
which is an odd function on a symmetric region. Hence,∫

Rpn

Mij(Z)dZ = O for all i, j ∈ {1, ..., n},

and, consequently, F21 = O.
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Similarly, using the transformation xk = µ+ (Ψ + Uk)
1/2zk for k = 1, ..., n, we get

F22 = E

[(
∂L(µ,Ψ; X)

∂vech(Ψ)>

)> ∂L(µ,Ψ; X)

∂vech(Ψ)>

]

= E

{
G>p

[
n∑
i=1

n∑
j=1

1

4
vec((Ψ + Ui)

−1)vec((Ψ + Uj)
−1)>

+
1

2

f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) ((Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
(zi ⊗ zi) vec((Ψ + Uj)

−1)>

+
1

2

f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) vec((Ψ + Ui)

−1)
(
z>j ⊗ z>j

)(
(Ψ + Uj)

−1/2 ⊗ (Ψ + Uj)
−1/2

)
+

(
f ′
(∑n

k=1 z>k zk
)

f
(∑n

k=1 z>k zk
) )2 (

(Ψ + Ui)
−1/2 ⊗ (Ψ + Ui)

−1/2
)

× (zi ⊗ zi)
(
z>j ⊗ z>j

)(
(Ψ + Uj)

−1/2 ⊗ (Ψ + Uj)
−1/2

)
Gp

]}

= G>p

[
n∑
i=1

n∑
j=1

1

4
vec((Ψ + Ui)

−1)vec((Ψ + Uj)
−1)>

+
1

2

(
(Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
Divec((Ψ + Uj)

−1)>

+
1

2
vec((Ψ + Ui)

−1)D>j

(
(Ψ + Uj)

−1/2 ⊗ (Ψ + Uj)
−1/2

)
+

(
(Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
Dij

(
(Ψ + Uj)

−1/2 ⊗ (Ψ + Uj)
−1/2

)
Gp

]
with

Di = E

(
f ′
(
vec(Z)>vec(Z)

)
f (vec(Z)>vec(Z))

(zi ⊗ zi)

)
= JE

(
(zi ⊗ zi)

vec(Z)>vec(Z)

)
(45)

and

Dij = E

(f ′ (vec(Z)>vec(Z)
)

f (vec(Z)>vec(Z))

)2

(zi ⊗ zi)
(
z>j ⊗ z>j

) = J2E

(zi ⊗ zi)
(
z>j ⊗ z>j

)
(vec(Z)>vec(Z))2

 (46)

where we use that Z/
√

vec(Z)>vec(Z) and vec(Z)>vec(Z) are independent (see, Gupta et al. (2013,

Theorem 2.15)),
∑n

k=1 z>k zk = vec(Z)>vec(Z), and define

J2 = E

(vec(Z)>vec(Z))2

(
f ′
(
vec(Z)>vec(Z)

)
f (vec(Z)>vec(Z))

)2
 . (47)

and

J = E

(
vec(Z)>vec(Z)

f ′
(
vec(Z)>vec(Z)

)
f (vec(Z)>vec(Z))

)
.

Let R2 = vec(Z)>vec(Z). Then the density of R2 is given by fR2(r) = rpn/2−1f(r) (cf., Theorem
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2.16 in Gupta et al. (2013)) and

J = E

(
R2 f

′(R2)

f(R2)

)
=

∞∫
0

r
f ′(r)

f(r)
rpn/2−1f(r)dr =

∞∫
0

rpn/2f ′(r)dr

= rpn/2f(r)

∣∣∣∣∣
∞

0

− np

2

∞∫
0

rpn/2−1f(r)dr = −pn
2
,

where we use that
∫∞
0 rn/2−1f(r)dr = 1 because rn/2−1f(r) is the density of R2 which also implies

that rn/2−1f(r) = o(r−1) as r →∞, i.e. rn/2f(r) = o(1) as r →∞.

Moreover, since the distribution of zi/
√

vec(Z)>vec(Z) does not depend on the type of elliptical

distribution, we get with ZN ∼ Np,n(Op,n, Ip×n) that

E

(
(zi ⊗ zi)

vec(Z)>vec(Z)

)
= E

(
(zi,N ⊗ zi,N )

vec(ZN )>vec(ZN )

)
= E

(
(zi,N ⊗ zi,N )

vec(ZN )>vec(ZN )

)
E
(
vec(ZN )>vec(ZN )

)
E (vec(ZN )>vec(ZN ))

= E (zi,N ⊗ zi,N )
1

pn
=

1

pn
vec(Ip),

where the last equality follows from the results in Ghazal and Neudecker (2000, p. 67)

Similarly for i 6= j ∈ {1, ..., n} we get

E

(zi ⊗ zi)
(
z>j ⊗ z>j

)
(vec(Z)>vec(Z))2


= E

(
(zi,N ⊗ zi,N )

(
z>j,N ⊗ z>j,N

)) 1

E ((vec(ZN )>vec(ZN ))2)

= E (zi,N ⊗ zi,N )E
(
z>j,N ⊗ z>j,N

) 1

2pn+ p2n2

=
1

2pn+ p2n2
vec(Ip)vec(Ip)

>.

Finally, for i = j ∈ {1, ..., n} we obtain

E

(
(zi ⊗ zi)

(
z>i ⊗ z>k

)
(vec(Z)>vec(Z))2

)
= E

(
(zi,N ⊗ zi,N )

(
z>i,N ⊗ z>i,N

)) 1

E ((vec(ZN )>vec(ZN ))2)

= (Ip2 + Kp + vec(Ip)vec(Ip)
>)

1

2pn+ p2n2
,

where the last equality follows from Theorem 4.1 in Magnus et al. (1979) and Kp is the commutation

matrix.

The properties of the vec operator and the properties of the duplication and commutation matrices,

namely (see, Magnus and Neudecker (2019, Theorem 3.12 and Theorem 3.13))

1

2
((Ip2 + Kp)(A⊗A)Gp = (A⊗A)Gp

yield (
(Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
vec(Ip)

= vec
(

(Ψ + Ui)
−1/2(Ψ + Ui)

−1/2
)

= vec
(
(Ψ + Ui)

−1)
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and (
(Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
(Ip2 +Kp)

(
(Ψ + Ui)

−1/2 ⊗ (Ψ + Ui)
−1/2

)
Gp

= 2
(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1)Gp.

Hence,

F22 = G>p

[(
J2

2pn+ p2n2
− 1

4

)
vec

(
n∑
i=1

(Ψ + Ui)
−1

)
vec

 n∑
j=1

(Ψ + Uj)
−1

>

+
2J2

2pn+ p2n2

n∑
i=1

(
(Ψ + Ui)

−1 ⊗ (Ψ + Ui)
−1) ]Gp,

which complete the proof of the theorem.

Proof of Lemma 1: First, we show that (A + B)⊗ (A + B)−A⊗A ≥ 0. For any vector c = vec(C)

we get

c> ((A + B)⊗ (A + B)−A⊗A) c

= vec(C)> ((A + B)⊗ (A + B)−A⊗A) vec(C)

= tr(C>(A + B)C(A + B))− tr(C>ACA)

= tr(C>(A + B)C(A + B))− tr(C>(A + B)CA) + tr(C>(A + B)CA)tr(C>ACA)

= tr(C>(A + B)CB) + tr(C>BCA)

= tr((A + B)1/2CBC>(A + B)1/2) + tr(A1/2C>BCA1/2) ≥ 0.

Since A and B are symmetric, we get that (A + B)⊗ (A + B) and A⊗A are symmetric. Hence, the

application of Theorem 18.3.4 in Harville (1997) leads to the second statement of the lemma.
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