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Abstract

In the Cochrane Database of Systematic Reviews (CDSR) 75% of reported meta-analyses
contain five or fewer studies. For a small dataset a reasonable goodness-of-fit test on a statistical model
cannot be performed since either it requires a large sample size for the validity of asymptotic
approximation or it might be not powerful enough to detect a deviation from the target model.

Random effects model under the assumption of normality is commonly used in many fields of
science. It also appears to be a classical approach for data reduction in interlaboratory studies in
metrology and in meta-analysis in medicine. However, the assumption of normality might not be
fulfilled in many practical applications. If a data set is small, then no statistical test on distribution will
perform well.

The intrinsic Bayes factor is used for selecting an appropriate probability model among several
competitors, which not necessarily have to be nested. We apply the proposed methodology to the
measurement results used to determine the Newtonian constant of gravitation and the Planck constant.

Keywords: random effects model; t-distribution; Bayesian model selection; intrinsic
Bayes factor; Newtonian constant of gravitation; Planck constant.
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1. Introduction

Random effects model is an established tool to perform the interlaboratory comparison
study in metrology [1] and meta-analysis in medicine [2, 3]. It is also widely used to determine
the values of the physical constants [4]. The assumption of normality is imposed in many
applications of the random effects model without verifying its validity. While assuming
normality might be appropriate for some datasets, it might deviate considerably from reality in
other situations. The impact of the distributional assumption used in the random effects model
was studied in two empirical illustrations in [5], which showed that the resulting values of the
overall mean and of the between-study variance might be strongly influenced by the assumed
distribution.

Most of meta-analyses and interlaboratory comparison studies are based on data that
consist of five or fewer observations [6]. As a result, a goodness-of-fit test cannot be carried out,
since it is asymptotic in nature, or it is not powerful enough to detect deviations from the
distributional model specified under the null hypothesis. For this reason, we opt for Bayesian
approach. The parameters of the model are endowed with the Berger and Bernardo reference
prior, which is a non-informative prior. Since a non-informative prior is usually improper, the
conversional Bayes model selection based on the Bayes factor cannot be used. We employ the
intrinsic Bayes factor to select the most suitable model among several competing models that do
not necessarily have to be nested.

The suggested approach is applied to data consisting of measurement results used in the
determination of the Newtonian constant of gravitation and the Planck constant. While the
assumption of normality is found to be appropriate in the case of the Newtonian constant, the
data used in the calculation of the Planck constant appear to be heavy-tailed and the random



effects model based on t-distribution with three degrees of freedom provides a better fit to data
than the one based on the assumption of normality.

2. Bayesian model selection based on the intrinsic Bayes factor
Let x = (x4, ..., X,) denote the measurement results and let U = (ukq)kq€1 . be the

covariance matrix provided together with the measurement results by participating laboratories.
The generalized random effects model assumes that the density of X is given by (see, [7])

pi(X|u, 1) = ———Ff;((x — )T (U + 22I) "1 (x — u1)),
/det(U+rZI)
(1)

where u is the common mean and 7 is the between-study standard deviation, also known as the
heterogeneity parameter “dark uncertainty”; 1 denotes the vector of ones and I is the identity
matrix. The function f;(.) determines the specific class of the random effects model. If f;(u) =
(2m) ™2exp (—u/2), then (1) is the normal random effects model, while the t-distributed
random effects model with d degrees of freedom is obtained from (1) with

—n/2 T(n+d)/2) _
fiw) = (nd) n/Zgl(;—/z))/(l +u/d) (n+a)/2. 2)

Bayes factor is widely used for model selection in Bayesian statistics. It is defined by
BF;(0 = 75 with my(0) = [, [ py(xl, ) i, D)dpdr,
3)
where m;(u, ) stands for a prior assigned to the parameters of the model M;. If BF;;(x) > 1,
then one concludes that the model M; is preferable to M;, otherwise one prefers the model M; to
M;.
If m;(u, ) is improper as in the case of the Berger-Bernardo reference prior whose
expressions derived for the normal random effects model and for the t-distributed random effects
model are given in [7], then the Bayes factor in (3) cannot be computed since the marginal
distribution of data is improper as well. As a solution to the problem, the intrinsic Bayes factor
(IBF) is defined in [8]. The idea behind the approach is to use a part of observations, the so-
called training sample to transform the improper prior to the proper posterior, which is then used
in the computation of the IBF. The recommendation is to use the smallest possible number of
observations as a training sample, in order to have more observations to draw a decision about
the preferable model. In the case of the random effects model, the size of the minimal training
sample is two independently of f;(.) following [4].
Let x; denote the minimal training sample and let X(;y = X — X; denote the rest of the

sample when the elements x; are excluded. Then the IBF for model M; to M; is defined by
m;(xp|x;)
IBFy(xqylx,) = L2

mi(xp)lx;)

+

with m;(xp)lx;) = [ ? T pi(x I T x,) (e, Tlx, ) dpde,

3)
where m; (i, T|X;) is the posterior for the parameters of M; given the observations in the minimal
training sample X;.

The training sample X; is not uniquely chosen. When the minimal training sample
consists of two elements as in the case of the random effects model (1), then one has L = n(n —
1)/2 possible choices of two elements out of n measurement results. In such a situation one
considers all possible sets of two measurement results as a training sample, while the rest of data
is used for the model selection. As a result, one obtains n(n — 1)/2 IBF values which are
aggregated into a single value. Following [9] the following three aggregation approaches are
used:

1) Average logarithmic IBF: aIBFjl-(x(l)|xl) = %Zl log (IBFjl-(x(l)|xl)),



2) Median logarithmic IBF: mIBFji(x(l)|xl) = median <log (IBFjl-(x(l) |xl))),

3) Empirical probability TBF: epIBE; (X [xt) = + 51 10,4 (108 (1BFi(x[x.)) )
where 1(g 1) (.) denotes the indicator function of set (0, +0). If aIBFﬁ(X(l)|xl) > 0, then the
model M; is preferable to M;. Similarly, the inequality aIBF}i(x(l)|xl) > 0 indicates that the
model M; should be selected, while epIBFjl-(x(l) |xl) > 0.5 means that the model M; is better.

Using the IBF and three aggregation methods we compare the ability of the random
effects model (1) based on the assumption of the t3-distribution, t5-distribution, t;,-distribution,

and normal distribution to fit the data used in the determination of the Newtonian constant of
gravitation (Section 3) and the Planck constant (Section 4).

3. Model specification for measurement results in the case of the Newtonian constant

In this section we apply the Bayes model selection approach based on the IBF to the
measurement results used in the computation of the Newtonian constant of gravitation (see, [9]).
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Fig.1. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on t5-
distribution, ts-distribution, t;-distribution, and normal distribution. Data: Measurement results used in the
computation of the Newtonian constant for gravitation (see,[9]).

Fig. 1 depicts the values of the logarithmic IBF computed for all possible subsets
consisting of measurement results used in the computation of the Newtonian constant of
gravitation. The plots show that the random effects model based on the normal distribution
provides a better fit to the data than the one based on the assumption of a t —distribution. Also, a
t —distribution with a large number of degrees of freedom are preferable to the one with small
degrees of freedom.

In Table 1 the aggregated values of the logarithms of the IBF are presented for the
pairwise model comparisons between the considered t —distributions and the normal distribution.
The results in the table are in line with the findings of Fig. 1 and they indicate that the normal
random effects model should be chosen.



Table 1: Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for

the measurement results used in determination of the Newtonian constant for gravitation.

Models ts to tg t; to tqo t; to ts to tqo ts to tip to
normal normal normal
aIBFji(x(l)|xl) -0.0849 -0.1248 -0.1769 -0.0399 -0.092 -0.0521
rnIBFji(x(l)|xl) -0.0656 -0.0826 -0.0915 -0.0156 -0.031 -0.0174
epIBFjl-(x(l)|xl) 0.175 0.225 0.2083 0.25 0.275 0.275

4. Model specification for measurement results in the case of the Planck constant

The aggregated values of the logarithmic IBF are provided in Table 2. In the case of the
comparison of any t —distributed random effects model to the normal one, the computed values
are considerably larger than one. These finding clearly indicate the presence of heavy tails in the
measurement data that cannot be captured by the normal distribution. Moreover, we conclude
that the random effects model based on the t3-distribution provides the best fit to the data used in
the computation of the Planck constant.

Table 2: Average logarithmic IBF, median logarithmic IBF, and empirical probability logarithmic IBF computed for

the measurement results used in determination of the Newtonian constant for gravitation.

Models t; to tg t3 to tqo t; to ts to tqo ts to tio to

normal normal normal

aIBFﬁ(x(l) |xl) 0.4269 0.8796 1.5418 0.4527 1.1148 0.6622

mIBFﬁ(x(l)|xl) 0.4169 0.8591 1.5017 0.4397 1.0892 0.656
ep]BF}-i(x(lﬂxl) 1 1 1 1 1 1

Fig.2 presents the values of the logarithmic IBF computed for the data used in the
determination of the Planck constant (see, e.g. [10]). All values in the plots are considerably
larger than zero showing that the assumption of normal distribution is not recommendable.
Furthermore, we observe that the random effects model based on the t —distribution with three
degrees of freedom should be selected.
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Fig. 2. Logarithm of intrinsic Bayes factors for the comparison between the random effects model based on ¢t5-
distribution, ts-distribution, t;-distribution, and normal distribution. Data: Measurement results used in the
computation of the Planck constant (see, e.g., [10]).

4. Conclusion

The model choice is a very challenging task when the sample consists only of several
values. It is remarkable that most of the interlaboratory comparison studies are performed by
using a few measurement results. A similar situation is also present in medicine when a meta-
analysis is carried out as well as in the case of the determination of physical constants, like the
Newtonian constant of gravitation and the Planck constant.

In the paper we apply the Bayesian model selection approach based on the intrinsic Bayes
factor to compare the ability of the normal distribution and the t-distribution to fit measurement
data. While we find that the measurement data used in the computation of the Newtonian
constant of gravitation can be modeled by the normal random effects model, it is not longer a



case with the data used in the determination of the Planck constant, the random effects model
based on the t —distribution with three degrees of freedom should be used instead.

BaeciBcbknii MeTo BUOOPY MO/eJIi U151 MAJIOI KiJILKOCTI pe3yJIibTaTiB
BUMIipIOBaHb
O. bogHap

Unit of Statistics, School of Business, Orebro University, Fakultetsgatan 1, SE-70182 Orebro, Sweden
olha.bodnar@oru.se

AHoTanisa

VYV KoxkpaniBebkiit 0a3i ganux cucremMatnuHux orysigiB (CDSR) 75% wnananux merta-
aHaJi31B MICTATH I'SITh 200 MEHIIE JOCHiKeHb. [l HEBEIMKOro HabOpy IaHMX HEMOKIHMBO
BUKOHATH MPUHHATHUNA TECT HA NMPUAATHICTH CTATUCTUYHOI MOJEIi, OCKUIbKM ab0 BiH BUMarae
BEJIMKOTO 00CATY BHOIPKH 7151 OOTPYHTOBAHOCTI aCUMIITOTUYHOTO HAOMIMKEHHS, a00 BiH MOXKe
OyTH HEIOCTATHBO TOTYKHUM IS BUSIBIICHHS BIIXHJICHHS BiJ] IILTHLOBOT MOEIIL.

Mogens BumagkoBux e(ekTiB 3a MpHUIyIIeHHS posnoainy layca 3a3Buyait
BUKOPUCTOBYETbCS B 0aratbox ramy3sx Hayku. Ll Mopenb SBISETbCA TaKOX HaWOUIBII
MOLIMPEHOI0 JUIS aHali3y JaHMX Y MDKJIa0OpaTOpHUX 3BIPEHHSIX y METPOJOrii Ta Juis MeTa-
a”aiizy B MeauuuHi. OIHAK MPUITYIIEHHS HOPMAJIbHOTO PO3IMOJALITY MOKE HE BUKOHYBATHCS Y
0araTboX NPAaKTUYHUX 3aCTOCYBaHHSX. SIKIIO HaOlp JaHWX HEBENIMKHMH, JKOJIEH CTaTUCTUYHHUN
TECT Ha PO3MOJILT He Oy/ie 100pe MpaIfoBaTH.

Mu 3actocoByeMo BHYTpilIHiM koedinieHT baeca, 3ampomnoHoBaHuil y BHUIAAKY, KOJIU
KiacuyHui koedinieHT baeca He icHye, [u1a BUOOpPY HaMOLIBII MPpUAATHOT HMOBIPHICHOT Moei
cepel KUIbKOX MOJeNed KOHKYPEHTIB, sIKi He OOOB'SI3KOBO MOBHMHHI OyTH BKJIaJeHUMH. Mu
3aCTOCOBYEMO  3alpONOHOBAaHY  METOJOJIOTII0  JI0  pe3yJbTaTiB  BHUMIpIOBaHb, IO
BUKOPUCTOBYIOTBCS [T BU3HAUeHHs | paBitaniitHoi cTanoi Ta cranoi [Inanka.

Karouosi cioBa: Mojens BUNaakoBux eQekxTi; t-po3noxin; baeciBcbkuii Mmeton BUOOpY
MoJienelt; BHYTpilHii koedimient baiieca; I'pasitauiiina crana; crana [Inanka.
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