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Abstract

In this paper we analyze how skewness and heavy tails affect the estimated relationship

between the real economy and the corporate bond-yield spread, a popular predictor of real

activity. We use quarterly US data to estimate Bayesian VAR models with stochastic volatility

and various distributional assumptions regarding the disturbances. In-sample, we find that –

after controlling for stochastic volatility – innovations in GDP growth can be well-described by

a Gaussian distribution. In contrast, both the unemployment rate and the yield spread appear

to benefit from being modelled using non-Gaussian innovations. When it comes to real-time

forecasting performance, we find that the yield spread is an important predictor of GDP growth,

and that accounting for stochastic volatility matters, mainly for density forecasts. Incremental

improvements from non-Gaussian innovations are limited to forecasts of the unemployment rate.

Our results suggest that stochastic volatility is of first order importance when modelling the

relationship between yield spread and real variables; allowing for non-Gaussian innovations is

less important.
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Keywords: Bayesian VAR; Generalized hyperbolic skew Student’s t distribution; Stochastic
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1 Introduction

It is a well-established finding that the corporate bond-yield spread has predictive power for the

real economy.1 Historically, the relation has been such that a higher spread is associated with lower

economic activity. For a central bank, this information should be valuable in its efforts to stabilise

the macroeconomy. For example, in light of an increase in the spread, it is likely that the real

economy will cool down and that monetary policy therefore should become more expansive (or less

contractive). With a somewhat different perspective, participants in financial markets – who want

to predict the future actions of the central bank – also have interest in how the corporate bond-

yield spread relates to the real economy. There is accordingly widespread interest in modelling this

relation.

When modelling macro-financial or macroeconomic relations, there are a number of issues that

one might want to take into account in order to specify models with good statistical properties.

First, over the last fifteen years, there has been a growing literature showing that many variables

are hit by disturbances with time-varying volatility; see, for example, Cogley and Sargent (2005),

Fountas and Karanasos (2007), Clark (2011), Carriero et al. (2015), Chan (2017), Trypsteen (2017)

and Clark et al. (2020). Second, it does not seem unusual that variables have unconditional distri-

butions that are skewed; see, for example, Neftci (1984), Acemoglu and Scott (1997), Bekaert and

Popov (2019). In addition, both the Bank of England and the IMF tend to present fan charts that

are asymmetric. This raises the issue of whether disturbances should be modelled with skewed,

rather than symmetric, distributions. Third, it also seems to be a common feature that uncondi-

tional distributions of variables have heavy tails; see, for example, Fagiolo et al. (2008) and Ascari

et al. (2015). As pointed out already by Engle (1982), this could be caused by time-varying volatil-

ity of disturbances. However, there is also evidence that the disturbances affecting the variables

can benefit from being modelled with heavy tails (Chiu et al., 2017; Liu, 2019; Karlsson and Mazur,

2020; Kiss and Österholm, 2020).

In this paper, we are concerned with the modelling of the relation between the corporate bond-

yield spread and the real economy – given by GDP growth and/or the unemployment rate –

1See, for example, Stock and Watson (1989), Friedman and Kuttner (1998), Gilchrist et al. (2009), Gilchrist
and Zakraǰsek (2012), Faust et al. (2013), Prieto et al. (2016) and Karlsson and Österholm (2020) for a number of
contributions to this literature.

2



in the United States. Our purpose is to conduct empirical analysis which can provide insights

into the importance of the three issues raised above – that is, time-varying volatility, skewness

and heavy tails – when modelling the relation between these variables so that more appropriate

econometric models can be constructed. To conduct our analysis we apply Bayesian VAR models

using quarterly real-time data and study the properties of the estimated models both within- and

out-of-sample. The Bayesian VAR models employed – a setting developed by Karlsson et al. (2021)

– are estimated with a number of different assumptions regarding the error terms. The most flexible

specification allows for stochastic volatility and non-Gaussian error terms with both skewness and

heavy tails. The non-Gaussianity is achieved by a Gaussian variance-mean mixture so that the

marginal distribution is a generalized hyperbolic skew Student’s t, or skew-t distribution for short

(McNeil et al., 2015). We rely on low-dimensional VAR models for our analysis. This has the

benefit that we can study in detail the effects of both which variables are included in the model

and the specification of the error terms.

Briefly mentioning our results, we first note that the marginal (unconditional) distributions of

all three variables are non-Gaussian, in line with the previous literature. For GDP growth, once

we allow for time variation in volatility, modelling flexibly higher order moments does not seem

to matter much either for in-sample fit or for the out-of-sample forecasts. There is some positive

skewness in the innovations to the unemployment rate and the yield spread innovations; this is

evidenced by both the in-sample results (mainly for the yield spread) and the finding that the

density forecasts of these variables benefit (although to a limited extent) from being modelled with

a skew-t distribution. Overall, our results show that stochastic volatility is the dominant factor in

capturing the non-Gaussianity of the marginal distributions of the variables.

Our analysis contributes to the literature in three distinct ways. First, we provide further

evidence on the relation between the corporate bond-yield spread and the US real economy. While

reasonably well studied, it is nevertheless interesting to assess how sensitive empirical findings are

when assumptions are relaxed. Second, we make a general contribution to the literature on macro-

financial and macroeconomic modelling when it comes to the importance of time-varying volatility,

skewness and heavy tails. The issue of time-varying volatility has been studied a fair amount in

the literature but the same can not be said about skewness and heavy tails, even if the latter has
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received an increasing amount of attention after the global financial crisis of 2008 (Acemoglu et al.,

2017; Chiu et al., 2017; Liu, 2019; Kiss and Österholm, 2020).2 Third, our final contribution is to

the literature concerned with density forecasting of GDP growth; see, for example, Clark (2011),

Mazzi et al. (2014), Carriero et al. (2019) and Carriero et al. (2020). In the world of economic policy

making, density forecasts have become increasingly important over the last two decades. Initially,

density forecasts were mainly a tool for central-bank communication, which – given the inflation-

targeting framework in which these forecasts were used – accordingly primarily meant a focus on

inflation.3 However, in more recent years, the perspective has widened and density forecasts have

become an important analysis tool for instance when the IMF discusses GDP growth, in particular

with regards to the concept “growth-at-risk” which is a means of providing a statement concerning

the probability of poor outcomes for GDP growth; see, for example, Adrian et al. (2018, 2019);

Prasad et al. (2019) for work on this topic. Our results should be of interest to those aiming to

build model-based fan charts both in general and more specifically for the variables studied here.

The rest of this paper is organised as follows: In Section 2, we describe the Bayesian VAR

models that we rely upon for our econometric analysis. In Section 3, we describe our data and the

empirical analysis, covering both in-sample and out-of-sample results. Finally, Section 4 concludes.

2 Econometric framework

We conduct our analysis with different specifications of Bayesian VAR models proposed by Karlsson

et al. (2021). In particular, we relax the assumption of Gaussianity in the error term in the VAR

model by employing the skew-t distribution. This distribution describes well non-Gaussian features

such as skewness and heavy tails. To capture heteroscedasticity, we allow stochastic volatility in

addition to the non-Gaussian disturbances.

Below we present two different VAR models with skewness and heavy tails, one with non-

Gaussian disturbances for the conditional distribution of each variable and another with the or-

2Although the economic crisis associated with the corona pandemic in 2020 is also a clear tail event, we choose to
omit 2020 from our analysis. The reason is that for many economic variables – and prominently for unemployment
rate, a central variable in our analysis – the crisis in 2020 caused such large movements that are best modelled as
outliers rather than observations from a heavy-tailed distribution.

3The Bank of England was a trailblazer in this field; see Britton et al. (1998) for an important contribution.
Sveriges Riksbank was also an early adopter; their present methodology is documented in Sveriges Riksbank (2007).
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thogonal non-Gaussian disturbances in each VAR equation. Bayesian inference concerning the

models is described in the Appendix. Furthermore, we present different methods that are used for

evaluating the forecasting performance of the VAR models.

2.1 VAR models with non-Gaussian disturbances

Using the fact that the skew-t distribution can be expressed as a Gaussian variance-mean mixture

(Aas and Haff, 2006; McNeil et al., 2015), the multivariate skew-t VAR model with stochastic

volatility (MST-SV) is defined as follows

yt = c + B1yt−1 + . . .+ Bpyt−p + et,

et = Wtγ + W
1/2
t A−1H

1/2
t εt, t = 1, . . . , T,

(1)

where yt is a k-dimensional vector of time series of interest; c is a k-dimensional vector of intercepts;

B1, . . . ,Bp are a k×k matrices of coefficients on the lagged dependent variables;4 γ = (γ1, . . . , γk)
′

is a k-dimensional vector that contains skewness parameters; Wt = diag(ξ1t, . . . , ξkt) is a k × k

diagonal matrix of mixing variables ξit that are mutually independent and follow an inverse gamma

distribution with the same shape and rate parameters equal to νi/2, i.e. ξit ∼ IG(νi2 ,
νi
2 ), i =

1, . . . , k; A is a k × k lower triangular matrix with ones on the diagonal; Ht = diag(h1t, . . . , hkt)

is a k × k diagonal matrix that captures the heteroskedastic volatility; and εt is a k-dimensional

vector of error terms that has multivariate Gaussian distribution with zero mean vector and identity

covariance matrix, i.e. εt ∼ N (0, I). Moreover, Wt, Ht, and εt are mutually independent. We also

assume a random walk process of the stochastic volatility,

log hit = log hit−1 + σiηit, i = 1, . . . , k, t = 1, . . . , T, (2)

where ηit ∼ N (0, 1) and let σ2 = (σ2
1, . . . , σ

2
k)
′.

4It can be noted that we do not allow for time variation in the coefficients describing the dynamic relations
between the variables, that is, the matrices Bj , j = 1, . . . , p are constant over time. As shown by Karlsson and
Österholm (2020), an assumption of drifting parameters is not supported by the data when estimating models on US
data ranging from 1953 to 2018; stochastic volatility, on the other hand, has very strong support in the data.
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It is worth noting that given Wt and Ht it holds that

et|Wt,Ht ∼ N
(
µt = Wtγ,Σt = W

1/2
t A−1HtA

−1′W
1/2
t

)
.

By integrating out the mixing matrix Wt, the conditional distribution of yit is a skew-t distribution

with skewness parameter γi and shape parameter νi for i = 1, . . . , k; see Aas and Haff (2006) and

Karlsson et al. (2021). Note that the conditional distribution of vector yt reduces to a multivariate

Student’s t (MT-SV) distribution when γ1 = . . . = γk = 0. Additionally assuming that νi → ∞

for i = 1, . . . , k, we will arrive at the Gaussian VAR model with stochastic volatility (G-SV).

Moreover, the VAR models without stochastic volatility can be obtained by setting σ2 = 0 and

log hit = log hi0 for i = 1, . . . k and t = 1, . . . , T .

2.2 VAR models with orthogonal non-Gaussian disturbances

Another way of imposing skewness and heavy tails in the VAR model is to consider the shocks to

the VAR equations as linear combinations of orthogonal disturbances. In what follows, this VAR

model is called the orthogonal skew-t with stochastic volatility (OST-SV) and is expressed as

yt = c + B1yt−1 + . . .+ Bpyt−p + A−1ẽt,

ẽt = Wtγ + W
1/2
t H

1/2
t εt, t = 1, . . . , T.

(3)

Since Wt and Ht are diagonal matrices, and Wt, Ht and εt are mutually independent, ẽt is a

vector of independent univariate skew-t distributed random variables. Therefore, in the OST-SV

model, the shock to each VAR equation is a linear combination of orthogonal skew-t disturbances.

On the other hand in the MST-SV model, each VAR equation has one skew-t disturbance that

correlates with other disturbances in other VAR equations. Note that when the skewness parameters

γ1 = . . . = γk = 0, the OST-SV model reduces to the orthogonal Student’s t VAR model with

stochastic volatility (OT-SV) proposed by Cúrdia et al. (2014), and Chiu et al. (2017). Furthermore,

if γ1 = . . . = γk = 0, and ν1 = . . . = νk →∞, we get a VAR model with Gaussian disturbances and

stochastic volatility. Finally, the VAR models without stochastic volatility can again be obtained

by setting σ2 = 0 and log hit = log hi0 for i = 1, . . . k and t = 1, . . . , T .
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2.3 Forecast evaluation

To compare the forecasting performance of different VAR models, we conduct a recursive out-

of-sample forecast exercise. We use the periods 1, . . . , T0 − 1 as an (initial) training sample and

calculate h-period ahead forecasts for periods from T0 to T − h. The mean square forecast error

(MSFE) is utilized to evaluate the point forecasts, while the log predictive score (LPS) and the

continuous rank probability score (CRPS) are used for the density forecasts.

The MSFE at h-step ahead, for h = 1, . . . ,H, is calculated as,

MSFEith =
1

T − T0 − h+ 1

T−h∑
t=T0

[ (
ȳi,t+h|t − yoi,t+h

)2 ]
,

where ȳi,t+h|t is the point forecast – captured by the mean of posterior predictive samples – using

all the data at time t and yoi,t+h is the realization of the variable i, h-steps ahead. A smaller MSFE

implies better point forecasting performance.

The LPS of the posterior predictive distribution is evaluated as,

LPSith =
1

T − T0 − h+ 1

T−h∑
t=T0

[
log p(yoi,t+h|y1:t−1)

]

=
1

T − T0 − h+ 1

T−h∑
t=T0

[
log

∫
θ
p(yoi,t+h|θ,y1:t−1)p(θ|y1:t−1)dθ

]
,

where p(yoi,t+h|y1:t−1) is the h-step ahead posterior predictive density function (the score) evaluated

at the realization of the variable. We can observe that LPSith depends on the high-dimensional in-

tegral over intermediate observations and it can be approximated by using the Rao-Blackwellization

idea; see Andersson and Karlsson (2008) and Karlsson et al. (2021). That is, LPSith is calculated

as follows

LPSith =
1

T − T0 − h+ 1

T−h∑
t=T0

[
log

1

R

R∑
r=1

p(yoi,t+h|θ(r),y1:t−1)

]

with θ(1), . . . ,θ(R) being the posterior samples of the corresponding VAR model. In other words,

we calculate the LPSith as the average predictive score over the posterior samples. A higher score

7



value indicates a better density forecasting performance of the model.

The CRPS is another measure of density forecast accuracy that is derived from the (quadratic)

difference between the predictive cumulative distribution function and the empirical distribution of

the variable. The CRPS is given by

CRPSith =
1

T − T0 − h+ 1

T−h∑
t=T0

[
Ef
∣∣yi,t+h|t − yoi,t+h∣∣− 0.5Ef

∣∣∣yi,t+h|t − y′

i,t+h|t

∣∣∣ ],
where f is the predictive density of yi,t+h|t, and (yi,t+h|t, y

′

i,t+h|t) are independent copies of the vari-

able from the predictive density f ; see Gneiting and Raftery (2007). To evaluate the expectations,

we use the Monte Carlo method where we simulate 20000 draws from the predictive density f .

In order to compare the out-of-sample forecast among models, we apply the one-sided test of

equal mean predictive accuracy based on Diebold and Mariano (1995), where the standard errors of

the test statistics are computed with the Newey-West estimator. This approach was used by Clark

(2011) and Clark and Ravazzolo (2015) in a similar context, evaluating both point and density

forecasting performance.

3 Empirical analysis

3.1 Data

We analyse quarterly data from the United States between 1953Q2 and 2019Q4. Real GDP growth

is the annual (year-on-year) percentage change in real GDP. The unemployment rate is the sea-

sonally adjusted civilian unemployment rate of individuals 16 years of age and older. Finally, the

corporate bond-yield spread is given by the yield on BAA corporate bonds minus the yield on a

ten-year Treasury security (henceforth referred to as the BAA spread).

Figure 1 shows the evolution of GDP growth, the unemployment rate and the BAA spread.

The shaded areas highlight the recession periods, typically associated with a decrease in output

growth and increases in the unemployment rate and the BAA spread. The unconditional distri-

bution of GDP growth is negatively skewed while that of unemployment and bond spread are

positively skewed. The skewness of the marginal distribution might be caused by the mixture of
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the heteroskedastic economic shocks and/or skewness of the innovations.
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Figure 1: Time series plots and marginal distributions of the data.

The figures on the left hand side show the level of the variables. The shaded areas highlight the recession periods according

to the NBER classification. The figures on the right-hand side draw the histogram and the kernel density of GDP growth, the

unemployment rate and the BAA spread.

We conduct our empirical analysis in two parts. First, we estimate the VAR models to establish

the importance of stochastic volatility and non-Gaussianity of the innovations in-sample. Second,

we assess the out-of-sample forecasting ability of the models. In doing that, we consider specifica-

tions with stochastic volatility and allow for heavy tails and skewness in the error term sequentially.

We evaluate both point and density forecasting performance of the models.

Throughout the empirical analysis, we consider three sets of models: univariate models for the
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three variables separately, bivariate models for each pair of variables and a trivariate specification

with all the variables included.

3.2 In-sample analysis

The in-sample analysis is based on autoregressive specifications with p = 4 lags in the mean equa-

tion, and error structures described by equations (1) and (3). Results for the non-Gaussianity

parameters are reported in Table 1 for the univariate models and Table 2 for multivariate specifica-

tions. In particular, the posterior mean of the degrees of freedom and the skewness parameter are

presented, along with their 80 percent credible interval. Additionally, the log marginal likelihood

(LML) is provided for each estimated model.

First, we note that in the univariate case, stochastic volatility is important for the models with

Gaussian disturbances. The improvements in terms of LML are sizeable for all variables by taking

stochastic volatility into account. These results suggest that there is non-negligible time variation in

the second moment of the variables. To further elaborate on this, the dashed lines in Figure 2 show

the estimated stochastic volatility for all three variables in the analysis that are obtained via the

univariate Gaussian models. Looking at the figures, there is a clear pattern of decreasing volatility

for GDP growth after the 1980s, which is in line with the idea of ”Great Moderation” (Stock and

Watson, 2002). A secular decline in volatility can also be observed for the unemployment rate, with

the exception of the financial crisis in 2008-2009, when the volatility of the unemployment spiked

again. Volatility in the BAA spread also spikes in association with economic distress. However,

in contrast to the real variables where a secular decline in volatility is visible, the most turbulent

period for the yield spread took place during the financial crisis.

The in-sample results in Table 1 show that accounting for non-Gaussian innovations is less im-

portant if stochastic volatility is present. The log marginal likelihoods do not show an improvement

for t and skew-t specifications over and above stochastic volatility. This is also reflected in the the

posterior mean of degrees of freedom of the t distribution, which is around twenty for the real

variables (GDP growth and the unemployment rate); this suggests that controlling for stochastic

volatility is sufficient to address the heavy tails of the unconditional distribution of these variables.

In contrast, the degrees of freedom for the BAA spread is much lower (around ten), and the credible
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Figure 2: Stochastic volatility of GDP growth, the unemployment rate and BAA spread.

The dashed line shows the estimated mean volatility from the univariate G-SV model. The estimated mean volatility of the

univariate OST-SV model is given by the red solid line with the 50% credible interval. The shaded areas highlight the recession

periods according to the NBER classification.
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interval includes values that are consistent with a leptokurtic innovation distribution. Skewness

in the innovations has limited support for the univariate specifications for GDP growth, while the

unemployment rate and the BAA spread appear slightly positively skewed.

Comparing the volatility paths based on Gaussian innovations (dashed line in Figure 2) and non-

Gaussian innovations (specifically, the univariate specification with skew-t distributed innovations,

solid line), it appears that estimates of stochastic volatility are not sensitive to allowing for non-

Gaussianity, at least in case of the real variables. The path from both specifications follow each

other closely such that the volatility implied by the Gaussian innovations always lies within the

50 percent credible interval for the volatility using non-Gaussian innovations. In contrast, the

difference is visible for the BAA-spread, where the stochastic volatility based on the Gaussian

model is outside the credible interval of the non-Gaussian model for a large part of the sample.

The sizeable shocks created a stronger impact on the volatility movements of the Gaussian VAR

models which is also similar with the findings in Cúrdia et al. (2014) and Chiu et al. (2017). These

large shocks can also be generated by a heavy-tailed innovation process, which then implies a

smaller shock to the variance.

Results for the multivariate specifications (Table 2) are fairly similar. First, the importance

of stochastic volatility is made clear by the LML. The improvements are substantial regardless of

which combinations of variables we consider. The LMLs also suggest that innovations to GDP

growth and the unemployment rate are close to Gaussian. This is confirmed by the high degrees

of freedom and the skewness parameter which is close to zero. Despite no improvements in the

LMLs, the estimates of the heavy tail and skewness parameters suggest that the spread variable

can potentially benefit from being modelled as having non-Gaussian innovations.

Figure 3 shows the posterior distribution of the degrees of freedom and skewness parameters

from the trivariate specification where the innovations are from either a multivariate skew-t or

an orthogonal skew-t distribution (both with stochastic volatility) as defined in equations (1) and

(3). First, we can see that the two distributional assumptions lead to very similar histograms.

The only exception is the skewness parameter for GDP growth, where the MST-SV model puts

considerably larger weight to positive outcomes (resulting in a positive posterior mean) whereas

there is a larger mass of negative posterior values for the OST-SV model (resulting in a negative
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posterior mean). However, as Table 2 shows, zero is included in the 80 percent credible interval

for both specifications. Further, we can note that for GDP growth and the unemployment rate,

there is a substantial proportion of heavy tail parameters over thirty and the posterior densities of

the skewness parameter cluster around zero. These altogether mean that real economic variables

can be modelled with Gaussian innovations in-sample. In contrast, the posterior densities signal

heavier tails and positive skewness for the BAA spread.

Overall, based on our results, the evidence for non-Gaussianity in the innovations of the real

economic variables seems limited. Our results provide a refinement of the knowledge in the literature

which finds that the unconditional distribution of macroeconomic variables (most prominently,

GDP growth) is characterized by heavy tails (Fagiolo et al., 2008; Ascari et al., 2015; Liu, 2019).

We find that stochastic volatility captures a large fraction of the heavy-tailed behavior of the

innovations and once it is controlled for, the scope of non-Gaussianity is limited, in line with the

recent literature on the interaction between heavy tails and time-varying volatility (Chiu et al.,

2017; Karlsson and Mazur, 2020; Karlsson et al., 2021). For the BAA spread (which is mostly used

as a leading indicator in this context, that is, as a predictor for the real economy) we find that

even after controlling for time variation in the second moment of the innovations, there is some

scope for modelling non-Gaussian behaviour (c.f. Kiss and Österholm, 2020). Having established

the results in-sample, in the next section we investigate whether heavy tails and skewness impacts

the predictive relationship between the yield spread and the real economy in case of real time

forecasting.

Table 1: Univariate AR(4) models for GDP, Unemployment and BAA spread

GDP Unemployment (U) BAA (S)
Gaussian t Skew-t Gaussian t Skew-t Gaussian t Skew-t

ν - 21.8 25.3 - 26.8 23.2 - 13.4 12.7
- (8.3;40.4) (11;43.5) - (12.4;46.4) (11.7;38.2) - (4.4;27.2) (6;22.3)

γ - - 0 - - 0.2 - - 0.2
- - (-0.7;0.7) - - (0.1;0.3) - - (0.1;0.3)

LML (SV) -378.2 -377.9 -379.1 -7.5 -8.2 -9.9 -15.8 -15.4 -15.4

LML (NonSV) -401.3 -394.8 -397 -45.1 -30.2 -29.3 -71.1 -26.9 -26.4

The table shows the posterior means of the degree of freedom and the skewness parameters in the univariate AR(4) models with SV. The numbers

in the bracket are the [0.1;0.9] credible intervals. The table also presents log marginal likelihoods (LML) for the models that are evaluated as in

Karlsson et al. (2021). For comparison, the last panel of the table reports the LML for the same models, without allowing for stochastic volatility.
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Table 2: VAR(4) models for GDP, Unemployment (U) and BAA spread (S)

G-SV OT-SV MT-SV OST-SV MST-SV

GDP-U

νGDP - 19.9 18.4 24.6 24.7
- (7.9;35.7) (7.6;32.6) (10.9;43.2) (10.9;42.1)

νU - 25.2 17.5 27.3 19.6
- (11.2;43.1) (7.5;31.4) (12.7;45.3) (8.9;33.9)

γGDP - - - -0.1 0.5
- - - (-0.7;0.6) (-0.2;1.2)

γU - - - 0.1 0.1
- - - (0;0.3) (0;0.3)

LML -355.1 -354.6 -353.7 -355.8 -354.1

GDP-S

νGDP - 17.9 16.8 23.4 25.4
- (6.9;33.6) (7;30.9) (8.5;41.9) (10.3;44.3)

νS - 15.1 12 12.5 11
- (4.6;31.3) (4.2;25.6) (5.4;22.8) (5.1;19.4)

γGDP - - - 0 0.2
- - - (-0.5;0.6) (-0.3;0.9)

γS - - - 0.1 0.1
- - - (0;0.2) (0;0.2)

LML -387.5 -386.0 -385.9 -386.5 -386.5

U-S

νU - 27.7 26.1 27.8 31.2
- (12.4;46.1) (12.1;43.6) (12.4;47.2) (14.9;50.8)

νS - 18.1 11.7 14.1 11.3
- (5.9;35.2) (4.5;22.5) (6.1;25.8) (5.7;18.6)

γU - - - 0.2 0.1
- - - (0;0.3) (0;0.3)

γS - - - 0.1 0.1
- - - (0;0.3) (0.1;0.2)

LML -16.4 -16.7 -16.0 -17.4 -16.8

GDP-U-S

νGDP - 14.9 15.9 22 23.4
- (5.9;27.5) (7;28) (8;41.4) (10.3;39.4)

νU - 24.8 20.7 29.8 26.5
- (10.3;43.1) (8.7;36.8) (14.1;48.5) (12.5;45)

νS - 11.8 6.8 11.7 8.5
- (3.8;25.6) (3.4;12.5) (5;22.3) (4.6;13.4)

γGDP - - - -0.1 0.5
- - - (-0.7;0.7) (-0.1;1.4)

γU - - - 0.1 0.1
- - - (-0.1;0.2) (0;0.2)

γS - - - 0.1 0.1
- - - (0;0.2) (0;0.2)

LML -366.7 -365.2 -362.7 -366.5 -364.2

LML (nonSV)

GDP-U -394.6 -384.3 -381.6 -388 -385.4
GDP-S -461.6 -413.5 -412.1 -416.2 -415.3

U-S -96.6 -49.1 -46.5 -48.1 -47.6
GDP-U-S -450.3 -400.6 -397.3 -403.5 -401.7

The table shows the posterior means of the degree of freedom and the skewness parameters in the

VAR(4) models. The numbers in the bracket are the [0.1;0.9] credible intervals. The table also presents

log marginal likelihoods (LML) for models with and without stochastic volatility that are evaluated as

in Karlsson et al. (2021).
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Figure 3: Posterior samples of the heavy tails and skewness parameters of the trivariate MST-SV
and OST-SV VAR models.
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3.3 Forecasting performance

We conduct an out-of-sample forecast exercise to assess whether accounting for skewness and heavy

tails in the innovations helps to improve real-time forecasting performance of the VARs. Our focus

in on the predictive relationship which goes from the BAA spread to the real economic variables.

However, for completeness, we show predictive performance for all variables and models.

Our benchmark model (for each variable) is the univariate specification with homoscedastic

and Gaussian disturbances. This is then compared to specifications where we sequentially relax

the assumptions regarding the error term by allowing for stochastic volatility and non-Gaussian

distribution in the innovations. We also increase the dimension of the model – to bi- and tri-variate

models – and again assess the importance of stochastic volatility and non-Gaussianity.

The forecast evaluation is performed on an expanding window; the parameters are re-estimated

each time the sample is expanded. In order to mimic the actual forecasting situation as closely as

possible, we use real-time data from the Philadelphia Fed (see, for example, Croushore and Stark,

2001 and Clements and Galvão, 2013). That is, estimation is always made on the version of the data

available to the forecaster at the given time point. The forecast is then evaluated based on the first

vintage where the realizations of the series are available. It can be noted that the publication delay

is different for the three variables. In particular, the BAA spread for a given quarter is available

at the end of that quarter’s last trading day; this stands in contrast with the more substantial

delays in the other two variables, particularly GDP growth. However, we always use information

up to the same quarter for all three variables, avoiding the so-called ragged-edge problem associated

with asynchronous data publication. Note that data revisions are substantial for the GDP series

(Croushore and Stark, 2001) and for the unemployment rate, but the BAA-spread is a financial

variable which is not revised.

The first forecast is made using the information up to the last quarter of 1965; this means that

a sample ranging from 1953Q2 to 1965Q4 is used. We consider the forecasting horizons one to four

quarters and two years, and the last forecast is made based on data in 2017Q4, for periods from

2018Q1 up to 2018Q4 and for 2019Q4. This ensures that we have 211 forecasts for all horizons, so

that forecast accuracy measures are comparable across horizons.
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3.3.1 Point forecasts

First, we focus on the point forecasting results. Tables 3, 4 and 5 present mean squared forecast-

ing errors for GDP growth, the unemployment rate and the BAA spread, respectively. Absolute

numbers are shown for the benchmark univariate model with homoscedastic, Gaussian innovations,

and relative MSFEs are given for the rest of the specifications. The relative MSFE is given as

the MSFE for the model of interest divided by the MSFE of the benchmark, and a relative MSFE

smaller than one accordingly indicates that the model in question is better than the benchmark

model. Models that outperform the benchmark using the Diebold and Mariano (1995) test are

marked with asterisks.5

For the point forecasts of GDP growth, the results show that neither stochastic volatility nor

non-Gaussian innovations generally improve forecasting performance significantly. The MSFE in-

creases relative to the benchmark for all horizons, when using t or skew-t distributed innovations.

The only feature that really appears to matter is the inclusion of the BAA spread as a predic-

tor variable. Table 3 indicates that the bivariate VAR with the BAA spread and GDP growth

outperforms the benchmark significantly at the shortest horizon. This outperformance somewhat

prevails for two quarters ahead, and for the trivariate VAR, but loses significance at conventional

significance levels. These findings are in line with the fact that leading indicators (i.e. variables like

the BAA spread) tend to work best at shorter horizons. Additionally, the predictive ability of the

BAA spread for GDP growth seems to be unaffected by how we model the innovations: there is no

improvement in terms of MSFE for the specifications with stochastic volatility and non-Gaussian

innovations.

Turning to Table 4 and the unemployment rate, non-Gaussianity, in particular skewness, tends

to improve point forecasting performance at the one- to four-quarter horizons. Looking at the

univariate specifications, skew-t distributed innovations have the lowest MSFE at the four shortest

horizons; the improvements are admittedly modest though. The VAR specifications show that

inclusion of GDP growth and/or the BAA spread lowers the MSFE relative to the univariate forecast

(again at the one- to four-quarter horizons). The inclusion of GDP growth produces statistically

5To alleviate the concerns related to the standard Diebold and Mariano (1995) test, we reproduced our results using
the Clark and McCracken (2015) test, which relaxes some of the strict assumptions of the original Diebold-Mariano
test. The results (in terms of the significance of improvements) are almost identical.
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significant improvements. Stochastic volatility, heavy tails and skewness do not (or only marginally)

change the results in the bivariate VAR with GDP growth and the unemployment rate. In contrast,

for the bivariate VAR with the unemployment rate and the BAA spread, modelling innovations

flexibly seems to matter: the homoscedastic model performs worse than the univariate benchmark, a

result which is overturned once we account for time varying volatility and non-Gaussian innovations.

The improvements are largest (although typically still not statistically significant) when accounting

for skewness, where the relative MSFE is lower than one at the one- to four-quarter horizons. Lastly,

we note that for the trivariate specification, the Gaussian model with stochastic volatility has a

lower MSFE than the Gaussian model with homoscedastic disturbances. Allowing for heavy tails

and/or skewness brings no additional improvements in general.

Even though the BAA spread benefits somewhat from being modelled with heavy-tailed and

skewed innovations based on the in-sample results, this does not generally generate better forecasts.

For the univariate specifications, only accounting for skewness brings some marginal (although

insignificant) reductions in the MSFE at the shorter horizons. Including real variables as predictors

in general barely seems to help improve forecasts (which is in line with the general notion that

BAA spread itself usually leads real variables). However, models allowing for a skewed innovation

distribution tend to lower the MSFE relative to the benchmark model at the one- to four-quarter

horizons even for the bi- and tri-variate models. Stochastic volatility also seems relevant once

GDP growth is included. In fact, for the bivariate model with GDP growth and the BAA spread,

significant improvement is achieved when both stochastic volatility and skewness are allowed for.

This significance partly survives for the trivariate model, where the Gaussian model with stochastic

volatility and the multi skew-t model shows significant improvements.

Generally, we find that point forecasts are affected by flexible modelling of innovation to a

limited extent in our context. However, this is not particularly surprising given the bias-variance

trade-off of forecasting with more elaborate models. The flexible distributional assumptions mostly

affect the entire shape (all moments) of the predictive distribution, and therefore the first moment

(point forecasts) are less sensitive to distributional assumptions. However, the flexibility comes

with a cost of increased complexity and hence reduced estimation precision, which in turn leads to

worse point forecasting performance in several cases, as we have seen above.
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Table 3: MSFEs and relative MSFEs [relative to the Gaussian AR(4) model] for GDP growth

GDP growth

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - GDP
G-nonSV 0.927 2.418 4.109 5.320 5.713
G-SV 0.999 1.005 1.023 1.047 1.079
T-SV 1.006 1.019 1.041 1.065 1.085
ST-SV 1.006 1.018 1.039 1.062 1.117

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV 1.054 1.089 1.109 1.117 1.076
G-SV 1.080 1.138 1.185 1.218 1.166
ST-SV 1.091 1.160 1.217 1.256 1.187
MT-SV 1.095 1.164 1.215 1.254 1.185
OST-SV 1.106 1.165 1.214 1.247 1.149
MST-SV 1.110 1.189 1.247 1.288 1.210

(c) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.895** 0.897* 0.950 1.012 1.000
G-SV 0.897** 0.915 0.995 1.093 1.143
ST-SV 0.898** 0.922 1.007 1.113 1.152
MT-SV 0.896** 0.920 1.006 1.115 1.160
OST-SV 0.899** 0.925 1.006 1.104 1.124
MST-SV 0.895** 0.924 1.006 1.105 1.124

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.986 1.034 1.101 1.156 1.059
G-SV 0.973 1.028 1.125 1.227 1.221
ST-SV 0.976 1.036 1.138 1.241 1.230
MT-SV 0.981 1.040 1.140 1.242 1.237
OST-SV 1.032 1.087 1.163 1.238 1.152
MST-SV 0.996 1.054 1.151 1.243 1.200

The first line reports the MSFE of the benchmark Gaussian Univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

relative performance is computed as the ratio of the MSFE of alternative specifications

over the benchmark. The entries less than 1 indicate that the given model is better.

***,**,* denote that the corresponding model significantly outperforms the bench-

mark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano (1995) test

where the standard errors of the test statistics are computed with the Newey–West

estimator (Clark, 2011).
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Table 4: MSFEs and relative MSFEs [relative to the Gaussian AR(4) model] for Unemployment
(U)

Unemployment rate

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - Unemployment(U)
G-nonSV 0.098 0.308 0.619 0.979 2.313
G-SV 0.990 1.000 1.018 1.039 1.152
T-SV 0.991 1.004 1.022 1.043 1.157
ST-SV 0.978 0.975 0.978 0.983 1.038

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV 0.875** 0.914* 0.941 0.953 1.013
G-SV 0.865*** 0.894** 0.918** 0.935* 1.044
ST-SV 0.866*** 0.901** 0.932* 0.953 1.069
MT-SV 0.864*** 0.903** 0.934* 0.955 1.074
OST-SV 0.868*** 0.902** 0.933* 0.951 1.040
MST-SV 0.871*** 0.912** 0.944* 0.966 1.077

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV 1.016 1.031 1.038 1.047 1.079
G-SV 0.938* 0.929 0.957 0.996 1.170
ST-SV 0.939 0.933 0.961 1.000 1.171
MT-SV 0.938* 0.934 0.962 1.005 1.182
OST-SV 0.942* 0.931* 0.943 0.966 1.059
MST-SV 0.939* 0.929* 0.947 0.976 1.092

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.888 0.931 0.965 0.992 1.078
G-SV 0.858** 0.871** 0.903* 0.937 1.084
ST-SV 0.861** 0.878** 0.910* 0.946 1.091
MT-SV 0.852** 0.870** 0.905* 0.943 1.097
OST-SV 0.871** 0.905 0.932 0.961 1.068
MST-SV 0.854** 0.879** 0.915* 0.949 1.089

The first line reports the MSFE of the benchmark Gaussian Univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

relative performance is computed as the ratio of the MSFE of alternative specifications

over the benchmark. The entries less than 1 indicate that the given model is better.

***,**,* denote that the corresponding model significantly outperforms the bench-

mark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano (1995) test

where the standard errors of the test statistics are computed with the Newey–West

estimator (Clark, 2011).
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Table 5: MSFEs and relative MSFEs [relative to the Gaussian AR(4) model] for BAA spread(S)

BAA spread(S)

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - BAA spread(S)
G-nonSV 0.113 0.273 0.406 0.507 0.732
G-SV 1.006 1.040 1.083 1.149 1.410
T-SV 1.008 1.042 1.086 1.152 1.414
ST-SV 0.975 0.974 0.985 1.015 1.143

(b) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.998 0.991 0.984 0.980 0.977
G-SV 0.974 0.997 1.021 1.062 1.234
ST-SV 0.975 1.001 1.029 1.069 1.236
MT-SV 0.979 1.002 1.029 1.069 1.237
OST-SV 0.959** 0.963 0.970 0.988 1.073
MST-SV 0.960* 0.961 0.963 0.979 1.058

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV 1.025 1.019 1.021 1.026 1.029
G-SV 1.014 1.027 1.054 1.098 1.254
ST-SV 1.018 1.033 1.060 1.103 1.259
MT-SV 1.022 1.038 1.066 1.112 1.274
OST-SV 0.996 0.980 0.978 0.994 1.047
MST-SV 0.999 0.986 0.983 1.001 1.062

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.994 1.001 1.007 1.015 1.032
G-SV 0.959* 0.985 1.014 1.057 1.216
ST-SV 0.969 0.992 1.014 1.051 1.204
MT-SV 0.968 0.993 1.018 1.058 1.214
OST-SV 0.956 0.953 0.954 0.969 1.028
MST-SV 0.951* 0.952 0.955 0.971 1.025

The first line reports the MSFE of the benchmark Gaussian Univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

relative performance is computed as the ratio of the MSFE of alternative specifications

over the benchmark. The entries less than 1 indicate that the given model is better.

***,**,* denote that the corresponding model significantly outperforms the bench-

mark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano (1995) test

where the standard errors of the test statistics are computed with the Newey–West

estimator (Clark, 2011).
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3.3.2 Density forecasts

In this section we consider how density forecasts are affected by modelling the innovations of the

VAR model flexibly. We consider two frequently used measures of density forecast evaluation,

the LPS and the CRPS, as described in Section 2. We discuss both measures, since even though

they mostly agree in terms of the direction of the findings (which specification improves upon the

benchmark and which does not), the strength of the results change somewhat depending on which

measure we use. Tables 6 to 11 show results for both measures and all three variables in a similar

structure as for the point forecasts. That is, the benchmark model is the univariate model with

homoscedastic, Gaussian innovations, for which the values of the LPS and CRPS are presented. For

the other specifications, the improvement over the benchmark is given in units of LPS or CRPS.

Tables 6 and 7 show results for density forecasts of GDP growth. First, we can note that even if

GDP growth is modelled using only its own lags, accounting for stochastic volatility produces much

better density forecasts in the short run (one to two quarters), and the effect is still there, although

muted, for longer horizons; further flexibility in the specification does not seem warranted though.

There appears to be gains to be made by moving beyond the univariate framework, in particular by

adding the BAA spread, for which even the Gaussian and homoscedastic specification outperforms

the baseline model. Adding stochastic volatility to the bivariate VAR with GDP growth and BAA

spread extends its advantage over the benchmark to three quarters (according to the LPS). Non-

Gaussian innovations do not seem to be an important feature even in the multivariate specifications

(once the volatility is allowed to vary over time). At longer horizons – in particular, two years –

flexible modelling of the error term does not improve density forecasts.

Forecasts of the unemployment rate – which is our other variable capturing real activity – appear

slightly better when accounting for skewness and heavy tails, but improvements are typically small

over and above stochastic volatility. Results in Tables 8 and 9 show an improvement at shorter

horizons (results are significant up to four quarters) for the univariate specifications when we allow

for stochastic volatility. Heavy tails do not contribute additionally to the forecasting performance,

but allowing for skewness seems to be a relevant feature which is not completely subsumed by

time-varying volatility, at least according to the LPS measure. Moving to the VARs, we see the

importance of GDP growth in forecasting unemployment - a not particularly surprising finding.
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However, GDP growth itself cannot really capture all the tail behaviour of the forecasts of the

unemployment rate, so time-varying volatility appears useful for the horizons up to four quarters

(and skewness at the shortest horizon, according to the LPS). The BAA spread does not seem to

improve the density forecast of the unemployment rate, unless the error terms are modelled flexibly,

with stochastic volatility again playing a key role in improved density forecasts. Finally, for the

unemployment rate, the trivariate VAR does not materially produce better results than the VAR

with GDP growth and unemployment.

Finally, density forecasts of the BAA spread (Tables 10 and 11) benefit from both stochastic

volatility and skewness, in particular for the shorter horizons (one to three quarters). Stochastic

volatility seems to be sufficient to capture heavy tails in the distribution of the innovations, since

the specifications with the orthogonal or multivariate t-distributions do not improve over the one

with time-varying volatility. Interestingly, adding GDP growth appears to help forecasting yield

spread density, even in the homoscedastic, Gaussian model for several horizons according to the

LPS measure. Note however, that improvements are small in absolute value.6 Stochastic volatility

improves the density forecasts over the short horizon, but its effect is weaker for longer horizons.

For three and four quarters ahead, skewness also plays a role in improving forecasts (with stronger

results provided by the CRPS measure). Adding the unemployment rate does not help in density

forecasting the BAA spread, which is evidenced by both the bivariate unemployment-BAA spread

results, and the incremental changes when moving to the trivariate VAR. Finally, longer horizon

(two year) density forecasts do not benefit from the flexible modelling either, similar to the other

variables.

Overall, we find mixed evidence in terms of whether it is worth going for flexible modelling

of error terms. The homoscedastic Gaussian model works relatively the worst at shorter horizons

for all three variables. However, in most cases, accounting for stochastic volatility appears flexible

enough to capture the deviations from the baseline. This is in line with the unconditional non-

Gaussianity of the variables mostly being associated with time-variation in the second moment.

6In fact, the forecast errors implied by the univatiare model and the GDP growth-BAA spread VAR are very close
to each other. Hence, both the difference in the LPS and the standard error is small in magnitude. This makes the
test indicate significance even in case the difference in LPS is small.
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Table 6: LPS and difference in LPS relative to the Gaussian AR(4) model for GDP growth

GDP growth

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - GDP
G-nonSV -1.384 -1.844 -2.099 -2.229 -2.268
G-SV 0.104*** 0.124*** 0.102* 0.059 -0.000
T-SV 0.099*** 0.121*** 0.097* 0.056 0.001
ST-SV 0.098*** 0.118*** 0.100* 0.061 0.005

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV -0.016 -0.039 -0.063 -0.081 -0.027
G-SV 0.082*** 0.084** 0.043 -0.003 -0.024
ST-SV 0.076** 0.078* 0.036 -0.015 -0.020
MT-SV 0.077** 0.077* 0.038 -0.017 -0.025
OST-SV 0.075** 0.074* 0.035 -0.012 0.003
MST-SV 0.075** 0.064 0.012 -0.045 -0.057

(c) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.042** 0.034 0.010 -0.017 -0.018
G-SV 0.166*** 0.190*** 0.136** 0.060 -0.053
ST-SV 0.163*** 0.189*** 0.131** 0.054 -0.049
MT-SV 0.165*** 0.189*** 0.130** 0.048 -0.052
OST-SV 0.169*** 0.188*** 0.136** 0.062 -0.018
MST-SV 0.166*** 0.187*** 0.132** 0.057 -0.019

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.010 -0.023 -0.066 -0.098 -0.069
G-SV 0.129*** 0.125** 0.061 -0.010 -0.046
ST-SV 0.128*** 0.122** 0.054 -0.020 -0.036
MT-SV 0.127*** 0.120** 0.051 -0.026 -0.041
OST-SV 0.126*** 0.118** 0.053 -0.017 0.004
MST-SV 0.121*** 0.109** 0.039 -0.033 -0.021

The first line reports the LPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in LPS is computed the LPS of the alternative specifications minus the LPS

of the benchmark model. The entries greater than 0 indicate that the given model

is better. ***,**,* denote that the corresponding model significantly outperforms

the benchmark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano

(1995) test where the standard errors of the test statistics are computed with the

Newey–West estimator (Clark, 2011).
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Table 7: CRPS and difference in CRPS relative to the Gaussian AR(4) model for GDP growth

GDP growth

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - GDP
G-nonSV -0.533 -0.833 -1.076 -1.230 -1.274
G-SV 0.021*** 0.031** 0.026 0.006 -0.036
T-SV 0.019*** 0.026* 0.018 -0.003 -0.037
ST-SV 0.019*** 0.026* 0.018 -0.002 -0.025

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV -0.008 -0.029 -0.057 -0.068 -0.044
G-SV 0.009 -0.006 -0.043 -0.080 -0.089
ST-SV 0.007 -0.014 -0.060 -0.100 -0.091
MT-SV 0.006 -0.015 -0.058 -0.099 -0.094
OST-SV 0.005 -0.026 -0.064 -0.110 -0.072
MST-SV 0.004 -0.026 -0.080 -0.127 -0.118

(c) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.027** 0.041** 0.025 -0.010 -0.011
G-SV 0.051*** 0.076*** 0.050* -0.014 -0.086
ST-SV 0.050*** 0.074*** 0.044 -0.025 -0.084
MT-SV 0.050*** 0.074*** 0.044 -0.026 -0.088
OST-SV 0.050*** 0.073*** 0.045* -0.019 -0.061
MST-SV 0.051*** 0.073*** 0.045* -0.019 -0.060

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.007 -0.015 -0.069 -0.113 -0.065
G-SV 0.033** 0.029 -0.028 -0.105 -0.118
ST-SV 0.032** 0.025 -0.036 -0.113 -0.117
MT-SV 0.031** 0.023 -0.040 -0.119 -0.123
OST-SV 0.027* 0.015 -0.044 -0.121 -0.074
MST-SV 0.029** 0.017 -0.045 -0.122 -0.105

The first line reports the CRPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in CRPS is computed the CRPS of the alternative specifications minus

the CRPS of the benchmark model. The entries greater than 0 indicate that the

given model is better. ***,**,* denote that the corresponding model significantly

outperforms the benchmark at 1%, 5%, 10% level based on the one-sided Diebold

and Mariano (1995) test where the standard errors of the test statistics are computed

with the Newey–West estimator (Clark, 2011).
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Table 8: LPS and difference in LPS relative to the Gaussian AR(4) model for Unemployment (U)

Unemployment rate

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - Unemployment(U)
G-nonSV -0.492 -1.082 -1.417 -1.625 -1.989
G-SV 0.374*** 0.393*** 0.332*** 0.230* -0.113
T-SV 0.375*** 0.393*** 0.335*** 0.228* -0.126
ST-SV 0.391*** 0.428*** 0.369*** 0.280** -0.023

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV 0.073*** 0.134*** 0.156*** 0.163*** 0.101**
G-SV 0.409*** 0.425*** 0.375*** 0.301** -0.003
ST-SV 0.410*** 0.427*** 0.375*** 0.287** -0.022
MT-SV 0.416*** 0.433*** 0.371*** 0.298** -0.033
OST-SV 0.413*** 0.434*** 0.376*** 0.292*** 0.003
MST-SV 0.421*** 0.437*** 0.375*** 0.294*** -0.046

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV 0.010 -0.013 -0.028 -0.043 -0.068
G-SV 0.370*** 0.377*** 0.311*** 0.200 -0.128
ST-SV 0.371*** 0.380*** 0.315*** 0.202* -0.125
MT-SV 0.372*** 0.380*** 0.318*** 0.209* -0.133
OST-SV 0.381*** 0.405*** 0.348*** 0.258** -0.035
MST-SV 0.385*** 0.399*** 0.337*** 0.242** -0.069

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.077*** 0.114*** 0.117*** 0.112*** 0.041*
G-SV 0.398*** 0.421*** 0.372*** 0.297*** -0.006
ST-SV 0.397*** 0.417*** 0.373*** 0.287*** -0.012
MT-SV 0.406*** 0.422*** 0.378*** 0.291*** -0.023
OST-SV 0.394*** 0.412*** 0.362*** 0.262** -0.023
MST-SV 0.407*** 0.418*** 0.367*** 0.288*** -0.021

The first line reports the LPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in LPS is computed the LPS of the alternative specifications minus the LPS

of the benchmark model.The entries greater than 0 indicate that the given model is

better. ***,**,* denote that the corresponding model significantly outperforms the

benchmark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano (1995)

test where the standard errors of the test statistics are computed with the Newey–West

estimator (Clark, 2011).
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Table 9: CRPS and difference in CRPS relative to the Gaussian AR(4) model for Unemployment
(U)

Unemployment rate

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - Unemployment(U)
G-nonSV -0.192 -0.342 -0.481 -0.600 -0.900
G-SV 0.034*** 0.064*** 0.081*** 0.080** -0.014
T-SV 0.034*** 0.064*** 0.080*** 0.078** -0.016
ST-SV 0.034*** 0.065*** 0.084*** 0.087*** 0.026

(b) Bivariate VAR(4) - GDP - Unemployment(U)
G-nonSV 0.013*** 0.030*** 0.047*** 0.058*** 0.042**
G-SV 0.040*** 0.074*** 0.094*** 0.099*** 0.027
ST-SV 0.040*** 0.074*** 0.092*** 0.095*** 0.022
MT-SV 0.041*** 0.074*** 0.093*** 0.096*** 0.018
OST-SV 0.040*** 0.072*** 0.089*** 0.092*** 0.021
MST-SV 0.040*** 0.073*** 0.089*** 0.090*** 0.006

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV 0.000 -0.007 -0.015 -0.026 -0.057
G-SV 0.035*** 0.067*** 0.083*** 0.078*** -0.033
ST-SV 0.035*** 0.066*** 0.083*** 0.078*** -0.031
MT-SV 0.035*** 0.067*** 0.083*** 0.078** -0.033
OST-SV 0.034*** 0.065*** 0.083*** 0.081*** 0.009
MST-SV 0.035*** 0.066*** 0.084*** 0.082*** -0.001

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV 0.012*** 0.022*** 0.031*** 0.032** -0.007
G-SV 0.039*** 0.072*** 0.092*** 0.093*** 0.008
ST-SV 0.039*** 0.071*** 0.091*** 0.091*** 0.005
MT-SV 0.040*** 0.072*** 0.092*** 0.093*** 0.007
OST-SV 0.038*** 0.069*** 0.083*** 0.083*** 0.006
MST-SV 0.040*** 0.071*** 0.089*** 0.089*** 0.001

The first line reports the CRPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in CRPS is computed the CRPS of the alternative specifications minus

the CRPS of the benchmark model. The entries greater than 0 indicate that the

given model is better. ***,**,* denote that the corresponding model significantly

outperforms the benchmark at 1%, 5%, 10% level based on the one-sided Diebold

and Mariano (1995) test where the standard errors of the test statistics are computed

with the Newey–West estimator (Clark, 2011).
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Table 10: LPS and difference in LPS relative to the Gaussian AR(4) model for BAA spread(S)

BAA spread(S)

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - BAA spread(S)
G-nonSV -0.478 -0.886 -1.076 -1.194 -1.400
G-SV 0.303*** 0.158** 0.072 -0.043 -0.312
T-SV 0.306*** 0.155** 0.070 -0.042 -0.291
ST-SV 0.329*** 0.201*** 0.136* 0.065 -0.085

(b) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.010** 0.040*** 0.055*** 0.067*** 0.065***
G-SV 0.329*** 0.185** 0.113 0.014 -0.203
ST-SV 0.333*** 0.182** 0.109 0.014 -0.193
MT-SV 0.333*** 0.183** 0.105 0.013 -0.198
OST-SV 0.345*** 0.215*** 0.149* 0.068 -0.065
MST-SV 0.347*** 0.213*** 0.147* 0.086 -0.037

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV -0.038 -0.021 -0.017 -0.013 -0.022
G-SV 0.292*** 0.165** 0.099 0.013 -0.173
ST-SV 0.300*** 0.164** 0.088 -0.003 -0.167
MT-SV 0.298*** 0.152** 0.073 -0.022 -0.171
OST-SV 0.322*** 0.197** 0.128 0.068 0.003
MST-SV 0.324*** 0.196*** 0.114 0.060 -0.020

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV -0.018 0.016** 0.029*** 0.035*** 0.013
G-SV 0.331*** 0.192** 0.130 0.044 -0.125
ST-SV 0.334*** 0.196*** 0.130 0.059 -0.098
MT-SV 0.334*** 0.187*** 0.122 0.047 -0.106
OST-SV 0.353*** 0.224*** 0.162* 0.110 0.033
MST-SV 0.354*** 0.212*** 0.146* 0.097 0.039

The first line reports the LPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in LPS is computed the LPS of the alternative specifications minus the LPS

of the benchmark model.The entries greater than 0 indicate that the given model is

better. ***,**,* denote that the corresponding model significantly outperforms the

benchmark at 1%, 5%, 10% level based on the one-sided Diebold and Mariano (1995)

test where the standard errors of the test statistics are computed with the Newey–West

estimator (Clark, 2011).
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Table 11: CRPS and difference in CRPS relative to the Gaussian AR(4) model for BAA spread(S)

BAA spread(S)

1Q 2Q 3Q 4Q 8Q
(a) Univariate AR(4) - BAA spread(S)
G-nonSV -0.189 -0.295 -0.361 -0.407 -0.498
G-SV 0.023*** 0.018** 0.007 -0.015 -0.104
T-SV 0.024*** 0.018** 0.006 -0.015 -0.099
ST-SV 0.026*** 0.025*** 0.021* 0.011 -0.026

(b) Bivariate VAR(4) - GDP - BAA spread(S)
G-nonSV 0.002* 0.007*** 0.013*** 0.017*** 0.019***
G-SV 0.027*** 0.027*** 0.022* 0.008 -0.051
ST-SV 0.028*** 0.025*** 0.020* 0.007 -0.048
MT-SV 0.027*** 0.025*** 0.020* 0.007 -0.046
OST-SV 0.028*** 0.029*** 0.028** 0.021* -0.006
MST-SV 0.028*** 0.029*** 0.028** 0.023* -0.000

(c) Bivariate VAR(4) - Unemployment(U) - BAA spread(S)
G-nonSV -0.006 -0.005 -0.005 -0.006 -0.012
G-SV 0.024*** 0.022*** 0.017 0.004 -0.049
ST-SV 0.024*** 0.021** 0.015 0.002 -0.047
MT-SV 0.024*** 0.019** 0.011 -0.003 -0.052
OST-SV 0.025*** 0.026*** 0.024** 0.020 0.007
MST-SV 0.024*** 0.025*** 0.022* 0.017 0.001

(d) Trivariate VAR(4) - GDP - Unemployment(U) - BAA spread(S)
G-nonSV -0.002 0.003 0.004 0.006 -0.002
G-SV 0.029*** 0.028*** 0.024** 0.013 -0.038
ST-SV 0.029*** 0.027*** 0.024** 0.013 -0.031
MT-SV 0.029*** 0.026*** 0.021* 0.010 -0.033
OST-SV 0.029*** 0.031*** 0.031*** 0.027** 0.013
MST-SV 0.029*** 0.030*** 0.028** 0.024* 0.012

The first line reports the CRPS of the benchmark Gaussian univariate AR(4) model

without stochastic volatility during 1965:Q4-2017:Q1 (211 recursive estimations). The

difference in CRPS is computed the CRPS of the alternative specifications minus

the CRPS of the benchmark model. The entries greater than 0 indicate that the

given model is better. ***,**,* denote that the corresponding model significantly

outperforms the benchmark at 1%, 5%, 10% level based on the one-sided Diebold

and Mariano (1995) test where the standard errors of the test statistics are computed

with the Newey–West estimator (Clark, 2011).
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4 Conclusions

Financial conditions are tightly connected to real economic activity and information from financial

markets are easy to collect in a timely manner. These features make financial variables great

candidates to be used in nowcasting and forecasting macroeconomic activity. In this paper, we

examine closely a prime example – the nexus between the bond-yield spread and GDP growth and

the unemployment rate. We contribute to the previous knowledge by scrutinizing whether allowing

for flexible modelling of the innovation distribution helps when forecasting real economic activity

using the BAA spread.

Our results show that the variables – in particular the unemployment rate and the yield spread

– are characterized by heavy-tailed unconditional distributions. However, once the dynamics of the

variables are modelled appropriately and stochastic volatility is accounted for, there is little room

for modelling non-Gaussianity in the innovations. This also translates into its limited usefulness

in terms of real-time forecasting performance. While stochastic volatility is crucial in capturing

the distribution of the real-economic variables more precisely, hence impacting density forecasting

performance substantially, allowing for skewness and heavy tails in the innovations yields little

incremental improvement.

The findings are important from an applied modelling perspective. Accurate and timely fore-

casts of real economic activity have always been on demand and there is a continuous effort to

find leading indicators of GDP growth, for example. However, it is also important how we use

the information from these variables. Our results suggest that relying on the normal distribution,

which is the workhorse approach, might be sufficient when using the yield spread as a forecasting

variable, once stochastic volatility is accounted for.
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Appendix

A Bayesian Inference

Following Karlsson et al. (2021), we employ the Bayesian approach to make inferences for the set

of the model parameters θ = {vec(B)
′
,a

′
,γ

′
,ν

′
,σ2′ , ξ

′
1:K,1:T ,h

′
1:K,0:T }

′
, where B = (c,B1, . . . ,Bp)

is a k × (1 + kp) variate matrix, a is the stack vector of the elements in the lower triangular

matrix A. The prior distribution of vec(B) is assumed to follow the Minnesota prior distribution,

π(vec(B)) ∼ N (b0,Vb0), with the overall shrinkage l1 = 0.2 and the cross-variable shrinkage

l2 = 0.5, see Koop and Korobilis (2010). The prior distribution of a imposes a weak assumption

of no interaction among endogenous variables, a ∼ N (0, 10I0.5k(k−1)). We assume that the degree

of freedom for each variable follows a gamma distribution and the skewness parameter follows a

standard normal distribution, i.e. νi ∼ G(2, 0.1) and γi ∼ N (0, 1). Due to the model settings, we

let the mixing variables to be distributed as follows ξit|νi ∼ IG(νi2 ,
νi
2 ) . Lastly, the prior for the

variance of shock to the volatility is σ2
i ∼ G(1

2 ,
1
2), see Kastner and Frühwirth-Schnatter (2014).

We extend the Gibbs sampler to make inferences on model parameters. Let Ψ be a set of

conditional parameters except the one that we sample from. We describe the Bayesian inference

for the OST-SV model using a seven-step Metropolis-within-Gibbs Markov chain Monte Carlo

(MCMC) algorithm as follows,

1. We sample π(vec(B)|Ψ) from a conjugate normal distribution by rewriting Equation (3) as

a multivariate linear regression,

yt −A−1Wtγ = Bxt + Σ
1/2
t εt,

where xt = (1,y
′
t−1, . . . ,y

′
t−p)

′
is (1 + kp)-dimensional vector and Σ

1/2
t = A−1W

1/2
t H

1/2
t .
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Then, π(vec(B)|Ψ) ∼ N (b∗,V∗b) with

V∗−1
b =V−1

b0
+

T∑
t=1

xtx
′
t ⊗Σ−1

t ,

b∗ =V∗b

[
V−1

b0
b0 +

T∑
t=1

(xt ⊗Σ−1
t (yt −A−1Wtγ))

]
.

2. Similarly, the conditional posterior distribution of γ is a conjugate normal distribution. We

rewrite Equation (3) as,

A(yt −Bxt) = Wtγ + W
1/2
t H

1/2
t εt,

π(γ|Ψ) ∼ N (γ∗,V∗γ),

where

V∗−1
γ = I +

T∑
t=1

W0.5
t H−1

t W0.5
t ,

γ∗ = V∗γ

(
T∑
t=1

W0.5
t H−1

t W−0.5
t A(yt −Bxt)

)
.

3. We sample π(a|Ψ) based on Cogley and Sargent (2005). The conditional posterior of ele-

ments in vector a can be drawn equations by equations using a conjugate normal posterior

distribution.

4. We sample π(h
′
1:K,0:T |Ψ) based on Kim et al. (1998); Primiceri (2005); Del Negro and Prim-

iceri (2015). Let ˜̃ut = W−1
t (A(yt −Bxt) −Wtγ), for each series i = 1, . . . , k, we have that

log ˜̃u2
it = log hit + log ε2t . Kim et al. (1998) approximated the distribution χ2 of ε2t using a

mixture of 7 normal components. Then log hit could be sampled using the forward filter

backward smoothing algorithm in Carter and Kohn (1994).

5. We sample π(σ2|Ψ) to using the independent Metropolis-Hastings algorithm (Kastner and

Frühwirth-Schnatter, 2014) . We draw the proposed value σ
2(∗)
i ∼ IG(αi, βi) with αi = 1

2T

and βi = 1
2

(
T∑
t=1

(log hi,t − log hi,t−1)2

)
and accept with the probability

min

{
1,
σ

(∗)
i

σi
exp

(
σ2
i − σ

2(∗)
i

2

)}
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6. We sample π(νi|Ψ) for i = 1, . . . , k, using an adaptive random walk Metropolis-Hastings

algorithm with the proposal value ν
(∗)
i = νi + ηi exp(ci), where ηi ∼ N (0, 1) and the adaptive

variance ci is adjusted automatically such that the acceptance rate is around 0.25, see Roberts

and Rosenthal (2009).

7. We sample π(ξit|Ψ) for i = 1, . . . , k, t = 1, . . . , T using an independent Metropolis-Hastings

algorithm. We find the mode and inverse Hessian at the mode of the full conditional log-

posterior of π(ξit|Ψ). We draw a proposal value log(ξit) from a t distribution with four degrees

of freedom with mean equal to the mode and scale equal to the inverse Hessian at the mode,

see Creal and Tsay (2015) and Nguyen et al. (2019).
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Kiss, T. and Österholm, P. (2020). Fat tails in leading indicators. Economics Letters, 193:109317.

Koop, G. and Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroe-

conomics. Now Publishers Inc.

Liu, X. (2019). On tail fatness of macroeconomic dynamics. Journal of Macroeconomics, 62:103154.

Mazzi, G. L., Mitchell, J., and Montana, G. (2014). Density nowcasts and model combination:

Nowcasting euro-area GDP growth over the 2008–09 recession. Oxford Bulletin of Economics

and Statistics, 76(2):233–256.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative risk management: Concepts,

Techniques and Tools-revised edition. Princeton university press.

Neftci, S. N. (1984). Are economic time series asymmetric over the business cycle? Journal of

Political Economy, 92(2):307–328.
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