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Abstract

In the paper we consider the optimal portfolio choice problem under parameter

uncertainty when the covariance matrix of asset returns is singular. Very useful

stochastic representations are deduced for the characteristics of the expected utility

optimal portfolio. Using these stochastic representations, we derive the moments

of higher order of the estimated expected return and the estimated variance of the

expected utility optimal portfolio. Another line of applications leads to their asymp-

totic distributions obtained in the high-dimensional setting. Via a simulation study,

it is shown that the derived high-dimensional asymptotic distributions provide good

approximations of the exact ones even for moderate sample sizes.
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1 Introduction

Mean-variance analysis of Harry Markowitz [32] plays important role in portfolio analysis.

It is widely used by practitioners and it is also a hot topic by researchers of financial sector.

The original idea of Markowitz [32] was to select a portfolio which minimizes the variance

for a given level of the expected return. Recently, it was shown that different optimization

problems lead to the same set of optimal portfolios (see, [18]). In particular, the set of

mean-variance optimal portfolios, the so-called efficient frontier, can also be obtained by

an investor who maximizes the exponential utility function under the assumption that

the vector of asset returns follows a multivariate normal distribution. In this case, the

optimization problem is given by

max
w:w⊤1k=1

[
w⊤µ− α

2
w⊤Σw

]
, (1)

where µ denotes the vector of the k-dimensional expected asset returns, Σ is the k ×
k covariance matrix, and α is the risk-aversion coefficient which describes the investor

attitude towards risk. Changing the risk aversion coefficient from zero to infinity, we

get the same set of optimal portfolios as the one obtained by Markowitz’s mean-variance

optimization problem.

The solution of (1) is given by

wEU =
Σ−11k

1⊤
k Σ

−11k

+ α−1Rµ, (2)

where

R = Σ−1 − Σ−11k1
⊤
k Σ

−1

1⊤
k Σ

−11k

.

The portfolio with weights (2) is known in financial literature as the expected utility (EU)

optimal portfolio (see, e.g., [29], [34], [17]).

In practice, however, the weights of the EU optimal portfolio (2) cannot be directly

implemented, since the formula of the weights depends on the unknown quantities µ and

Σ. As such, the investor should use the historical data of asset returns to estimate µ

and Σ before the optimal portfolio is constructed. The most commonly used estimators

for the mean vector of the asset returns and for the covariance matrix are their sample

counterparts expressed as

x̄ =
1

n

n∑
i=1

xi and S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)⊤, (3)

where x1, ...,xn is the sample of the asset returns. Then, the weights of the EU optimal
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portfolio are estimated by

ŵEU =
S−11k

1⊤
k S

−11k

+ α−1R̂x̄ with R̂ = S−1 − S−11k1
⊤
k S

−1

1⊤
k S

−11k

. (4)

Similarly,

R̂EU =
x̄⊤S−11k

1⊤
k S

−11k

+ α−1x̄⊤R̂x̄ and V̂EU =
1

1⊤
k S

−11k

+ α−2x̄⊤R̂x̄ (5)

are the sample estimators of the expected return and the variance of the EU optimal

portfolio expressed as

REU =
µ⊤Σ−11k

1⊤
k Σ

−11k

+ α−1µ⊤Rµ and VEU =
1

1⊤
k Σ

−11k

+ α−2µ⊤Rµ. (6)

The first two moments of the sample estimator of the EU portfolio weights together

with their asymptotic distribution were obtained in [34], while the exact distribution of (4)

was derived in [21]. Recently, the asymptotic distribution of the estimated weights as well

as their consistent estimator in the high-dimensional setting were deduced in [11]. The

exact distributions of the sample estimator for the expected return and the variance of the

EU portfolio were provided in [20]. Finally, a shrinkage-based estimator and test theory

for the EU portfolio weights were developed in [17] and [10], who extended the shrinkage-

based approach applied to other optimal portfolio weights in [25], [24] and [19]. For the

practical implementation of the derived estimators the investor can use the R package

HDShOP ([9]), while [8] presented the detailed review of the estimation procedures.

Another line of research related to the estimation of optimal portfolio weights and

characteristics leads to the Bayesian statistics. The research in this direction started

with the papers of [40], [2] and [31]. Both informative and noninformative priors have

been used in the literature. While the hyperparameter prior approach closely related to

the Bayes–Stein shrinkage prior was considered in [30], the economical motivation for the

usage of an informative prior was provided in [7]. Other informative priors were considered

in [36], [37], [38], among other. Noninformative priors were employed in the papers of

[13] and [4]. Finally, the Bayesian estimator of the efficient frontier was considered in the

papers of [3] and [5].

We contribute to the existent literature by deriving the properties of the estimated

EU optimal portfolio when the covariance matrix is singular. While the previous studies

assume that the covariance matrix is positive definite, recently several papers deal with

the singular case (see, e.g., [35], [26], [27]). The estimated global minimum variance

portfolio with singular covariance matrix was considered in [15], while the results for the

tangency portfolio were derived in [16]. Finally, several important properties of singular

Wishart distribution were derived in [12] which were implemented in portfolio theory by
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[14].

The rest of the paper is organised as follows. In the next section, the main findings

are presented. In Section 2.1 the results for finite-sample case are provided, while the

asymptotic distributions of the estimated EU optimal portfolio characteristics, obtained

in the high-dimensional setting, are given in Section 2.2. The quality of the asymptotic

approximation is investigated via simulations in Section 3. The final remarks are present

in Section 4.

2 Sample EU optimal portfolio for singular covari-

ance matrix

In the following it is assumed that the population covariance matrix Σ is singular with

rank(Σ) = r < n, where n is the sample size. Since Σ is not invertible, the formulas

for the EU weights and its characteristics (2) and (6) cannot be used unless the ordinary

inverse is replace by a generalized inverse, for example by the Moore-Penrose inverse Σ+.

The Moore-Penrose inverse of a matrix A is defined as the matrix A+ which fulfills

the following four conditions

(i) AA+A = A,

(ii) A+AA+ = A+,

(iii) (A+A)⊤ = A+A,

(iv) (AA+)⊤ = AA+.

It is important to note that the Moore-Penrose inverse is uniquely defined for every matrix

A. Replacing the ordinary inverse of Σ by its Moore-Penrose inverse we get the weights

of the EU portfolio expressed as

w+
EU =

Σ+1k

1⊤
k Σ

+1k

+ α−1R+µ, with R+ = Σ+ − Σ+1k1
⊤
k Σ

+

1⊤
k Σ

+1k

(7)

and its expected return and variance given by

R+
EU =

µ⊤Σ+1k

1⊤
k Σ

+1k

+ α−1µ⊤R+µ and V +
EU =

1

1⊤
k Σ

+1k

+ α−2µ⊤R+µ, (8)

respectively.

Similarly, the application of the Moore-Penrose inverse of the sample covariance matrix

S+ leads to the estimated portfolio weights for a singular covariance matrix expressed as

ŵ+
EU =

S+1k

1⊤
k S

+1k

+ α−1R̂+x̄ with R̂+ = S+ − S+1k1
⊤
k S

+

1⊤
k S

+1k

. (9)
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The sample estimators for the expected return and the variance of the EU optimal

portfolio are then given by

R̂+
EU =

x̄⊤S+1k

1⊤
k S

+1k

+ α−1x̄⊤R̂+x̄ and V̂ +
EU =

1

1⊤
k S

+1k

+ α−2x̄⊤R̂+x̄. (10)

2.1 Results for finite sample

Let

R+
GMV =

µ⊤Σ+1k

1⊤
k Σ

+1k

and V +
GMV =

1

1⊤
k Σ

+1k

be the expected return and the variance of the global minimum variance portfolio when

the covariance matrix Σ is singular and let

s+ = µ⊤R+µ

be the slope parameter of the efficient frontier.

Let the symbol Nm(a,B) denote the m-dimensional normal distribution with mean

vector a and covariance matrix B, the symbol χ2
m stand for the χ2-distribution with m

degrees of freedom and the symbol Fm1,m2,c2 denote the noncentral F -distribution with

m1 and m2 degrees of freedom and noncentrality parameter c2. In Theorem 1 we derive

very useful stochastic representations of R̂+
EU and V̂ +

EU .

Theorem 1. Let x1, . . . ,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and

rank(Σ) = r < n. Then, stochastic representations of R̂+
EU and V̂ +

EU are given by

R̂+
EU

d
= R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ +

√
1

n

(
1 +

r − 1

n− r + 1
ξ

)√
V +
GMV z0

and

V̂ +
EU

d
=

V +
GMV

n− 1
η + α−2 (n− 1)(r − 1)

n(n− r + 1)
ξ,

where ξ ∼ Fr−1,n−r+1,ns+, η ∼ χ2
n−r, and z0 ∼ N (0, 1). Moreover, ξ, η, and z0 are

mutually independently distributed.

Proof of Theorem 1: We start by deriving a stochastic representation of R̂+
EU . From

Theorem 4 (c) of [14] we know that x̄ and S are independently distributed. Then, it holds

that the distribution of R̂+
EU |x̄ = x̄∗ is equal to the distribution of R̂∗

EU defined by

R̂∗
EU =

1⊤
k S

+x̄∗

1⊤
k S

+1k

+ α−1x̄∗⊤R̂+x̄∗.
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Let L⊤ = (x∗,1k) such that rank(L) = 2. Then, Σ̃ = LΣ+L⊤ = {σ̃ij}i,j=1,2 with

σ̃11 = x̄∗⊤Σ+x̄∗, σ̃12 = σ̃21 = x̄∗⊤Σ+1k, and σ̃22 = 1⊤
k Σ

+1k. Similarly, let S̃ = LS+L⊤ =

{s̃ij}i,j=1,2 with s̃11 = x̄∗⊤S+x̄∗, s̃12 = s̃21 = x̄∗⊤S+1k, and s̃22 = 1⊤
k S

+1k. Also, let

V = Σ̃−1 = {vij}i,j=1,2 and V̂ = S̃−1 = {v̂ij}i,j=1,2. Then, the application of Theorem

8.5.11 of [28] leads to

v̂11 =

(
x̄∗⊤S+x̄∗ − (x̄∗⊤S+1k)

2

1⊤
k S

+1k

)−1

= (x̄∗⊤R̂+x̄∗)−1,

v̂12 = − x̄∗⊤S+1k

1⊤
k S

+1kx̄∗⊤R̂+x̄∗
.

From Theorem 4 (a) of [14] we have that (n − 1)S ∼ Wk(n − 1,Σ). Then applying

Theorem 1 of [14] it holds that

(n− 1)V̂ ∼ W2(n− r + 1,V).

From Theorem 3.2.10 of [33] we obtain that v̂22− v̂212v̂
−1
11 =

(
1⊤
k S

+1k

)−1
is independent of

v̂11 = (x̄∗⊤R̂+x̄∗)−1. Consequently, 1⊤
k S

+1k and x̄∗⊤R̂+x̄∗ are independently distributed.

Moreover, from Corollary 1 of [14] and Theorem 3.2.10 of [33] we get that

(n− 1)
1⊤
k Σ

+1k

1⊤
k S

+1k

∼ χ2
n−r and (n− 1)

x̄∗⊤R+x̄∗

x̄∗⊤R̂+x̄∗
∼ χ2

n−r+1. (11)

The application of Theorem 3.2.10 by [33] leads to

x̄∗⊤S+1k

1⊤
k S

+1k

n− 1

x∗⊤R̂+x̄∗

∣∣∣∣ n− 1

x̄∗⊤R̂+x̄∗
= u ∼ N

(
x̄∗⊤Σ+1k

1⊤
k Σ

+1k

u,
1

1⊤
k Σ

+1k

u

)
.

Then,

x̄∗⊤R̂+x̄∗

n− 1

(
x̄∗⊤S+1k

1⊤
k S

+1k

n− 1

x̄∗⊤R̂+x̄∗
+ (n− 1)α−1

)∣∣∣∣∣ n− 1

x̄∗⊤R̂+x̄∗
= u

∼ N
(
x̄∗⊤Σ+1k

1⊤
k Σ

+1k

+
n− 1

αu
,

1

1⊤
k Σ

+1k

1

u

)
.

Using Theorem 4 (b) of [14] and following the proof of Theorem 3 of [16], we get

x̄⊤Σ+1k ∼ N
(
µ⊤Σ+1k,

1

n
1⊤
k Σ

+1k

)
, (12)

n(n− r + 1)

(n− 1)(r − 1)
x̄⊤R̂+x̄ ∼ Fr−1,n−r+1,ns (13)

and, moreover, x̄⊤Σ+1k is independent of x̄⊤R̂+x̄. Thus, summarising the previous
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findings we get a stochastic representation of R̂+
EU as given in the statement of the theorem.

Next, we proceed with the derivation of a stochastic representation for V̂ +
EU . Let us

recall that 1⊤
k S

+1k is independent of x̄
∗⊤R̂+x̄∗. Therefore, since 1⊤

k S
+1k does not depend

on x̄, we also get that 1⊤
k S

+1k and x̄⊤R̂+x̄ are independent. Using this fact together with

(11), we arrive at a stochastic representation of V̂ +
EU given in the statement of the theorem.

■

The results proved in Theorem 1 are fundamental and fully describe the stochastic

behaviour of the estimated expected return and the estimated variance of the EU optimal

portfolio when the covariance matrix is singular and the asset returns are independent and

identically normally distributed. Moreover, these findings possess a number of important

applications, which will be present in this section. In particular, they can be used to derive

the moments of higher order of R̂+
EU and V̂ +

EU . We present the corresponding findings in

Theorem 2.

In the formulation of the statement of Theorem 2, the confluent hypergeometric func-

tion is used which is defined by (see, Chapter 4 in [1].)

1F1(a; b;x) =
Γ(b)

Γ(a)

∞∑
i=0

Γ(a+ i)

Γ(b+ i)

xi

i!
. (14)

Theorem 2. Let x1, . . . ,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and

rank(Σ) = r < n. Then the pth order moments of R̂+
EU and V̂ +

EU are given by

µ
(p)

R+
EU

:= E
[
(R̂+

EU)
p
]
= e−

ns+

2

⌊p/2⌋∑
j=0

(
V +
GMV

n

)j
(2j)!

2jj!

(
p

2j

)

×
p−2j∑
j1=0

j∑
j2=0

(R+
GMV )

p−2j−j1

(
n− 1

αn

)j1 (p− 2j

j1

)(
j

j2

)

×
Γ
(
n−r+1

2
− j1 − j2

)
Γ
(
n−r+1

2

) Γ
(
r−1
2

+ j1 + j2
)

Γ
(
r−1
2

) 1F1

(
r − 1

2
+ j1 + j2;

r − 1

2
;
ns+

2

)
and

µ
(p)

V +
EU

:= E
[
(V̂ +

EU)
p
]
=

p∑
i=0

(V +
GMV )

p−i

(
p

i

)
(n− 1)2i−p

(
α2n

)−i

× (n− r)(n− r + 2)(n− r + 4) . . . (n− r + 2(p− i)− 2)

× e−
ns+

2
Γ
(
n−r+1

2
− i
)

Γ
(
n−r+1

2

) Γ
(
r−1
2

+ i
)

Γ
(
r−1
2

) 1F1

(
r − 1

2
+ i;

r − 1

2
;
ns+

2

)
.

Proof of Theorem 2: First, we derive the pth order moment of R̂+
EU . For that, we make

use of the stochastic representation of R̂+
EU which is obtained in Theorem 1 and it is given
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by

R̂+
EU

d
= R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ +

√
1

n

(
1 +

r − 1

n− r + 1
ξ

)√
V +
GMV z0,

where ξ ∼ Fr−1,n−r+1,ns+ and z0 ∼ N (0, 1). Moreover, ξ and z0 are independent. The

application of the binomial formula (see, [6, p. 129]) leads to

(µ+
REU

)(p) := E
[
(R̂+

EU)
p
]

= E

[(
R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ +

√
1

n

(
1 +

r − 1

n− r + 1
ξ

)√
V +
GMV z0

)p]

= E

 p∑
i=0

(
p

i

)(
R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ

)p−i
(√

1

n

(
1 +

r − 1

n− r + 1
ξ

)√
V +
GMV z0

)i


=

p∑
i=0

(
V +
GMV

n

) i
2
(
p

i

)
E
[
zi0
]

× E

[(
R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ

)p−i(
1 +

r − 1

n− r + 1
ξ

)i/2
]
.

Using the fact that the odd moments of z0 are equal to zero and the even moments

are given by (see, Chapter 34.2 in [39])

E
[
z2l0
]
=

(2l)!

2ll!
for l ≥ 1,

we get that

µ
(p)

R+
EU

=

⌊p/2⌋∑
j=0

(
V +
GMV

n

)j
(2j)!

2jj!

(
p

2j

)
(15)

× E

[(
R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ

)p−2j (
1 +

r − 1

n− r + 1
ξ

)j
]
.

Applying binomial formula again and the formula for higher order moments of non-
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central F -distribution (see, [39, Chapter 32.2]), we obtain that

E

[(
R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ

)p−2j (
1 +

r − 1

n− r + 1
ξ

)j
]

= E

[[
p−2j∑
j1=0

(
α−1 (n− 1)(r − 1)

n(n− r + 1)

)j1

(R+
GMV )

p−2j−j1

(
p− 2j

j1

)
ξj1

]

×

[
j∑

j2=0

(
r − 1

n− r + 1

)j2 ( j

j2

)
ξj2

]]
=

p−2j∑
j1=0

j∑
j2=0

Rp−2j−j1
GMV

×
(
n− 1

αn

)j1 ( r − 1

n− r + 1

)j1+j2 (p− 2j

j1

)(
j

j2

)
E
[
ξj1+j2

]
= e−

ns+

2

p−2j∑
j1=0

j∑
j2=0

(R+
GMV )

p−2j−j1

(
n− 1

αn

)j1 (p− 2j

j1

)(
j

j2

)
Γ
(
n−r+1

2
− j1 − j2

)
Γ
(
n−r+1

2

)
×

∞∑
m=0

1

m!

(
ns+

2

)m Γ
(
r−1
2

+m+ j1 + j2
)

Γ
(
r−1
2

+m
) .

Substituting the last equality in (15) and applying the formula for the confluent hy-

pergeometric function (14), we get the expression of the higher order moments of R̂+
EU

given in the statement of the theorem.

Next, we derive the pth order moment of V̂ +
EU . From Theorem 1, a stochastic repre-

sentation of V̂ +
EU is expressed as

V̂ +
EU

d
=

V +
GMV

n− 1
η + α−2 (n− 1)(r − 1)

n(n− r + 1)
ξ,

where ξ ∼ Fr−1,n−r+1,ns+ and η ∼ χ2
n−r. Moreover, ξ and η are independently distributed.

Applying binomial formula (see, [6, p. 129]) and the fact that ξ and η are independent,

we obtain that

µ
(p)

V +
EU

:= E
[
(V̂ +

EU)
p
]
= E

[(
V +
GMV

n− 1
η + α−2 (n− 1)(r − 1)

n(n− r + 1)
ξ

)p]
= E

[
p∑

i=0

(
p

i

)(
V +
GMV

n− 1
η

)p−i(
α−2 (n− 1)(r − 1)

n(n− r + 1)
ξ

)i
]

=

p∑
i=0

(
p

i

)(
V +
GMV

n− 1

)p−i(
α−2 (n− 1)(r − 1)

n(n− r + 1)

)i

E
[
ηp−i

]
E
[
ξi
]

=

p∑
i=0

(
p

i

)
(V +

GMV )
p−i(n− 1)2i−p

(
α−2 r − 1

n(n− r + 1)

)i

E
[
ηp−i

]
E
[
ξi
]
.
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From Chapters 8.2 and 32.2 in [39], we get

E
[
ηp−i

]
= (n− r)(n− r + 2)(n− r + 4) . . . (n− r + 2(p− i)− 2),

E
[
ξi
]

= e−
ns+

2

(
n− r + 1

r − 1

)i Γ
(
n−r+1

2
− i
)

Γ
(
n−r+1

2

) ∞∑
j=0

1

j!

(
ns+

2

)j Γ
(
r−1
2

+ j + i
)

Γ
(
r−1
2

+ j
) .

Summarising the above results we arrive at the expression for the pth order moment of

V̂ +
EU . ■

As special cases of Theorem 2, we obtain the expected values and the variances of

R̂+
EU and V̂ +

EU in Corollary 1.

Corollary 1. Let x1, . . . ,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and

rank(Σ) = r < n. Then the mean and variance of R̂EU and V̂EU are given by

E[R̂+
EU ] = R+

GMV + α−1 (n− 1)(r − 1 + ns+)

n(n− r − 1)
,

E[V̂ +
EU ] =

n− r

n− 1
V +
GMV + α−2 (n− 1)(r − 1 + ns+)

n(n− r − 1)
,

Var[R̂+
EU ] =

n(s+ 1)− 2

n(n− r − 1)
V +
GMV

+ 2α−2 (n− 1)2

n2

(r − 1 + ns+)2 + (r − 1 + 2ns+)(n− r − 1)

(n− r − 1)2(n− r − 3)
,

Var[V̂ +
EU ] =

2(n− r)

(n− 1)2
(V +

GMV )
2

+ 2α−4 (n− 1)2

n2

(r − 1 + ns+)2 + (r − 1 + 2ns+)(n− r − 1)

(n− r − 1)2(n− r − 3)
.

Let fχ2
m
(·) denote for the density of the χ2-distribution with m degrees of freedom and

let fFm1,m2,c
2 (·) be the density of the noncentral F -distribution with m1 and m2 degrees

of freedom and noncentrality parameter c2. Another application of the results derived

in Theorem 1 leads to the formulas of the exact densities of R̂+
EU and V̂ +

EU presented in

Theorem 3.

Theorem 3. Let x1, . . . ,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and

rank(Σ) = r < n. Then,

i) the density function of R̂+
EU is given by

fR̂+
EU

(x) = e−
ns
2

√
n

2πV +
GMV

1

B
(
n−r+1

2
, r−1

2

)
×

∫ 1

0

(1− u)
n−r
2 u

r−3
2 1F1

(
n

2
;
r − 1

2
;
ns+

2
u

)
× exp

{
−n(1− u)

2V +
GMV

(
x−R+

GMV − α−1 (n− 1)u

n(1− u)

)2
}
du;

10



ii) the density function of V̂ +
EU is given by

fV̂ +
EU

(x) =
n(n− r + 1)

(r − 1)V +
GMV

∫ ∞

0

fχ2
n−r

(
n− 1

V +
GMV

(x− α−2u)

)
× fFr−1,n−r+1,ns+

(
n(n− r + 1)

(n− 1)(r − 1)
u

)
du.

2.2 Results under the high-dimensional setting

The exact results derived in Theorem 1 are also very useful to study the behaviour of

R̂+
EU and V̂ +

EU in the large-dimensional setting. Since the population covariance matrix Σ

is singular, we consider the stochastic behaviour of R̂+
EU and V̂ +

EU for r/n → c ∈ (0, 1) as

n → ∞. This appears to be a better asymptotic regime than the one based on ratio of k

over n, since the singular population covariance matrix impacts the actual dimension of

the data-generating process. Namely, the density of xt is singular and it is nonsingular

on a subspace of Rk of dimension r where r = rank(Σ). As such, the actual dimension

of the data-generating model for xt is r, which motivates the asymptotic regime r/n. To

this end, we note that the dimension of the data-generating k could be really very large

and it can even be larger than the sample size n in our study.

In order to specify the asymptotic behaviour of R̂+
EU and V̂ +

EU . We also need to impose

a condition on the model parameters µ and Σ. Namely, in the following it is assumed

that

(A1) There exist constants m and M such that 0 < m ≤ 1⊤
k Σ

+1k ≤ M < ∞ and

0 < m ≤ µ⊤Σ+µ ≤ M < ∞ uniformly on r.

In Theorem 4 we provide the asymptotic behaviour of the estimated expected return and

the estimated variance of the EU optimal portfolio.

Theorem 4. Let x1, . . . ,xn be i.i.d. random vectors with x1 ∼ Nk(µ,Σ), k ≥ n and

rank(Σ) = r < n. Assume (A1). Then, it holds that

√
n

(
R̂+

EU −
(
R+

GMV + α−1 c+ s+

1− c

))
→ N (0, σ2

R̂+
EU

)

and

√
n

(
V̂ +
EU −

(
(1− c)V +

GMV + α−2 c+ s+

1− c

))
→ N (0, σ2

V̂ +
EU

)

for cn := r/n → c ∈ (0, 1) as n → ∞, where

σ2
R̂+

EU

=
1 + s+

1− c
V +
GMV +

2α−2

(1− c)3
[
c+ s+(2 + s+)

]

11



and

σ2
V̂ +
EU

= 2(1− c)(V +
GMV )

2 +
2α−2

(1− c)3
[
c+ s+(2 + s+)

]
.

Proof of Theorem 4: From Lemma 3 in [22], we obtain that

√
n


 ξ

η/(n− r)

z0/
√
n

−

1 + s+/c

1

0


→ N

0,

σ2
ξ 0 0

0 2/(1− c) 0

0 0 1




for r/n → c ∈ (0, 1) as n → ∞ with

σ2
ξ =

2

c

(
1 + 2

s+

c

)
+

2

1− c

(
1 +

s+

c

)2

.

Therefore, it holds that

√
n


(r − 1)ξ/(n− r + 1)

η/(n− 1)

z0/
√
n

−

(c+ s+)/(1− c)

1− c

0




→ N

0,

c2σ2
ξ/(1− c)2 0 0

0 2(1− c) 0

0 0 1




for r/n → c ∈ (0, 1) as n → ∞. The application of the delta method (see, [23, Theorem

3.7]) leads to the statement of the theorem. ■

3 Finite-sample performance

In this section, we study the properties of the high-dimensional asymptotic approximations

of the standardised sample estimators of the expected return and the variance of the EU

optimal portfolio via simulations.

We consider the sample size n = {50, 120, 250, 500} corresponding to one year, two

years, five years and ten years of weekly financial returns and the dimension of assets

grows with the sample size, k = 1.5n. The concentration ratio is c = {0.5, 0.8} so that

the rank of the singular covariance matrix Σ is r = cn, and the risk aversion is α = 100.

We sample the vector of expected returns µ and the population singular covariance matrix

Σ following [16]. Each element in the vector µ is drawn from the uniform distribution on

[−1, 1]. The population singular covariance matrixΣ is obtained by generating eigenvalues

and eigenvectors of Σ. Firstly, the r non-zero eigenvalues of Σ are drawn from the uniform

distribution in the unit domain and the remain k−r eigenvalues are set to zero. Secondly,

12



the eigenvectors of Σ is generated from the Haar distribution by calculating eigenvectors

of a random matrix following a Wishart distribution with identity scale matrix and k

degrees of freedom.

The sample mean and sample variance of the EU portfolio are calculated using N =

100000 repetitions using the same generated values of µ and Σ as follows:

• Step 1: Calculate the expected return R+
EU and variance V +

EU of the EU portfolio

using (8).

• Step 2: Generate samples of R̂+
EU and variance V̂ +

EU from their exact distributions

by using the stochastic representations in Theorem 1,

R̂+
EU

d
= R+

GMV + α−1 (n− 1)(r − 1)

n(n− r + 1)
ξ +

√
1

n

(
1 +

r − 1

n− r + 1
ξ

)√
V +
GMV z0

and

V̂ +
EU

d
=

V +
GMV

n− 1
η + α−2 (n− 1)(r − 1)

n(n− r + 1)
ξ,

where ξ ∼ Fr−1,n−r+1,ns+ , η ∼ χ2
n−r, and z0 ∼ N (0, 1).

• Step 3: Evaluate the standardized variables in Theorem 4 by

sR+
EU =

√
n

σ2
R̂+

EU

(R̂+
EU −R+

EU),

sV +
EU =

√
n

σ2
V̂ +
EU

(V̂ +
EU − V +

EU).

Figures 1 and 2 show the asymptotic distribution (solid line) and the kernel density

estimator (dashed line) of the finite-sample distribution of standardised sR+
EU and sV +

EU

for c = {0.5, 0.8} respectively. There is a large difference between the finite sample

and the asymptotic distributions when the number of sample is small, however the finite

sample density coincides with the asymptotic density when the sample size becomes larger,

n ≥ 250. These findings are inline with Table 1 where the sample mean and sample

variance of standardised sR+
EU and sV +

EU are shown with different values of sample sizes and

concentration ratios. Both sample quantities reach the asymptotic standardised normal

distribution as sample size increases.
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Figure 1: Asymptotic distribution and the kernel density estimator of the finite-sample
distribution of standardised sR+

EU and sV +
EU for c = 0.5.
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Figure 2: Asymptotic distribution and the kernel density estimator of the finite-sample
distribution of standardised sR+

EU and sV +
EU for c = 0.8.
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Table 1: Sample mean and sample variance of standardised sR+
EU and sV +

EU
n = 50 n = 120 n = 250 n = 500

Panel (a) - sR+
EU

c = 0.50 Sample mean 0.053429 0.045069 0.036535 0.022397
Sample variance 1.122271 1.064992 1.035233 1.020149

c = 0.80 Sample mean 0.190551 0.125916 0.080326 0.054470
Sample variance 1.701651 1.226259 1.093531 1.049863

Panel (b) - sV +
EU

c = 0.50 Sample mean 0.098852 0.046847 0.037295 0.022291
Sample variance 1.095661 1.067031 1.034508 1.020210

c = 0.80 Sample mean 0.195541 0.126426 0.080406 0.054534
Sample variance 1.714786 1.226477 1.093548 1.049995

4 Summary

Optimal portfolio selection plays an important role in both theory and practice of fi-

nancial market research. While the most of the results in the theory are derived under

the assumption that the population covariance matrix is nonsingular, we extend the ex-

istent findings to the case of singular covariance matrix. We deal with the problem of

estimating the expected return and the variance of the EU optimal portfolio and with

the characterisation of their sampling distribution. Very useful stochastic representations

of the estimated expected return and for the estimated variance of the EU portfolio are

deduced, which are later used in the derivation of their higher-order moments, of their

density function, and of their asymptotic distributions in the high-dimensional setting.

Via simulations, it is shown that the high-dimensional asymptotic distributions provide

good approximations already for samples of moderate sizes.
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