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Abstract

The location-scale model is usually present in physics and chemistry in connection to

the Birge ratio method for the adjustment of fundamental physical constants such as the

Planck constant or the Newtonian constant of gravitation, while the random effects model

is the commonly used approach for meta-analysis in medicine. These two competitive

models are used to increase the quoted uncertainties of the measurement results to make

them consistent. The intrinsic Bayes factor (IBF) is derived for the comparison of the

random effects model to the location-scale model, and we answer the question which

model performs better for the determination of the Newtonian constant of gravitation.

The results of the empirical illustration support the application of the Birge ratio method

which is currently used in the adjustment of the CODATA 2018 value for the Newtonian

constant of gravitation together with its uncertainty. The results of the simulation study

illustrate that the suggested procedure for model selection is decisive even when data

consist of a few measurement results.
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1 Introduction

Fundamental constants in physics and chemistry, like the Newtonian constant of gravitation or the

Planck constant, are usually determined by results of several studies which are performed at different

times and places (Mohr et al. (2016), Newell et al. (2018), Alighanbari et al. (2020)). In many

applications in medicine the consensus value is obtained by pooling the results of clinical studies

together (Brockwell and Gordon (2001), Lambert et al. (2005), Higgins et al. (2009), Rukhin (2013),

Bodnar et al. (2017), Jones et al. (2018)), while interlaboratory comparison study is one of the most

important topics in metrology (Mandel and Paule (1970), Ruhkin (2003), Bodnar and Elster (2020)).

Each individual study reports an estimate of the quantity of interest together with its uncertainty

which are based, for example, on measurements obtained in laboratories in physics and chemistry

where a great care is taken to determine the measurement margin of error such that it accounts for

every identifiable source of error. For that reason, it might therefore be assumed that an individual

study estimate is internally consistent, i.e., its uncertainty takes into account of every identifiable

(hence explainable) source of uncertainty.

Although the individual studies are internally consistent, they often fail to be externally consistent.

More precisely, when the estimates together with their uncertainties from all individual studies are

brought together in a scatterplot, it is usually revealed that the dispersion of the estimates is substan-

tially greater than what the reported uncertainties suggest them to be. Such a situation is depicted in

Figure 1 where the measurements of the Newtonian constant of gravitation G are presented together

with reported uncertainties. Most of the uncertainties provided by laboratories are not able to capture

the variation observed in the scatterplot.
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Figure 1: Newtonian constant of gravitation G. The red diamonds are the measurement results

and the blue intervals are the uncertainties provided by each laboratory (data are from Figure

1 in Bodnar et al. (2020)).

The reported uncertainties take into account every identifiable source of error in each individual

study, yet these uncertainties fail to explain the full variation between the estimates satisfactory. The

extra variation is caused by external inconsistency, i.e., inconsistency between the laboratories or
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interlaboratory inconsistency. This extra variation is usually labeled as the heterogeneity and it also

be referred to as the excess variance or as the dark uncertainty (see, Thompson and Ellison (2011)).

It is remarkable that the heterogeneity is unexplainable and cannot be resolved easily.

Birge ratio method and random effects meta-analysis seem be the two most popular approaches to

account for the dark uncertainty when the results of several studies are pooled together. Birge ratio

method is generally favored by physicists and chemists in parameter estimation (Mohr et al. (2016)).

It is related to the Birge ratio introduced by Birge (1932) and is used to adjust for inconsistent data in

Weise and Wöger (2000) and Mohr et al. (2016), among others. The random effects model is generally

favored by medical researchers in parameter estimation (see, Hardy and Thompson (1998), Ades et al.

(2005), Turner et al. (2015), Guolo and Varin (2017), Veroniki et al. (2019)). It has been used in

chemistry for interlaboratory comparisons in Mandel and Paule (1970) and in Toman et al. (2012). In

Bodnar et al. (2016b) objective Bayesian inferences are established for the generalized random effects

model and are used to estimate the Planck constant.

The random effects model has been compared to the Birge ratio methods presented as the location-

scale model in Bodnar et al. (2016a). The comparison of two models was performed in terms of

robustness analysis to model misspecification by computing coverage intervals for the overall mean.

The results of the numerical study reveal that the random effects model is more robust to model

misspecification than the location-scale model. Namely, when the data were generated from the

location-scale model but the random effects model was used to estimate the overall mean, then the

coverage probability was roughly 95%, the significance level used in the simulation study. However,

when the data were drawn from the random effects model but the location-scale model was used to

estimate the overall mean, then the coverage probability was found to be roughly 0.45%. As a result,

one can remark that if the location-scale model is actually true, then the random effects model can

still do a good job at estimating the overall mean, while if the random effects model is actually true,

then the application of the location-scale model can lead to unreliable inference for the overall mean.

Finally, it can be noted that both models have good coverage probabilities given that the used model

is the true one.

The results of Bodnar et al. (2016a) present only one aspect of model selection procedures and they

do not provide an answer to the question which model is more preferable to the observed data. In

the paper we contribute to this challenging task by developing a new approach to distinguish between

the two models for dark uncertainty from the viewpoint of objective Bayesian statistics by performing

model selection based on intrinsic Bayes factor. There are several reasons to opt for Bayesian model

selection (see, e.g., Berger and Pericchi (2001, p.138-140): (i) the Bayes factor is interpreted as an

odds factor which is easy to understand; (ii) it is an automatic Ocham’s razors since it favor a simple

model over a complex model; (iii) the Bayes factor is a consistent method, which means that if any of

the compared models is true, then the true model is selected (given some mild conditions are satisfied);

(iv) it does not require models to be nested, which makes it possible to compare different types of

models in which the parameters may vary in dimension. Some of the difficulties with the Bayes factor

is also stated in Berger and Pericchi (2001, p.142). For example, the Bayes factor can be difficult

to compute. Also, the Bayes factor does not usually return good answers when we use vague proper

priors leading to the application of improper noninformative priors.

Traditionally, the Bayes factor is computed by endowing the model parameters with an informative

prior. On the other hand, no information or only vague information about model parameters can be

present in practice (see, e.g., Lambert et al. (2005)). As a result, the influence of the prior distribution

3



on the Bayes factor is greater than it is on the estimation of a parameter. This is because the weight

of the prior distribution is not reduced with an increasing sample size in the Bayes factor (Berger

and Pericchi (1996)). The Bayes factor is therefore particularly vulnerable to misspecifications in the

prior distribution and for this reason we look for an objective noninformative prior, like a Laplace

prior (Laplace (1812)), Jeffreys prior (Jeffreys (1946)) or reference prior (Berger and Bernardo (1992))

which is obtained by maximizing the Shannon mutual information between the prior and posterior,

thus reducing the impact of the prior on posterior (see, Berger and Bernardo (1992), Clarke and Yuan

(2004), Berger et al. (2009), Bodnar and Elster (2014a)). The Berger and Bernado reference prior is

recommended for use in the computation of intrinsic Bayes factor for large sample sizes (Berger and

Pericchi (1996, p.121)).

There are various approaches for objective Bayesian model selection, however the methods usually

have some limitations or difficulties in their implementations. The traditional Bayes factor computed

by endowing an informative proper prior cannot be longer used for objective Bayesian model selection

based on a noninformative priors which are usually improper. A modification of the definition of

the conventional Bayes factor is required. Several approaches exist in the literature with the ones

proposed by O’Hagan (1995)) and Berger and Pericchi (1996) seem to be the ones which are mostly

used. O’Hagan (1995) suggested the application of the fractional Bayes factor for the model selection

when an improper prior is used, while Berger and Pericchi (1996) developed the theory of the Bayesian

model selection based on the intrinsic Bayes factor. Moreover, Berger and Pericchi (1996, p.121)

recommended the use of the Berger and Bernado reference prior in the computation of intrinsic Bayes

factor for large sample sizes. The benefit with the intrinsic Bayes factor is that it is automatic

(objective) in the sense that it only depends on observed data and noninformative prior distribution.

It may, however, be computationally intensive and unstable (see, Berger and Pericchi (1996, p.120-

121)). The intrinsic Bayes factor makes use of a minimal training sample for parameter estimation

and in order to make for a stable result it is conventional to take the average or median of the intrinsic

Bayes factors computed over all possible training samples. The empirical probability for the Bayesian

model selection based on the intrinsic Bayes factor will be introduced in this paper and applied in the

empirical illustration about the Newtonian constant of gravitation.

The rest of the paper is organized as follows. In Section 2, we introduce the concept of Bayesian

model selection with the special emphasis on the case when the model parameters are endowed with a

noninformative prior. The competitive models, namely the location-scale model related to the Birge

ratio approach and the random effects model, are presented in Section 3. Here, we also derive the

quantities needed in the computation of the intrinsic Bayes factor. In Section 4 we provide a numerical

comparison of the procedures in the small sample case, while it is implemented to the measurements

of the Newtonian constant of gravitation in Section 5. Discussion of the obtained results are given in

Section 6, while the derivation of theoretical results is presented in the appendix (Section 7).

2 Bayesian model selection

In this section we introduce the Bayes factor, provide its interpretation, and discuss its use for model

comparison. Let M1, . . . ,Mi, · · · ,Mq denote the models that we aim to make a comparison between.

Under model Mi the data x follow the probability density function fi(x|θi) with θi ∈ Θi, which is

also referred to as the likelihood function. In the Bayesian approach to model selection we start by
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assigning for each model Mi a prior probability P (Mi) of the model Mi being correct and a prior

distribution πi(θi) of the parameter θi. Then the posterior probability P (Mi|x) of the model Mi

being correct when the sample x is observed is given by

P (Mi|x) =

 q∑
j=1

P (Mj)

P (Mi)
Bji(x)

−1

,

where

Bji(x) =
mj(x)

mi(x)
=

∫
fj(x|θj)πj(θj)dθj∫
fi(x|θi)πi(θi)dθi

is the Bayes factor between Mj and Mi and

mi(x) =

∫
θi∈Θi

fi(x|θi)πi(θi)dθi

is the marginal distribution of the data under model Mi, which describes the probability of observing

x under model Mi.

The posterior probability P (Mi|x) is dependent on subjectively chosen prior probabilities P (Mi)

for i = 1, 2, . . . , q of the model Mi being correct. If one prefers the Bayesian model selection procedure

to be objective, then she/he shall assign equal prior probabilities to the considered models, that is

P (M1) = ... = P (Mq) = 1/q. In this case the posterior probability P (Mi|x) used for the selection

of a model will depend on the Bayes factors Bji(x) only. In a special case, when q = 2, the Bayes

factor Bji(x) can alone be used to perform Bayesian model selection. The Bayes factor is interpreted

as the odds in favor of Mj against Mi based on the evidence in the data x. The inequality Bji > 1 is

supportive of model Mj , while Bji < 1 is interpreted as evidence against Mj . Finally, it is noted that

the prior distributions πi(θi) of the parameter θi are subjective because they are decided prior to the

data, but they are objective if one will use a noninformative prior.

The Bayes factor can also be interpreted as an odds factor if the marginal distribution mi(x) is

proper, such that
∫
x∈Ωmi(x)dx = 1 for all i = 1, . . . , q. However, the latter equality may not always

be fulfilled when the model parameters are endowed with an improper prior, denoted by πNi (θi), i.e.,

when objective Bayesian inference are preferable. An improper prior distribution πNi (θi) cannot have a

normalizing constant and its application leads to the improper marginal distribution of data mi(x). As

a result, one cannot longer apply the conventional Bayesian model selection without a modification of

the definition of the Bayes factor. In the next section, we describe the intrinsic Bayes factor developed

by Berger and Pericchi (1996) for Bayesian model selection with improper noninformative priors.

2.1 Intrinsic Bayes factor

The intrinsic Bayes factor (IBF) is a solution to the problem that is imposed on the Bayes factor

by the improper prior distribution, namely that the Bayes factor has no interpretation as an odds

factor under an improper prior distribution. The IBF differs from the ordinary Bayes factor in that

it makes use of a training sample. The training sample is employed for the purpose of transforming

the improper prior distribution to the proper posterior distribution, which is then used as a prior for

the rest of the elements in the sample.

The training sample x` is a subset of x of size m. Let x(`) = x − x` be the data set with the

training sample removed. Then x` and x(`) forms a partition of x. A training sample, x`, is called

5



proper if 0 < πNi (θi|x`) <∞ for all Mi, and minimal if it is proper and no subset of x` is proper. The

notation πNi (θi|x`) stands for the posterior distribution of θi computed based on the noninformative

prior πNi (θi) and sample x`. As a result, the training sample is used to transform the improper prior

πNi (θi) to the proper posterior πNi (θi|x`), which is then used in the computation of the conditional

distribution of x(`) given the training sample x`. It is noted that a part of data, that could have

been used for computing the Bayes factor, is lost since it is needed for the specification of the proper

posterior πNi (θi|x`). We are sacrificing a portion of the data set x, namely the training sample x`,

for parameter estimation instead of using it for model selection. On the other side, we want as much

data as possible for the computation of the Bayes factor since the overall goal is to make a comparison

between two models. This is why the minimal training sample is preferable.

The minimal training sample is usually of the same size as the number of parameters in the

model. But there are exceptions to this rule, if for example the prior distribution is proper to some

parameters then the minimal training sample size may be less then the number of parameters in the

model (see, Berger and Pericchi (1996)). As an example, suppose we have a joint prior distribution

of two parameters that is improper. Then only two observations from the data set should suffice

as a training sample. When the sample size is n, then there are n(n − 1)/2 combinations of choice

to select two observations from x. One should pick every combination to compute the IBF, which

implies n(n− 1)/2 computations of the IBF. Then the conclusions are drawn based on a summary of

the differently computed IBFs, such as the average IBF or the median IBF.

Let mN
i (x`) be the marginal distribution of x` computed under the noninformative prior πNi (θi)

and let mN
i (x(`)|x`) denote the conditional distribution of x(`) given x`. Then the intrinsic Bayes

factor computed for the sample x(`) conditioned on the training sample x` is given by

BI
ji(x(`)|x`) =

mN
j (x(`)|x`)

mN
i (x(`)|x`)

=

∫
fj(x(`)|θj ,x`)πNj (θj |x`)dθj∫
fi(x(`)|θi,x`)πNi (θi|x`)dθi

,

which can also be rewritten as

BI
ji(x(`)|x`) =

mN
j (x(`),x`)

mN
j (x`)

/
mN
i (x(`),x`)

mN
i (x`)

=
mN
j (x)

mN
j (x`)

/
mN
i (x)

mN
i (x`)

=
mN
j (x)

mN
i (x)

× mN
i (x`)

mN
j (x`)

= BN
ji (x)×BN

ij (x`).

Recall that the challenge with the conventional Bayes factor was related to improper prior distribu-

tions. For two models Mj and Mi with likelihoods fj(x|θj) and fi(x|θi) and with employed improper

priors πNj (θj) = cjhj(θj) and πNi (θi) = cihi(θi), the IBF of Mj and Mi is given by

BI
ji(x(`)|x`) = BN

ji (x)×BN
ij (x`)

=
cj
ci

∫
fj(x|θj)hj(θj)dθj∫
fi(x|θi)hi(θi)dθi

× ci
cj

∫
fi(x`|θi)hi(θi)dθi∫
fj(x`|θj)hj(θj)dθj

.

The important point is that the arbitrary constants of proportionality cj and ci will cancel in the IBF

(see, O’Hagan (1995)). Hence the IBF does not depend on anything arbitrary or subjective and can

therefore be used for an objective Bayesian model selection.

We summarize this subsection by saying that a noninformative prior distribution is used for an

objective approach to Bayesian model selection. The IBF is a method in which the noninformative
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improper prior πNi (θi) is transformed to the proper posterior πNi (θi|x`) by the use of a minimal

training sample x`, while the rest of the data x(`) is employed for model selection resulting in the

IBF. The IBF measures the odds in favor of Mj against Mi based on evidence in the data, without

the arbitrariness of the constants cj and ci.

3 Models for dark uncertainty

In this section we will establish all theoretical results that are needed to compute the IBF for the

location-scale model and the random effects model. Both of these models are used in the determination

of physical constants and in the meta-analysis to form a consensus value while accounting for an

unexplainable heterogeneity. We first present the location-scale model and derive the results needed

for the calculation of the IBF. Then, we treat the random effects model likewise. At the end of this

section the IBF used for the comparison of these two models is provided.

3.1 Location-scale model

The location-scale model is related to the Birge method, which is a popular method in physics,

chemistry, and metrology for adjusting uncertainties to adapt for external inconsistency (see, Birge

(1932), Mohr et al. (2016)). The Birge method is used under the assumption that due to external

inconsistency, i.e., heterogeneity, the reported uncertainty for each estimate is understated. The Birge

method multiplies each uncertainty by a common factor that is called the Birge ratio which is a sort of

averaging of uncertainties. As a result all the uncertainties are adjusted to be uniformly understated

and hence mutually consistent. In Bodnar and Elster (2014b) the Birge ratio is studied within a

Bayesian framework in relation to the location-scale model.

Let V be a known positive definite matrix, µ an unknown location parameter and τLS an unknown

scale parameter. Then the location-scale model MLS of the data x is defined by the following two

equations:

x = µ1 + εLS with ε ∼ N(0, σ2
LSU). (1)

The location-scale model assumes that the measurement data are obtained from a multivari-

ate normal distribution with the mean µ1 and the covariance matrix τ2
LSU, i.e., x|µ, τLS ,MLS ∼

N(µ1, τ2
LSU), where 1 stands for the n-dimensional vector of ones. The positive definite matrix U

contains all the reported uncertainties and covariances of the measurement results. Namely, the diag-

onals of U contain the variances u2
i of the estimates and the off-diagonal entries contain covariances

ρijuiuj , where ρij is the correlation between the ith and the jth study. The factor τLS is an unknown

quantity that represents the unexplainable interlaboratory heterogeneity. The overall mean µ is the

target parameter in many applications in physics, chemistry and medicine, while τLS is a nuisance

parameter included in the model to capture the heterogeneity. The motivation behind the model

application is that the elements in U can be understated due to the presence of heterogeneity. By

multiplying U by τ2
LS , the elements in U then become uniformly adjusted for by the heterogeneity. On

the other side, the reported correlations ρij become unchanged under this adjustment. The notation

x|µ, τLS ,MLS makes it explicit that the data are conditioned on the two parameters µ and τLS under

the location-scale model MLS .
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The likelihood function of X, when the location-scale model is assumed, is given by

f(x|µ, τLS ,MLS) =
τ−nLS

(2π)n/2
exp

(
− 1

2τ2
LS

(x− µ1)TU−1(x− µ1)

)
. (2)

The Berger & Bernado reference prior has been derived for the general location-scale model in

Fernández and Steel (1999) and is given by

πN (τLS) = πN (µ, τLS) ∝ 1

τLS
. (3)

The marginal distribution of x and of the training sample x` are derived in Theorem 1 whose proof

is given in the appendix (see, Section 7).

Theorem 1. Let n > 2 and let U be positive definite. Then under the location-scale model (1) and

reference prior (3),

(i) the marginal distribution of the whole sample is given by

m(x|MLS) =
Γ(n−1

2 )
(
xTQx

)−n−1
2(

det(U)
)1/2

2π
n−1
2

√
1TU−11

, (4)

where

Q = U−1 − U−111TU−1

1TU−11
(5)

(ii) The size of a minimal training sample x` is given by m = 2, i.e., x` = {xi, xj}, where xi, xj ∈ x

and i 6= j. Moreover, the marginal distribution of the training sample is given by

m(x`|MLS) =
1

2
√

(det(U`))(x
T
` Q`x`)(1

T
2 U−1

` 12)
, (6)

where U` is obtained from U by taking its elements lying on the intersections of the ` rows and

` columns,

Q` = U−1
` −

U−1
` 121

T
2 U−1

`

1T2 U−1
` 12

with 12 = (1, 1)T . (7)

The results of Theorem 1 provide all quantities which are need for the computation of the IBF as

shown in Section 3.3.

3.2 Random effects model

The random effects model is a classical model that has been studied from both frequentist statistics

(Cochran (1937), Cochran (1954), Yates and Cochran (1938), Rao (1997), Searle et al. (2006)) and

Bayesian statistics (Hill (1965), Tiao and Tan (1965), Browne and Draper (2006), Gelman (2006),

Bodnar et al. (2016b)). In metrology it has been considered in Kacker (2004), Toman et al. (2012),

while it is one of the mostly used in performing meta-analyses in medicine (see, Lambert et al. (2005),

Turner et al. (2015), Veroniki et al. (2019)).

The random effects model MRE is defined by

x = µ1 + λRE + εRE with λRE ∼ N(0, τ2
REI) and εRE ∼ N(0,U). (8)
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Based on the above presentation we get that the random vector x is multivariate normally distributed,

i.e., x|µ, τRE ,MRE ∼ N(µ1,U + τ2
REI). In the random effects model an adjustment for the hetero-

geneity is made to U by adding a common term τ2
RE to every element in the diagonal of U, where

σ2
RE represents the unexplainable interlaboratory heterogeneity. Since only the diagonals of U are

modified by τ2
RE , the variances u2

i are adjusted for by the heterogeneity while the covariances in U

are left unaltered.

Under the assumption of the random effects model the likelihood function is expressed as

f(x|µ, τRE ,MRE) =

(
det(U + τ2

REI)
)− 1

2

(2π)n/2
exp

(
− 1

2
(x− µ1)T

(
U + τ2

REI
)−1

(x− µ1)

)
.

The Berger & Bernado reference prior has been derived in Bodnar et al. (2016b) and it is given by

πN (τRE) = πN (µ, τRE) ∝
√
τ2
RE · tr((U + τ2

REI)−2) . (9)

It has been proven in Bodnar et al. (2016b, p.32) that πN (µ, τRE |x) is proper for the random effects

model and the Berger and Bernado reference prior, if n > 1 . This leads to the conclusion that the

minimal training sample size is equal to m = 2. Finally, the marginal distribution of x and of the

training sample x` are presented in Theorem 2.

Theorem 2. Let n > 2 and let U be positive definite. Then under the random effects model (8) and

reference prior (9),

(i) the marginal distribution of the whole sample is given by

m(x|MRE) =

∞∫
0

(2π)−
n−1
2

(
det(U + τ2

REI)
)−1/2√

1T (U + τ2
REI)−11

exp
(
− 1

2
xTQ(τ2

RE)x
)
πN (τRE) dτRE , (10)

where

Q(τ2
RE) = (U + τ2

REI)−1 −
(U + τ2

REI)−111T (U + τ2
REI)−1

1T (U + τ2
REI)−11

. (11)

(ii) The size of a minimal training sample x` is given by m = 2, i.e., x` = {xi, xj}, where xi, xj ∈ x

and i 6= j. Moreover, the marginal distribution of the training sample is given by

m(x`|MRE) =

∞∫
0

(2π)−
1
2

(
det(U` + τ2

REI)
)−1/2√

1T2 (U` + τ2
REI)−112

exp
(
− 1

2
xT` Q`(τ

2
RE)x`

)
πN (τRE) dτRE , (12)

where U` is obtained from U by taking its elements lying on the intersections of the ` rows and

` columns, and

Q`(τ
2
RE) = (U` + τ2

REI)−1 −
(U` + τ2

REI)−1121
T
2 (U` + τ2

REI)−1

1T2 (U` + τ2
REI)−112

with 12 = (1, 1)T . (13)

The proof of Theorem 2 is given in the appendix (see, Section 7). Both the marginal distributions

of the whole sample and of the training sample are present as a one-dimensional integral which cannot

be derived analytically. On the other side, they can be computed with a high precision by numerical

integration, for example, by using the Simpson rule (see, Givens and Hoeting (2012)).
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Since the range of τRE is from 0 to +∞, we make a transformation under the integrals in (10) and

(12) following Bodnar et al. (2020), defined by τRE = tan(ω) with the Jacobian equal to | ddω tan(ω)| =
1/cos(ω)2. It is a one-to-one map of the interval ω ∈ (0, π/2) into τRE ∈ (0,∞). This allows us

to compute the integral over the bounded range ω ∈ (0, π/2) instead over the unbounded range

τRE ∈ (0,∞). In the case of (10) we then get

m(x|MRE) =

π/2∫
0

(2π)−
n−1
2

(
det(U + tan2(ω)I)

)−1/2√
1T (U + tan2(ω)I)−11

exp
(
− 1

2xTQ(tan2(ω))x
)

tan(ω)cos2(ω)
dω,

with Q(tan2(ω)) defined in (11). A similar transformation is also used in the computation of the

integral in (12).

3.3 Location-scale model versus random effects model

The difference between the location-scale model and the random effects model is how they take into

account for the heterogeneity which arise when the results of several studies are combined together.

The choice stands between letting the heterogeneity be modeled as an multiplicative correction factor

(location-scale model) or as an additive correction term (random effects model). In order to make a

selection between the location-scale model and the random effects model we opt for the application

of the IBF presented in Section 2.1 with the marginal distributions of the whole sample and of the

training sample as derived in Theorems 1 and 2.

The IBF for comparing the random effects model (MRE) to the location-scale model (MLS) and

the training sample x` is given by

BI
MREMLS

(x(`)|x`) = BN
MREMLS

(x)×BN
MLSMRE

(x`) =
m(x|MRE)

m(x|MLS)
× m(x`|MLS)

m(x`|MRE)
, (14)

where m(x|MRE), m(x|MLS), m(x`|MLS), and m(x`|MRE) are given in (10), (4), (6), and (12),

respectively. The value of BI
MREMLS

(x(`)|x`) larger than one indicates that the random effects model

is preferable, while the inequality BI
MREMLS

(x(`)|x`) < 1 suggests the application of the location-scale

model.

Both the location-scale model and the random effects model have been shown to have a minimal

training sample size of m = 2 (see, Theorems 1 and 2). With a total sample size of n, we have a

number of n(n−1)/2 combinations to select two observations out of n. Let X` = (x1
` ,x

2
` , · · · ,x

l−1
` ,xl`)

be the set of training samples, there are L = n(n − 1)/2 number of elements in X`. The IBF (14)

is computed for every such possible selection and is aggregated over the possible training samples by

computing the average or the median. The reason is that the mean and median of the IBF over X`
has increased stability in comparison with the IBF of an arbitrary xi`. If the sample size n is either

too small (too slight stability improvement) or too large (too long computing time), it is then possible

to use the expected mean discussed in Berger and Pericchi (1996, p.113-114).

Berger and Pericchi (2001, p.149) noted that it is recommendable to put the more ”complex”

model in the numerator of (14), when the average of the IBF is computed over the training samples.

One of the reasons is that some large values of the IBF computed for some training samples might

dominate in the resulting value of the average IBF, although most of the IBFs are close to zero. In

order to symmetrize the impact of large and small values of the IBF computed for each of the training

samples, the logarithmic transformation is used before calculating the average IBF and the median

10



IBF. It leads to the following formulas of the average IBF and the median IBF given by

aBI
MREMLS

=
1

L

∑
`

log
(
BI
MREMLS

(x(`)|x`)
)

(15)

and

mBI
MREMLS

= median
(
log
(
BI
MREMLS

(x(`)|x`)
))
, (16)

respectively.

Besides that, we also computed the empirical probability of the random effect model to be preferable

which is expressed as

epBI
MREMLS

=
1

L

∑
`

1(0,∞)

(
log
(
BI
MREMLS

(x(`)|x`)
))
, (17)

where 1A(·) is the indicator function of set A.

Based on the computed values in (15), (16), and (17), one prefer the random effects model to the

location-scale model if aBI
MREMLS

> 0, mBI
MREMLS

> 0, or epBI
MREMLS

> 0.5 depending on the

selected criterium. Otherwise, the location-scale model is preferable.

4 Simulation study

In this section we investigate the performance of the Bayesian model selection based on the intrinsic

Bayes factors described in Section 3.3 by drawing samples from the location-scale model and the

random effects model, respectively. By doing so we will check whether the model selection based on

the considered IBFs leads to the model from which the data were generated and study the impact of

the sample size on the decision.

The following two simulation scenarios are considered:

• Scenario 1: to draw a sample from the location-scale model x = µ1 + εLS where εLS ∼
N(0, τ2

LSU);

• Scenario 2: to draw a sample from the random effects model x = µ1 + λRE + εRE where

εRE ∼ N(0,U) and λRE ∼ N(0, τ2
REI).

In both scenarios we set µ = 0 and consider several sample sizes n ∈ {5, 10, 15, 20}. The square

roots of the diagonal elements of the matrix U = (uij)i,j=1,...,n are drawn from the uniform distribution

on [0, 1], while its nondiagonal elements of U are set to uij = r|i−j|
√
uii
√
ujj for i, j ∈ 1, ..., n and

i 6= j with r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. Several values of τLS and τRE are considered, namely τLS ∈
{1.0, 1.2, 1.5, 2.0, 2.5, 3.0} and τRE ∈ {0.0, 0.25, 0.5, 1.0, 1.5, 2.0}. The results in Figures 2 to 7 are

based on 10000 independent repetitions. For τLS = 1 and τRE = 0, the two models coincide and they

both correspond to the case when the dark uncertainty is absent.

Figures 2 to 4 present the values of the average IBF, the median IBF, and the empirical probability

IBF defined in (15), (16), and (17), respectively, and computed for the data generated from the

location-scale model (Scenario 1). Similar values obtained under Scenario 2 where the data were

drawn from the random effects model are depicted in Figures 5 to 7. In almost all of the considered

cases we observe that the average IBF and the median IBF are negative as well as the empirical

11
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Figure 2: Average intrinsic Bayes factor (15) for comparing the random effects model to the

location-scale model as a function of τLS when the reference prior is employed. We set n ∈
{5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the location-scale

model (see, Scenario 1).

probability IBF is smaller than 0.5 when the data were generated from the location-scale model, and

they are positive and the empirical probability IBF is larger than 0.5 when the data were drawn from

the random effects model, thus supporting the model selection based on the IBF factors defined in

Section 3.3. Some minor deviations from this observation are present only when n = 5, the data were

simulated from the location-scale model, and the values of τLS are not large for r 6= 0. Interestingly,

when n = 5 and r = 0.0, then the random effects model is preferred independently whether the data

were generated following Scenario 1 or Scenario 2.

In general, we conclude that the model selection with intrinsic Bayes factor detects considerably

often the random effects model when it is the true model than the location-scale model when it is

the true model. This finding is in line with the results of Bodnar et al. (2016a), who showed that the

random effects model is more robust for the model misspecifications. As the sample size increases the

performance of the three considered model selection criteria based on the IBF improves. The average

IBF and the median IBF become larger in the absolute values, while the empirical probability IBF is

close to one for the Scenario 2 and close to 0 for Scenario 1. Already for n = 10, the values of Figure

7 indicate that the random effects model is correctly chosen in almost all of the considered values
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Figure 3: Median intrinsic Bayes factor (16) for comparing the random effects model to the

location-scale model as a function of τLS when the reference prior is employed. We set n ∈
{5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the location-scale

model (see, Scenario 1).

when r ∈ {−0.8,−0.4, 0.8} and in 80% for r ∈ {0, 0.4}, while the probability of correctly specifying

the location-scale model is between 70% and 80% being slightly smaller for r = −0.4. The results for

n = 15 and n = 20 are even more stronger. For example, the random effects model is chosen with

probability larger 0.9 in both cases r = 0 and r = 0.4 for all considered values τRE > 0 (cf., Figure 7).

Finally, we note that only a minor impact of the correlation coefficient r is present on the computed

values of the intrinsic Bayes factors.

5 Modeling dark uncertainty in the measurements of the

Newtonian constant of gravitation

In the year 1687 Newton published his famous principia in which he presented his thesis on the law

of general gravitation. Newton proposed that the force that cause an apple to fall from a tree is the

same kind of force that keep the moon to orbit the earth, this would be the force of gravitational

attraction. In most textbooks in physics this law is written by an equation F = Gm1m2
r2

. The
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Figure 4: Empirical probability intrinsic Bayes factor (17) for comparing the random effects

model to the location-scale model as a function of τLS when the reference prior is employed.

We set n ∈ {5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the

location-scale model (see, Scenario 1).

constant of proportionality, G, is called the general constant of gravitation of the Newtonian constant

of gravitation, and it is a natural constant, i.e., this constant is the same throughout the whole

universe. It determines the strength of the gravitational force, given mass and distance. If we imagine

two objects being put out in space far away from any stars and planets at a distance of 1 m from each

other and they both have the mass 1 kg, then the objects exert a gravitational force on each other by

exactly F = G ≈ 0.000 000 000 066 7 N = 6.67 · 10−11 N.

Sixteen measurements of the Newtonian constant of gravitation together with their uncertainties

are provided in Table 1 and are shown in Figure 1, from which it might be concluded about the

presence of dark uncertainty. For capturing the effect of heterogeneity, one can use the location-scale

model or the random effects model, which have already been applied for these purposes (Mohr et al.

(2016), Bodnar et al. (2020)).

In order to make a preference for one of the two models, we assign a reference prior to the parameters

of two models and perform the Bayesian model selection based on the intrinsic Bayesian factor. The

application of a non-informative reference prior is motivated by the absence of information about the

parameters of the two models which can be used to determine an informative prior. Using that the size
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Figure 5: Average intrinsic Bayes factor (15) for comparing the random effects model to the

location-scale model as a function of τRE when the reference prior is employed. We set n ∈
{5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the random effects

model (see, Scenario 2).

of the minimal training sample is m = 2, we computed the intrinsic Bayes factor for all 120 possible

specifications of the training sample consisting of two measurement results.

The resulting values of the IBF for comparing the random effects model to the location-scale model

are depicted in Figure 8. We observe that in most of the cases the IBF is negative meaning that the

location-scale model is preferable. Only for 13 training samples out of 120 possible training samples

the random effects model is chosen. This leads to the value of the empirical probability IBF equal to

epBI
MREMLS

= 0.1083. The other two measures for Bayesian model selection discussed in Section 3.3

are negative and they are given by

aBI
MREMLS

= −0.6814 and mBI
MREMLS

= −0.8777, (18)

which support the application of the location-scale model to fit the heterogeneity in the measurements

of the Newtonian constant of gravitation.
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Figure 6: Median intrinsic Bayes factor (16) for comparing the random effects model to the

location-scale model as a function of τRE when the reference prior is employed. We set n ∈
{5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the random effects

model (see, Scenario 2).

6 Summary

In many applications the variability of the individual studies, which are pooled together to determine

the overall mean value, cannot be explained by the reported variabilities of each studies. This leads

to the conclusion of the presence of heterogeneity, also known as the dark uncertainty. Two mostly

used models for the dark uncertainty are the location-scale model and the random effects models.

The location-scale model is usually applied in connection to the Birge ratio method for adjusting the

measurements of the fundamental constants in physics and chemistry, while the random effects model

is the classical tool used for meta-analysis in medicine.

These two models are non-nested and describe the heterogeneity from different perspectives. While

the random effects model suggests to adjust the reported variabilities of individual studies by adding

a constant to the reported uncertainties, the location-scale model adjusts the underrated individual

uncertainties by a multiplicative constant. Since the two approaches are non-nested statistical models,

the methods of the frequentist statistics, like the likelihood ratio test cannot be used for choosing the

model which provides a better fit to data. In such a situation methods of Bayesian statistics for

model selection should be opted. Moreover, in most of applications no additional information is
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Figure 7: Empirical probability intrinsic Bayes factor (17) for comparing the random effects

model to the location-scale model as a function of τRE when the reference prior is employed.

We set n ∈ {5, 10, 15, 20} and r ∈ {−0.8,−0.4, 0, 0.4, 0.8}. The data were drawn from the

random effects model (see, Scenario 2).

provided for the model parameters and thus noninformative priors should be used in the derivation of

Bayesian inference procedures. This has a strong impact on the Bayesian model selection, since the

noninformative priors are usually improper, thus leading to the improper marginal distributions of

data needed in the computation of the Bayes factor, a rule for choosing one of two competitive models

in Bayesian statistics.

The solution to the latter problem was suggested in the seminal paper of Berger and Pericchi

(1996), who introduced the intrinsic Bayes factor for improper noninformative priors. Endowing the

parameters of the location-scale model and of the random effects model with reference prior (Berger

and Bernardo (1992)), we derive the expression of the intrinsic Bayes factor for comparing the random

effects model to the location-scale model. In the case of the location-scale model the analytical

expression of the marginal distributions of the whole data and of the training data are derived, while

one-dimensional integral presentations of the marginal distribution are obtained in the case of the

random effects model. These integrals can be computed numerically using Simpson’s rule.

The performance of the suggested Bayesian model selection procedure has been investigated within

an extensive simulation study. It was found that the procedure can distinguish between two models
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Study Measurement (G/10−11) Uncertainty (G/10−11)

NIST-82 6.67248 0.00043

TR&D-96 6.6729 0.00050

LANL-97 6.67398 0.00070

UWash-00 6.674255 0.000092

BIPM-01 6.67559 0.00027

UWup-02 6.67422 0.00098

MSL-03 6.67387 0.00027

HUST-05 6.67222 0.00087

UZur-06 6.67425 0.00012

HUST-09 6.67349 0.00018

JILA-10 6.67260 0.00025

BIPM-14 6.67554 0.00016

LENS-14 6.67191 0.00099

UCI-14 6.67435 0.00013

HUST-TOS-18 6.674184 0.000078

HUST-AAF-18 6.674484 0.000078

Table 1: Measurement results for the Newtonian constant of gravitation G together with un-

certainties (data are from Figure 1 in Bodnar et al. (2020)).

when the data were generated from the random effects model is generated already for small values

of heterogeneity parameter and when the sample size is small, like five observations are only present.

In contrast, when the data were generated from the location-scale model, then the derived model

selection procedure requires larger sample size and larger values of the heterogeneity parameter to

detect the true model. Such findings are in line with the previous results documented in Bodnar et al.

(2016a), where it is shown that the random effects model is more robust to the model misspecification

than the location-scale model. In particular, it was shown numerically that even the data were drawn

from the location-scale model, the random effects model is still persistent making a good estimate of

the overall mean. That was not the case when the data were generated from the random effects model

and the location-scale model is applied.

The derived theoretical findings are applied to the measurement results of the Newtonian constant

of gravitation. The results of the empirical study support the application of the location-scale model for

the computation of the Newtonian constant of gravitation. Both the average IBF and the median IBF

are significantly smaller than zero, while the empirical probability IBF was less than 11% indicating

that in majority of the cases related to the specification of the training sample the location-scale model

ia favored to the random effects model. As such our findings are supportive to the application of the

Birge ratio method for the adjustment of the fundamental physical constants as it is currently used in

the computation of the CODATA 2018 values of fundamental constants (see, Tiesinga et al. (2021)).

Finally, it can to be noted that the obtained results only document that the location-scale model is

favored compared to the random effects model, but they do not answer the general question what is

the best approach for data inconsistency or heterogeneous data.
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7 Appendix

In this section, the proofs of Theorems 1 and 2 are presented.

Proof of Theorem 1: (i) In the case of the whole date, the marginal distribution is obtained by

integration of the parameters µ and τLS in the joint probability density function f(x, µ, τLS |MLS).
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It holds that

m(x|MLS) =

∞∫
0

∞∫
−∞

f(x|µ, τLS ,MLS)πN (µ, τLS) dµ dτLS

=

∞∫
0

∞∫
−∞

(
det(U)

)− 1
2

(2π)n/2
τ−nLS exp

(
− (x− µ1)TU−1(x− µ1)

2τ2
LS

)
1

τLS
dµ dτLS

=

(
det(U)

)− 1
2

2(2π)n/2

∞∫
−∞

( ∞∫
0

ζ−(n
2

+1)exp

(
−

(x−µ1)T U−1(x−µ1)
2

ζ

)
dζ

)
dµ,

where the last equality is obtained by making the transformation τ2
LS = ζ with the Jacobian

1
2
√
ζ
.

The inner integral with respect to ζ has an integrand that is the kernel of the density function

of the inverse gamma distribution inv-gamma(n/2, (x− µ1)TU−1(x− µ1)/2). Hence,

m(x|MLS) =

(
det(U)

)− 1
2 Γ
(
n
2

)
2πn/2

∞∫
−∞

(
(x− µ1)TU−1(x− µ1)

)−n/2
dµ .

Using that

(x− µ1)TU−1(x− µ1) = xTQx + 1TU−11

(
µ− 1TU−1x

1TU−11

)2

,

with Q defined in (5), we get

m(x|MLS) =

(
det(U)

)− 1
2 Γ
(
n
2

)
2πn/2

(xTQx)−n/2
∞∫
−∞

(
1 +

1TU−11

xTQx

(
µ− 1TU−1x

1TU−11

)2
)−n/2

dµ

=
Γ(n−1

2 )
(
xTQx

)−n−1
2(

det(U)
)1/2

2π
n−1
2

√
1TU−11

×
∞∫
−∞

Γ
(
n
2

)
√
πΓ
(
n−1

2

)√1TU−11

xTQx

(
1 +

1

n− 1

(n− 1)1TU−11

xTQx

(
µ− 1TU−1x

1TU−11

)2
)−n/2

dµ

=
Γ(n−1

2 )
(
xTQx

)−n−1
2(

det(U)
)1/2

2π
n−1
2

√
1TU−11

,

where the last equality follows by recognizing the density function of the t-distribution under

the integral in the second line.

(ii) The statement of the second part of the theorem is obtained by following the proof of part (i)

and noting that when m = 1 then m(xi|MLS) becomes a constant and, thus, m(xi|MLS) is not

longer a proper density function. When m = 2 we get

m(x`|MLS) =
1

2
√

(det(U`))(xTQ`x)(1T2 U−1
` 12)

, (19)

where Q` is given in (7). Since the last expression is a proper density function and the two

elements of x are arbitrary chosen, the theorem is proved.
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Proof of Theorem 2: (i) In the case of the whole data the marginal distribution is obtained by inte-

gration of the parameters µ and τRE in the joint probability density function f(x, µ, τRE |MRE)

and it is expressed as

m(x|MRE) =

∞∫
0

∞∫
−∞

f(x|µ, τRE ,MRE)πN (τRE) dµ dτRE

=

∞∫
0

∞∫
−∞

(
det(U + τ2

REI)
)− 1

2

(2π)n/2
exp

(
− 1

2
(x− µ1)T

(
U + τ2

REI
)−1

(x− µ1)

)
πN (τRE) dµ dτRE ,

where πN (τRE) is given in (9).

Using the identity

exp

(
− 1

2
(x− µ1)T

(
U + τ2

REI
)−1

(x− µ1)

)
= exp

(
− 1

2
xTQ(τ2

RE)x
)
exp

(
− 1

2
1T
(
U + τ2

REI
)−1

1

(
µ−

1T
(
U + τ2

REI
)−1

x

1T
(
U + τ2

REI
)−1

1

)2
)
,

with Q(τ2
RE) defined in (11) and integrating over µ, we get

m(x|MRE) =

∞∫
0

(
det(U + τ2

REI)
)− 1

2

(2π)(n−1)/2

exp
(
− 1

2xTQ(τ2
RE)x

)
√

1T
(
U + τ2

REI
)−1

1
πN (τRE) dτRE ,

which is the statement of the first part of the theorem.

(ii) Part (ii) of the theorem follows from the proof of the first part.

References

Ades, A. E., Lu, G., and Higgins, J. (2005). The interpretation of random-effects meta-analysis in decision

models. Medical Decision Making, 25(6):646–654.

Alighanbari, S., Giri, G., Constantin, F. L., Korobov, V., and Schiller, S. (2020). Precise test of quantum

electrodynamics and determination of fundamental constants with HD+ ions. Nature, 581(7807):152–158.

Berger, J. and Bernardo, J. M. (1992). On the development of reference priors. In Bernardo, J. M., Berger, J.,

Dawid, A. P., and Smith, A. F. M., editors, Bayesian Statistics, volume 4, pages 35–60. Oxford: University

Press.

Berger, J. O., Bernardo, J. M., and Sun, D. (2009). The formal definition of reference priors. The Annals of

Statistics, 37(2):905–938.

Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal

of the American Statistical Association, 91(433):109–122.

Berger, J. O. and Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and

comparison. In Model Selection, pages 135–207. Hayward, CA: Institute of Mathematical Statistics.

Birge, R. T. (1932). The calculation of errors by the method of the least squares. Physical Reviev, 40(2):207–227.

Bodnar, O. and Elster, C. (2014a). Analytical derivation of the reference prior by sequential maximization

of Shannon’s mutual information in the multi-group parameter case. Journal of Statistical Planning and

Inference, 147:106–116.

21



Bodnar, O. and Elster, C. (2014b). On the adjustment of inconsistent data using the Birge ratio. Metrologia,

51(5):516.

Bodnar, O. and Elster, C. (2020). Assessing laboratory effects in key comparisons with two transfer standards

measured in two petals: A Bayesian approach. In 13th International Workshop on Intelligent Statistical

Quality Control 2019, IWISQC 2019, 12 August 2019 through 14 August 2019, pages 1–18. City University

of Hong Kong.

Bodnar, O., Elster, C., Fischer, J., Possolo, A., and Toman, B. (2016a). Evaluation of uncertainty in the

adjustment of fundamental constants. Metrologia, 53(1):S46.
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