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MATRIX VARIATE GENERALIZED LAPLACE DISTRIBUTIONS

TOMASZ J. KOZUBOWSKI, STEPAN MAZUR, AND KRZYSZTOF PODGÓRSKI

Abstract. The generalized asymmetric Laplace (GAL) distribution, also known as

the variance/mean-gamma model, is a popular flexible class of distributions that can

account for peakedness, skewness, and heavier than normal tails, often observed in

financial or other empirical data. We consider extensions of the GAL distribution to

the matrix variate case, which arise as covariance mixtures of matrix variate normal

distributions. Two different mixing mechanisms connected with the nature of the

random scaling matrix are considered, leading to what we term matrix variate GAL

distributions of Type I and II. While Type I matrix variate GAL distribution has

been studied before, there is no comprehensive account of Type II in the literature,

except for their rather brief treatment as a special case of matrix variate generalized

hyperbolic distributions. With this work we fill this gap, and present an account for

basic distributional properties of Type II matrix variate GAL distributions. In par-

ticular, we derive their probability density function and the characteristic function,

as well as provide stochastic representations related to matrix variate gamma distri-

bution. We also show that this distribution is closed under linear transformations,

and study the relevant marginal distributions. In addition, we also briefly account

for Type I and discuss the connections with Type II. We hope that this work will be

useful in the areas where matrix variate distributions provide an appropriate proba-

bilistic tool for three-way or, more generally, panel data sets, which can arise across

different applications.

1. Introduction

Mixtures of univariate and multivariate normal distributions play a prominent role

in statistical theory and practice, with numerous applications across a variety of fields.

Indeed, a continuous-type normal variance-mean mixtures of the form

(1.1) X
d
= µ+Wm+

√
WZ,
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where µ and m are deterministic vectors in Rk, Z has a zero-mean multivariate normal

distribution Nk(0,Σ) given by the covariance matrix Σ, andW is a non-negative random

variable independent of Z, provide very popular modeling tools in numerous fields (see,

e.g., [4]). In particular, the generalized asymmetric Laplace (GAL) distribution (see,

e.g., [27]), also known as variance/mean-gamma model (see, e.g., [31]), defined by (1.1)

with gamma distributed W , is a popular flexible model that can account for peakedness,

skewness, and heavier than normal tails, often observed in financial or other empirical

data.

In this paper, we consider extensions of the GAL distribution to the matrix vari-

ate case, where the Z in (1.1) is a Gaussian random matrix while W may be either a

one-dimensional non-negative random variable or can itself be a random (square) non-

negative definite matrix, playing the role of a stochastic covariance matrix (Gramian).

These two different mixing mechanisms lead to what we term matrix variate GAL distri-

butions of Type I and II. While Type I matrix variate GAL distribution has been studied

before (see [39]), there is no comprehensive account of Type II in the literature, except

for their rather brief treatment as a special case of matrix variate generalized hyperbolic

distributions, studied in [35] (see also [23]). With this work we fill this gap, and present

an account for basic distributional properties of Type II matrix variate GAL distribu-

tions. In particular, we derive their probability density function and the characteristic

function, and provide stochastic representations related to the matrix variate gamma

distribution. We also show that this distribution is closed under linear transformations,

and study the relevant marginal distributions. In addition, we also briefly account for

Type I and discuss the interconnections with Type II.

We hope that this work will be useful in the areas where matrix variate distributions

provide an appropriate probabilistic tool. One of the most straightforward applications

of such a model is for the panel data, which are so common in econometrics. For ex-

ample, one can consider the monthly stock and bond returns of the 23 OECD countries

that results in 23 × 2 panel data observed over time. Such data typically are regressed

against some control variables, for example, exchange rates, inflation, interest rates, etc.

In building such models, most of the time, the normal matrix variate errors are assumed,

which are rarely justified by goodness-of-fit analysis (see, e.g., [3]). To improve the per-

formance of such models, one can consider mixtures of matrix valued normal distributions

instead. The models presented in this work are perfectly fitted for the purpose.

In other areas of application such panel structures are referred to as three-way data

(see, e.g., [1], [16], [17], [18], [19], [33], [37], [38]). Indeed, as discussed in [37] among

others, such data can arise as longitudinal data on multiple response variables, spacial

multivariate data, spatio-temporal data (measurements on a unit at different time periods

and locations), when objects are rated on multiple attributes by multiple experts, or

symbolic data (complex information structured as multiple values for each variable). As

matrix variate models that can account for skewness are particularly desirable (see, e.g,

[33]), matrix variate GAL distributions (which have this feature) may provide a useful

tool here as well, along with other similar mixtures of matrix normal distributions, such
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as matrix variate t-distribution, which arises via (1.1) whereW has (univariate or matrix

variate) inverse gamma distribution. The latter is indeed quite a popular model in this

set-up, both with scalar scaling (see, e.g., [15], [16], [17], [18], [19]) as well as matrix

scaling (see, e.g., [2], [6], [12], [20], [23], [26], [36]).

Our paper is structured as follows. In Section 2 we consider a univariate scaling mix-

tures of matrix variate distributions, and provide two general results for their densities

and characteristic functions, which generalize particular results from the literature and

lead to the special case of Type I matrix variate GAL distributions. The basic distribu-

tional properties of the latter are accounted for here as well. In Section 3, we discuss the

case of matrix scaling of matrix variate normal distributions, where we provide several

general results about this construction before providing specific details connected with

Type II matrix variate GAL distributions. Sections 4 and 5 provide further results and

illustrative examples connected with the special case of vector valued distributions, along

with some open problems. Section 6 summarizes the paper.

Notation. Let us explain the notation that will be used throughout the paper. The

quantity Ik shall denote the k × k dimensional identity matrix, while 0 shall stand for

the matrix of zeros (of suitable dimension). We shall use etr{C} to denote the function

C → exp(tr(C)), where tr(C) is the trace of a (square) matrix C. The notation
d
=

shall stand for the equality in distribution, and ⊗ shall denotes the Kronecker product.

Further, the notation C ≥ 0 shall indicate that the square matrix C is non-negative

definite, while for positive definite square matrices we shall write C > 0, indicating that

C ≥ 0 and |C| > 0, where |C| is the determinant of the matrix C. The set of all k × k

(symmetric) positive definite matrices shall be denoted by S+k . This set is closed under

the addition and multiplication by a positive scalar, so it constitutes a cone. The set of

all non-negative definite matrices of given size forms a cone as well, which is the closure

S+k .

2. Univariate scale mixtures of matrix variate normal distributions

Consider univariate scaling mixtures of k × n matrix variate distributions

(2.1) X
d
=WM+

√
WZ

with independent W and Z, where M is a k × n deterministic matrix, W is a random

variable on R+, and Z ∼ MN k,n(0,Σ⊗Ψ). Then, the right-hand-side in (2.1) describes

the distribution of Z(W ), where {Z(u), u ∈ R+} is a Lévy process built upon the matrix

variate normal distribution MN k,n(M,Σ⊗Ψ). The latter describes the distribution of

Z(1), and, in non-singular case, is given by the probability density function (PDF)

(2.2)

f(X) = (2π)−
nk
2 |Σ|−n

2 |Ψ|− k
2 etr

{
−1

2
Σ−1(X−M)Ψ−1(X−M)⊤

}
, X ∈ Rk×n,
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and the characteristic function (ChF)

(2.3) φ(T) = E(etr{ιZT⊤}) = etr

{
ιT⊤M− 1

2
T⊤ΣTΨ

}
, T ∈ Rk×n,

where Σ (k × k) and Ψ (n× n) are positive-definite scale matrices (see, e.g., [21]).

Basic characteristics and properties of such a random matrix can be easily established

via a standard conditioning argument, using the fact that, given W = w, X in (2.1) has

matrix variate normal distribution MN k,n(wM, wΣ⊗Ψ), which is the same distribution

as that of Z(w). In particular, according to (2.3), the ChF of this conditional distribution

takes on the form

(2.4) φZ(w)(T) =
[
φZ(1)(T)

]w
= etr

{
ιT⊤(wM)− 1

2
T⊤(wΣ)TΨ

}
, T ∈ Rk×n.

This immediately leads to the following result, which provides the ChF of X.

Theorem 2.1. The ChF of X in (2.1) is of the form

(2.5) φX(T) = ψW [− logφZ(T)],

where ψW (·) is the Laplace transform (LT) of W and φZ(·) is the ChF of Z, given by

the right-hand-side of (2.3).

Similar arguments involving density functions lead to the result below, which provides

a general expression for the PDF of X.

Theorem 2.2. If the distribution of X in (2.1) is non-singular, then its PDF is of the

form

(2.6) fX(X) =
etr
{
Σ−1XΨ−1M⊤}

(2π)kn/2|Σ|n/2|Ψ|k/2
E
{
W−kn/2e−

1
2 (cW+h(X)/W )

}
,

where

(2.7) c = tr
(
Σ−1MΨ−1M⊤) and h(X) = tr

(
Σ−1XΨ−1X⊤) .

Proof. The proof is straightforward. □

Remark 2.1. We can obtain another compact representation of the ChF of X, this time

in terms of the product of the LT ψW (·) of W and the ChF φWT
(·) of its exponentially

tilted version WT,

(2.8) φX(T) = ψW

(
1

2
tr(T⊤ΣTΨ)

)
× φWT

(tr(MT⊤)),

where the laws of WT and W , VWT
and VW , respectively, are related as follows:

(2.9) VWT
(dw) =

e−
1
2 tr(T

⊤ΣTΨ)w

ψW ( 12 tr(T
⊤ΣTΨ))

VW (dw).

This result, which can be established by simple algebra, will be extended to the case of

X obtained by matrix-scaling in (2.1) in the next section.

The following result provides the mean matrix and the covariance of X that follows

the mixture representation (2.1). Here, the covariance matrix Var(X) of a k×n random

matrix X is understood as the covariance matrix of the kn× 1 random vector vec(X).
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Theorem 2.3. If the relevant moments exist, then the mean matrix and the covariance

of X in (2.1) are given by E(X) = E(W )M and

(2.10) Var(X) = Var(W )vec(M)[vec(M)]⊤ + E(W )Ψ⊗Σ,

respectively.

Proof. Since E(Z) = 0 and W and Z are independent, we have

E(X) = E(WM+
√
WZ) = E(W )M+ E(

√
W )E(Z) = E(W )M,

as desired. For the variance, first note that, by law of iterated variance formula, we have

(2.11) Var(X) = Var(vec(X)) = Var[E(vec(X)|W )] + E[Var(vec(X)|W )].

Since given W , vec(X) has a multivariate normal distribution on Rkn with mean vector

Wvec(M) and covariance matrix WΨ ⊗ Σ, we have E(vec(X)|W ) = Wvec(M) and

V ar(vec(X)|W ) = WΨ ⊗ Σ. When we subsitute these in (2.11), followed by simple

algebra, we obtain the result. □

Models of this form with different choices of the distribution of W are very popular in

the literature, and incorporate matrix variate analogs of various multivariate (and uni-

variate) location-scale mixtures of normal distributions. A particularly convenient choice

for the distribution ofW is a generalized inverse Gaussian (GIG) distribution, along with

its special cases of gamma, inverse gamma, and inverse Gaussian distributions, as in this

case the integration in (2.6) required to calculate the PDF of X is straightforward due to

the special structure of the GIG PDF. This has led to the development of matrix variate

generalized hyperbolic distributions and their special cases of matrix variate generalized

Laplace (variance gamma), matrix variate t, and matrix variate normal inverse Gaussian

(NIG) distributions in this scheme (see, e.g., [15], [16], [17], [18], [19], [22], and [39]).

Matrix variate analogs of Cauchy and slash distributions have also been developed along

these lines (see [10] and [22], respectively). It should be noted that an additional matrix

variate location parameter is often incorporated into these models as well.

Remark 2.2. As noted by several authors, we need a restriction on either Σ or Ψ (such

as tr(Σ) = k or tr(Ψ) = n, discussed in [16]), to ensure identifiability of the model (since

for any c ∈ R+ the Kronecker product Σ ⊗Ψ is unchanged when the two matrices are

scaled by c and 1/c, respectively).

2.1. Type I matrix variate generalized Laplace distributions. If W in (2.1) has

a standard gamma distribution G(α) with scale parameter α > 0, given by the PDF

(2.12) fW (w) =
1

Γ(α)
wα−1e−w, w ∈ R+,

and the LT

(2.13) φW (t) = (1 + t)−α, t ∈ R+,

we obtain a matrix variate version of generalized Laplace distribution, studied in [39].

To distinguish these distributions from those that arise via matrix scale mixtures of
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matrix variate normal distributions, which are treated in Section 3, we shall refer to

them as Type I matrix variate generalized Laplace distributions and denote them by

MGALk,n(M,Σ,Ψ, α), in analogy with the notation of [27] and in the spirit of [39].

Definition 2.1. A random k × n matrix X is said to have MGAL distribution with

shape parameter α > 0, k×n matrix skewness parameter M, and matrix scaling param-

eters Σ ∈ S+k , Ψ ∈ S+n , denoted by MGALk,n(M,Σ,Ψ, α), if X admits the stochastic

representation (2.1), where W ∼ G(α) is independent of Z ∼ MN k,n(0,Σ⊗Ψ).

A straightforward application of Theorem 2.1 produces the ChF of this distribution,

(2.14) φX(T) =

(
1− ιtr(T⊤M) +

1

2
tr(T⊤ΣTΨ)

)−α

, T ∈ Rk×n,

which in [39] was derived by different arguments. To obtain the corresponding PDF, we

use Theorem 2.2 with W ∼ G(α). The expectation in (2.6) reduces to

(2.15)
1

Γ(α)

∫ ∞

0

wα−kn/2−1e−
1
2 [(2+c)w+h(X)/w]dw

with c and h(X) as in (2.7). By relating the integrand in (2.15) to the PDF of the GIG

distribution GIG(λ, a, b) with parameters λ = α− kn/2, a = 2+ c, and b = h(X), which

is given by

(2.16) f(w) =
(a/b)λ/2wλ−1

2Kλ(
√
ab)

e−
1
2 [aw+b/w], w ∈ R+,

followed by routine algebra, we obtain the PDF of X ∼ MGALk,n(M,Σ,Ψ, α),

f(X) =
2etr

{
Σ−1XΨ−1M⊤}

(2π)kn/2Γ(α)|Σ|n/2|Ψ|k/2

(
tr(Σ−1XΨ−1X⊤)

2 + tr(Σ−1MΨ−1M⊤)

) 1
2 (α−kn/2)

×Kα−kn/2

(√
(2 + tr(Σ−1MΨ−1M⊤))tr(Σ−1XΨ−1X⊤)

)
.

Remark 2.3. Since Z is matrix variate normal MN k,n(M ,Σ⊗Ψ) if and only if vec(Z) is

multivariate normalNkn(vec(M),Ψ⊗Σ), it is clear from (2.1) thatX isMGALk,n(M ,Σ,Ψ, α)

if and only if vec(X) is a multivariate GALkn(vec(M),Ψ⊗Σ) random vector in the nota-

tion of [27] (cf., [39]). Similar interpretation applies to any matrix variate model defined

via (2.1), which can be seen as a matrix re-formulation of a multivariate normal mean-

variance mixture distribution on Rkn. In particular, if n = 1, where the matrix M in

(2.1) reduces to a column vector m of size k and the scale matrix Ψ reduces to a scalar

(which we set to 1 to avoid identifiability issues), we obtain a multivariate GAL (column)

random vector on Rk that follows GALk(m,Σ, α) distribution in the notation of [27].

Here, the ChF (2.14) reduces to that given in eq. (6.2.1) in [27] while the corresponding

PDF turns into the GAL PDF given by eq. (6.9.3) in [27]. Similarly, for k = 1 we obtain

an n-dimensional GAL (row) random vector that follows GALn(m,Ψ, α) distribution

(where we set the scale 1× 1 matrix Σ to 1 to avoid identifiability issues).

Remark 2.4. A matrix-variate analog of multivariate asymmetric Laplace (AL) distri-

bution, studied in [39], arises in this set-up when we take α = 1, so that the variable
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W in (2.1) has a standard exponential distribution. Basic properties of both, matrix

variate Laplace and generalized Laplace distributions, can be obtained in a straightfor-

ward way, either directly from their PDF/ChF provided above, or from the properties

of matrix normal distribution and standard conditioning arguments via (2.1). In par-

ticular, since for W ∼ G(α) we have E(W ) = Var(W ) = α, in view of Theorem 2.3

we obtain the expectation and the variance of X ∼ MGALk,n(M,Σ,Ψ, α), which are

given by E(X) = αM and Var(X) = α(Ψ ⊗ Σ + [vec(M)][vec(M)]⊤), respectively, in

complete analogy with the GAL distribution studied in [27]. In addition, the distribution

of X remains in the same class under either left or right (or both, left and right) matrix

multiplications. More details can be found in [39].

Further properties of MGAL distributions, extending those of univariate and mul-

tivariate Laplace and generalized Laplace distributions, can be developed as well. In

particular, using the special structure of the MGAL ChF with α = 1 one can show that

the matrix variate Laplace distributions are geometric infinitely divisible (GID). In anal-

ogy with the vector case, we say that a matrix variate distribution of X is GID if for

each p ∈ (0, 1) we have the following equality in distribution:

(2.17) X
d
= X

(p)
1 + · · ·+X

(p)
Np
,

where Np is a geometric random variable with parameter p (representing the number of

trials) and the {X(p)
i } are some IID random matrices, independent of Np. A straightfor-

ward calculation involving MGAL ChF and conditioning on Np shows that matrix variate

Laplace distributions are indeed GIG, and the new result below provides the distribution

of the {X(p)
i } in (2.17).

Theorem 2.4. Let X ∼ MGALk,n(M,Σ,Ψ, α) where α = 1. Then the distribution of

X is GID and (2.17) holds with X
(p)
i ∼ MGALk,n(pM, pΣ,Ψ, α) where α = 1.

Proof. The proof is straightforward. □

One can also show that MGAL random matrices X where either M or Z in (2.1) is

equal to 0, are strictly matrix geometric stable (MGS), so that we have the following

equality in distribution for each p ∈ (0, 1):

(2.18) X
d
= ap(X1 + · · ·+XNp

),

where Np is a geometric variable with mean 1/p, ap ∈ R+, and the {Xi} are IID copies

of X, independent of Np. The following result, which is an extension of the well-known

properties of stability of multivariate Laplace distributions with respect to geometric

summation (see, e.g., [27], Theorem 6.10.2, p. 259 ), provides more details regarding

this.

Theorem 2.5. Let X ∼ MGALk,n(M,Σ,Ψ, α) where α = 1. If either M = 0 or one

of Σ, Ψ is 0, then the distribution of X is MGS and (2.18) holds for each p ∈ (0, 1),

with either ap =
√
p (if M = 0) or ap = p (if Σ = 0 or Ψ = 0).

Proof. The proof is straightforward. □
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3. Matrix scale mixtures of matrix normal distributions

The random matrix models obtained in the previous section have one structural de-

ficiency. Namely, their matrix form is simply obtained by rearrangement of vector vari-

ables. This is because the matrix valued normal variables are such and scaling them

by a random value does not impose any truly advanced matrix structure. The model

discussed in this section is intrinsically matrix variate, i.e. it cannot be simply explained

by its vectorization. As seen in what follows, it is just opposite, i.e. analyzing its purely

matrix variate character makes all the properties easy to understand.

Consider a model analogous to (2.1) but with a matrix scaling, where the univariate

random variable W in (2.1) is replaced by a symmetric random matrix Γ ∈ S+n , leading
to a k × n random matrix X with the stochastic representation

(3.1) X
d
= ΓA+ Γ1/2ZΣ1/2,

where Z ∼ MN k,n(0, Ik ⊗ In), A is a k × n matrix skewness parameter, and Σ ∈ S+n is

a matrix scale parameter. As in the case of univariate scaling, the basic characteristics

of this random matrix can be established through simple conditioning as well.

Let us start with the ChF. Clearly, since Γ and Z in (3.1) are independently dis-

tributed, we have

(3.2) X|Γ ∼ MN k,n (ΓA,Γ⊗Σ) ,

so that, by (2.3) and standard properties of the trace operator, we have

φX|Γ(T) = etr

{
ιAT⊤Γ− 1

2
TΣT⊤Γ

}
.

Taking the expectation of the above expression with respect to the distribution of Γ leads

the unconditional ChF of X, which can be expressed in terms of the LT of Γ and the

ChF of a certain exponentially tilted version of the distribution of Γ, in analogy with

(2.8) - (2.9). The details are given in the result below, which can be proven by simple

algebra.

Theorem 3.1. Let X be given by (3.1), where Z ∼ MN k,n(0, Ik ⊗ In) and Γ > 0 is a

random square matrix with law VΓ, independent of Z. Then the ChF of X is of the form

(3.3) φX(T) = ψΓ

(
1

2
TΣT⊤

)
φΓT

(AT⊤),

where ψΓ(·) is the LT of Γ and φΓT
(·) is the ChF of an exponentially tilted version of

Γ, whose law VΓT
is given by

(3.4) VΓT
(dY) =

etr
{
− 1

2TΣT⊤Y
}

ψΓ

(
1
2TΣT⊤

) VΓ(dY).

Proof. The proof is straightforward. □

Similar arguments involving the PDFs lead to the result below, which is an analog of

Theorem 2.2 for matrix scaling.
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Theorem 3.2. If the distribution of X in (3.1) is non-singular, then its PDF is of the

form

(3.5) fX(X) =
etr{XΣ−1A⊤}
(2π)kn/2|Σ|k/2

E
(
|Γ|−n/2etr

{
−1

2

(
AΣ−1A⊤Γ+XΣ−1X⊤Γ−1

)})
.

Proof. The result follows by standard conditioning arguments and properties of the trace

operator. □

Let us also account for the mean and the variance of this distribution.

Theorem 3.3. If the relevant moments exist, then the mean matrix and the covariance

of X in (3.1) are given by E(X) = E(Γ)A and

(3.6) Var(X) = (A⊤ ⊗ Ik)Var(Γ)(A⊗ Ik) +Σ⊗ E(Γ),

respectively.

Proof. Since E(Z) = 0 and Γ and Z are independent, we have

E(X) = E(ΓA+ Γ1/2ZΣ1/2) = E(Γ)A+ E(Γ1/2)E(Z)Σ1/2 = E(Γ)A,

as desired. Next, by law of iterated variance formula, we have

(3.7) Var(X) = Var(vec(X)) = Var[E(vec(X)|Γ)] + E[Var(vec(X)|Γ)].

By (3.2), given Γ the random vector vec(X) has a multivariate normal distribution on

Rkn with mean vector vec(ΓA) and covariance matrix Σ⊗ Γ, leading to

E(vec(X)|Γ) = vec(ΓA) and Var(vec(X)|Γ) = Σ⊗ Γ.

Thus, in view of (3.7), we have

(3.8) Var(X) = Var[vec(ΓA)] + E[Σ⊗ Γ] = Var[vec(ΓA)] +Σ⊗ E(Γ).

To conclude the proof, note that by the algebraic property vec(ABC) =
(
C⊤ ⊗A

)
vec (B),

we have that

vec(ΓA) = vec(IkΓA) = (A⊤ ⊗ Ik)vec(Γ),

so that

Var[vec(ΓA)] = Var[(A⊤ ⊗ Ik)vec(Γ)] = (A⊤ ⊗ Ik)Var[vec(Γ)](A⊤ ⊗ Ik)
⊤.

Since Var[vec(Γ)] = Var(Γ) and (A⊤ ⊗ Ik)
⊤ = A⊗ Ik, we obtain (3.6). □

It is clear from the form of the ChF of X in (3.3) that in the symmetric case (where

A = 0) the distribution of X is infinitely divisible (ID) whenever that of the random

scaling matrix Γ is. Infinitely divisible Gaussian covariance mixture models in the same

spirit, with the random scaling (and not necessarily squared) matrix on the right-hand-

side of the Z in (3.1) rather than on the left side, were studied in [5], where they were

termed MatG random matrices, in analogy with Type G random variables and vectors

defined in similar manner (see the references in [5]). On the other hand, upon close

examination of the relevant PDF in (3.5), it is also clear that a a convenient choice of Γ

in this set-up is one where the PDF of the latter is compatible with the expression under

the expectation in (3.5). A rather obvious choice here is a matrix variate generalized
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inverse Gaussian (MGIG) distribution, denoted by MGIGk(λ,Ψ,Θ) and given by the

PDF

(3.9) f(Γ) =
2kλ|Ψ|−λ

Bλ

(
1
4ΘΨ

) |Γ|λ−(k+1)/2etr

{
−1

2

(
ΨΓ−1 +ΘΓ

)}
,

where Ψ and Θ are k × k symmetric non-negative definite matrices, λ ∈ R, and Bλ(·)
is the type-2 Bessel function of Herz of matrix argument (see [25]). Indeed, the PDF of

this matrix variate analog of the univariate GIG distribution (2.16) has exactly the same

functional form as the expression under the expectation in (3.5), which aids in evaluation

of its expectation. In analogy with its univariate and multivariate analogs, matrix variate

distributions that arise in this scheme with MGIG random scaling matrices were termed

matrix variate generalized hyperbolic distributions in [35], who considered the distribution

of X⊤ with MGIG distributed scaling matrix Γ in (3.1) and an additional matrix location

parameter. A symmetric version of this distribution (with A = 0) was also studied in

[23]. These papers also briefly considered the special cases of MGIG where either Ψ = 0

or Θ = 0, corresponding to matrix variate gamma and inverse matrix variate gamma

distributions, respectively. While the latter special case has received a considerable

attention in the literature, as it generates a matrix variate analog of t distribution in

this scheme (see, e.g., [2], [6], [12], [20], [23], [26], [36]), the former, leading to a matrix

variate version of the classical Laplace distribution, has not been studied much. Below

we fill this gap and provide its important distributional properties. In the section below,

we first recall the classical matrix variate gamma distribution (see, e.g, [21]), which is

needed in this construction.

3.1. Matrix variate gamma distribution. A k × k positive definite random matrix

X has the classical matrix variate gamma (MG) distribution with shape parameter α >

(k − 1)/2 and scale matrix parameter D ∈ S+k , denoted by MGk(α,D), if its PDF is of

the form

f(X) =
1

Γk(α)|D|α
|X|α−(k+1)/2etr{−D−1X}, X > 0,(3.10)

where

Γk(α) = πk(k−1)/4
k∏

i=1

Γ

(
α− i− 1

2

)
is the generalized gamma function (see [21, Chapter 3.6]). The LT of X ∼ MGk(α,D)

is of the form

(3.11) ψX(T) = E
(
etr{−T⊤X}

)
= |Ik +TD|−α,

where T is a k × k symmetric matrix such that Ik + TD is of the full rank, while the

ChF of X ∼ MGk(α,D) is given by

(3.12) φX(T) = E
(
etr{ιT⊤X}

)
=

∣∣∣∣Ik − 1

2
ι(T+T⊤)D

∣∣∣∣−α

,
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where T is an arbitrary k × k real matrix. In addition, as shown in [28], the mean and

the variance of X ∼ MGk(α,D) are given by

(3.13) E(X) = αD, Var(X) = Var[vec(X)] =
α

2
(D⊗D) (Ik2 +Kk),

where the k2×k2 commutation matrixKk consisting of k×k-blocks Sij is defined through

its entries,

(3.14) Sij;rs =

1; i = s, j = r,

0; otherwise.

Remark 3.1. If D = Ik we get the standard matrix variate gamma case, denoted by

MGk(α), which is also a special case λ = α, Ψ = 0, and Θ = 2Ik of MGIG distribution

(3.9). In this case, we have E(X) = αIk and Var(X) = (α/2)(Ik2 +Kk). If k = 1, we

obtain standard gamma distribution (2.12).

Remark 3.2. The condition α > (k − 1)/2 guarantees that the PDF is properly defined

and integrates to one over the cone S+k . The case where α ≤ (k − 1)/2 is complicated as

X follows singular matrix variate gamma distribution or singular Wishart distribution

(see, for example, [8, 9, 7, 28]).

3.2. Type II matrix variate generalized Laplace distributions. In analogy with

Type I matrix variate GAL distributions discussed in Section 2.1, we now define the

Type II version of this distribution, which arises as a covariance mixture of Gaussian

random matrix in (3.1) were the scale matrix Γ has a standard matrix variate gamma

distribution.

Definition 3.1. A random k×n matrix X is said to have MAL distribution with shape

parameter α > (k− 1)/2, k× n matrix skewness parameter A, and k× k matrix scaling

parameter Σ ∈ S+n , denoted by MALk,n(α;A,Σ), if X admits the stochastic represen-

tation (3.1) with Γ ∼ MGk(α) independent of Z ∼ MN k,n(0, Ik ⊗ In). The distribution

of X⊤ is referred to as the MAL⊤ distribution, denoted by MAL⊤
n,k(α;A,Σ).

Basic properties of this distribution can be obtained by standard conditioning argu-

ments via (3.2). The result below provides the relevant ChF, obtained by specializing

the general result given in Theorem 3.1 to the MAL case.

Theorem 3.4. The ChF of X ∼ MALk,n(α;A,Σ) is given by

(3.15) φX(T) =

∣∣∣∣Ik − ι

2
(AT⊤ +TA⊤) +

1

2
TΣT⊤

∣∣∣∣−α

,

where T is an arbitrary k × n matrix.

Proof. When we specialize the result in Theorem 3.1 to the MAL case, where the PDF

and the LT of Γ are given by (3.10) and (3.11) with D = Ik, respectively, after some

algebra we arrive at

(3.16)

φX(T) =

∫
Γ>0

etr
{
ι(AT⊤)⊤Γ

} 1

Γk(α)
|Γ|α−(k+1)/2etr

{
−
(
Ik +

1

2
TΣT⊤

)
Γ

}
dΓ.
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Upon setting D−1 = Ik + 1
2TΣT⊤, the above can be written as

(3.17) φX(T) = |D|α
∫
Γ>0

etr
{
ι(AT⊤)⊤Γ

} |D|−α

Γk(α)
|Γ|α−(k+1)/2etr

{
−D−1Γ

}
dΓ.

The integral above can be recognized as the ChF of MG distribution MGk(α,D) evalu-

ated at AT⊤, which, according to (3.12) with D = Ik, is equal to |Ik − ι(1/2)(AT⊤ +

TA⊤)D|−α. Therefore, according to (3.17) where the order of the multiplication is re-

versed, we can conclude that

(3.18) φX(T) = |Ik−ι(1/2)(AT⊤+TA⊤)D|−α|D|α = |D−1−ι(1/2)(AT⊤+TA⊤)|−α,

which produces the result since D−1 = Ik + 1
2TΣT⊤. The theorem is proved. □

Our next result provides the PDF of the MAL distribution, which easily follows from

the general result in Theorem 3.2.

Theorem 3.5. Let X ∼ MALk,n(α;A,Σ), where α > (k− 1)/2 and Σ ∈ S+n . Then the

PDF of X is given by

(3.19)

f(X) =

∣∣XΣ−1X⊤
∣∣α−n/2

etr
{
XΣ−1A⊤}

2αkπkn/2Γk(α)|Σ|k/2
×Bα−n/2

(
1

4

(
2Ik +AΣ−1A⊤)XΣ−1X⊤

)
,

where Bα−n/2(·) stands for the Bessel function of matrix argument of the second kind as

in [25].

Proof. Theorem 3.2 specialized to the MAL case, where Γ in (3.1) has the standard

MGk(α) distribution, immediately leads to

f(X) =
1

(2π)kn/2Γk(α)|Σ|k/2
etr
{
XΣ−1A⊤}

×
∫
Γ>0

|Γ|λ−(k+1)/2
etr

{
−1

2

[(
2Ik +AΣ−1A⊤)Γ+ Γ−1XΣ−1X⊤]} dΓ

with λ = α− n/2. By denoting Ψ = XΣ−1X⊤ and Θ = 2Ik +AΣ−1A⊤, we can write

the above integral as∫
Γ>0

|Γ|λ−(k+1)/2
etr

{
−1

2

(
ΨΓ−1 +ΘΓ

)}
dΓ,

and relate it to the MGIGk(λ,Ψ,Θ) PDF (3.9), leading to∫
Γ>0

|Γ|λ−(k+1)/2
etr

{
−1

2

(
ΨΓ−1 +ΘΓ

)}
dΓ = 2−kλ|Ψ|λBλ

(
1

4
ΘΨ

)
.

When we combine the above steps, followed by simple algebra, we obtain the result. □

Remark 3.3. We note that in the symmetric case (where A is a matrix of zeros) the above

formulas for the ChF and the PDF of matrix GAL distribution reduce to those given in

[23], who studied this symmetric case (which was termed matrix variate variance gamma)

along with another special case of matrix GIG scaling, involving the inverse matrix

variate gamma distribution and leading to (symmetric) matrix variate t distribution (see

eq. (3.8)-(3.9) in [23]). [Due to notational differences, to see the equivalence one should

replace the quantities λ, n, p, and Θ in these equations by α, k, n, and 2Ik, respectively,
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and for the PDF use the relation Bλ(Z) = B−λ(Z)|Z|−λ that appears on p. 1470 in [23].]

It was shown in [23] that these two matrix variate distributions provide an example of a

matrix variate dual pair, in the sense that the ChF of one has the same functional form

as the PDF of the other.

Remark 3.4. Let us note that if k = 1, so that the matrix variate gamma distribution

reduces to a univariate standard gamma variable given by the PDF (2.12), the matrix

variate MAL turns into a (row) vector of size n with multivariate GAL distribution

studied in [27] and [30], and we recover the ChF and the PDF of the GAL distribution

(see eq. (3) and (4) in [30]). In fact, this is where the two versions of the matrix variate

generalized Laplace distributions coincide. Note that in the GAL PDF we have the

modified Bessel function of the third kind with index λ (of scalar argument), denoted

by Kλ(·), instead of the Bessel function of matrix argument Bλ(·), due to the relation

Kλ(z) = (1/2)Bλ

(
z2/4

)
(z/2)λ. In the symmetric (and elliptically contoured) case with

k = 1 and A = 0 the PDF of the 1× n MAL random vector becomes:

(3.20) f(X) =
21−α

(√
2XΣ−1X⊤

)α−n/2

πn/2Γ(α)|Σ|1/2
×Kα−n/2

(√
2XΣ−1X⊤

)
.

If we also have n = 1, then we recover the univariate GAL distribution studied in [27],

which for α = 1 coincides with the classical Laplace distribution.

Remark 3.5. As we have seen above, there is a strong connection between matrix variate

MAL distributions and matrix variate gamma distributions through the stochastic rep-

resentation (3.1), where X ∼ MALk,n(α;A,Σ) and Γ ∼ MGk(α, Ik). However, these

distributions are also connected in a different way, as the matrix variate MAL distribu-

tion arises as the distribution of the off diagonal blocks of a random MG matrix. Indeed,

let Γ ∼ MGk(α,D), and consider a partition of Γ and its dispersion matrix D ∈ S+k into

the blocks

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
and D =

(
D11 D12

D21 D22

)
(3.21)

with dim(Γ11) = dim(D11) = r × r, r = 1, . . . , k − 1. Then, it is well-known that Γ11 ∼
MGr(α,D11) and, conditionally on Γ11, the distribution of Γ12 is matrix variate normal,

Γ12|Γ11 ∼ MN r,k−r

(
Γ11D

−1
11 D12,Γ11 ⊗ 1

2D22·1
)
, where D22·1 = D22 −D21D

−1
11 D12 is

the Schur complement of D11 (see, e.g., Proposition 2.2 in [28]). Therefore, the random

matrix Γ12 has the stochastic representation given by the right-hand-side in (3.1), where

A = D−1
11 D12, Σ = 1

2D22·1, Z ∼ MN r,k−r (0, Ir ⊗ Ik−r), and Γ is replaced by Γ11.

Thus, if D = Ik, we will have Γ12 ∼ MAL(α;0, (1/2)Ik−r).

Remark 3.6. Let us note that an alternative matrix variate analog of multivariate gener-

alized asymmetric Laplace distribution was briefly treated in [34]. That model, termed

matrix gamma-normal distribution, was also defined via (3.1) with A = 0 and Σ = In,

but another matrix variate analog of gamma distribution was used for a random scale

matrix Γ, defined through the ChF to ensure its infinite divisibility (which is lacking

in the case of the classical matrix variate distribution used here). However, the lack of
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convenient expression for the PDF connected with that model is a disadvantage, which

may limit its practical utility.

It should be noted that scale mixtures of matrix variate normal distributions can be

defined in two ways, by mixing either one of the two covariance matrices Σ and Ψ of Z ∼
MN k,n(0,Σ ⊗Ψ). While the resulting distributions are related through the operation

of transposition, both schemes generally lead to different probability distributions. For

example, the matrix variate variance gamma model considered in [35], obtained as a

special case of matrix GIG scaling of normal random matrices, is connected with mixing

the covariance matrix Ψ of the normal matrix rather than the matrix Σ, as done here.

Consequently, care is needed when translating the properties across the two models.

However, in case of standard distributions with A = 0, these two mixing schemes lead

to one and the same distribution, as shown below.

Theorem 3.6. Let Z ∼ MN k,n(0, Ik ⊗ In), Γk ∼ MGk(α), and Γn ∼ MGn(α), where

α > (max{k, n} − 1)/2, be mutually independent. Then, we have the following equality

in distribution:

(3.22) Γ
1/2
k Z

d
= ZΓ1/2

n .

Proof. The result can be easily established via the ChF of the variables on each side in

(3.22). Indeed, since Γ
1/2
k Z ∼ MALk,n(α; Ik, In), Theorem 3.4 shows that the ChF of

Γ
1/2
k Z is given by

(3.23) φ1(T) =

∣∣∣∣Ik +
1

2
TT⊤

∣∣∣∣−α

.

On the other hand, since (ZΓ1/2
n )⊤ ∼ MALn,k(α; In, Ik), another application of Theorem

3.4 shows that the ChF of (ZΓ1/2
n )⊤ is given by

(3.24) φ2(T) =

∣∣∣∣In +
1

2
TT⊤

∣∣∣∣−α

.

Consequently, the ChF of ZΓ1/2
n , denoted by φ3(·), will be

(3.25) φ3(T) = φ2(T
⊤) =

∣∣∣∣In +
1

2
T⊤T

∣∣∣∣−α

.

Since the ChFs in (3.23) and (3.25) coincide by Sylvester’s determinant theorem (see, for

example, Corollary 18.1.2 in [24]), we obtain the result. □

Remark 3.7. The above result is related to the fact that the probability distributions of

the variables on each side in (3.22) are spherical, which means invariance with respect

to linear orthogonal transformations. Indeed, if in the notation of the above theorem

we have X
d
= ZΓ1/2

n , then conditionally on Γn we have that X ∼ MN k,n(0, Ik ⊗ Γn).

Since for any deterministic orthogonal matrix P we have PX ∼ MN k,n(0,PIkP
⊤⊗Γn)

and PIkP
⊤ = Ik, the conditional distributions of PX and X coincide. Thus, their un-

conditional distributions must be the same as well. This shows that X is left-spherical.

Similar argument shows that X is also right-spherical. This is because given Γn, XP is

MN k,n(0, Ik ⊗P⊤ΓnP). However, by orthogonality of P, the distribution of P⊤ΓnP is
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the same as that of Γ, which can be established by comparing their ChFs (a matrix with

this property is said to be rotatable in [11]). This shows that the unconditional distribu-

tions of XP and X coincide. Since X is both, left and right spherical, its distribution is

spherical. Thus, if k = n, we would have that X
d
= X⊤ (see Theorem 1 in [11]), leading

to the result in Theorem 3.6 for square matrices. An extension to the general case follows

by standard arguments (see [11] for more details).

Below we consider several further properties of MAL distributions. The following

result concerning the mean and the variance of MAL random matrix is a simple conse-

quence of Theorem 3.3 and the relevant properties of matrix variate gamma distribution,

see also equation (3.13), the definition of the commutation matrix Kk given in (3.14),

and the remark following it.

Corollary 3.1. If X ∼ MALk,n(α;A,Σ) then E(X) = αA and

Var(X) =
α

2

{
A⊤A⊗ Ik +Kn,k(A⊗A⊤)

}
+ αΣ⊗ Ik,(3.26)

where the nk × nk commutation matrix Kn,k is a n × k matrix of k × n-blocks Sij ,

i = 1, . . . , n, j = 1, . . . , k defined through their entries as in (3.14).

Proof. First, notice that (A⊤ ⊗ Ik)(A ⊗ Ik) = A⊤A ⊗ Ik, which holds because of the

general relation

(3.27) (A⊗B)(C⊗D) = AC⊗BD.

This, combined with Theorem 3.3 and the expressions for the mean and the variance of

Γ ∼ MGk(α) given in (3.13), produce

Var(X) =
α

2

{
A⊤A⊗ Ik + (A⊤ ⊗ Ik)Kk(A⊗ Ik)

}
+ αΣ⊗ Ik.

Next, apply the relation

(C⊗D)Kr,k = Ks,n(D⊗C)

which is valid for any s× r matrix C and n× k matrix D (see Theorem 16.3.2 on p. 337

in [24]), along with (3.27), to obtain

(A⊤ ⊗ Ik)Kk(A⊗ Ik) = Kn,k(Ik ⊗A⊤)(A⊗ Ik) = Kn,k(A⊗A⊤).

□

The result below shows that the class of MALk,n(α;A,Σ) distributions with fixed A

and Σ is closed under convolutions.

Corollary 3.2. Let Xi ∼ MALk,n(αi;A,Σ), where i = {1, . . . ,m}, be mutually inde-

pendent, with min{α1, . . . , αm} > (k − 1)/2. Then,

X1 + · · ·+Xm ∼ MALk,n(α;A,Σ),

where α = α1 + · · ·+ αm.

Proof. This is a simple consequence of the formula for the MAL ChF given in Theorem

3.4. □
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Our next result shows yet another distributional connection between the matrix variate

generalized Laplace and gamma distributions. The result below concerns the distribution

of a symmetrized version of X ∼ MALk,k(α;0, Ik), Y
d
= X +X⊤, so that the ChFs of

X and Y are related as

(3.28) φY(T) = E(etr{ιT⊤Y}) = E(etr{ι[T⊤ +T]X}) = φX(T⊤ +T),

where T is an arbitrary square matrix.

Proposition 1. If X ∼ MALk,k(α;0, Ik) then we have the stochastic representation

(3.29) X+X⊤ d
= Γ1 − Γ2,

where the {Γi} are IID with MGk(α,
√
2Ik) distributions.

Proof. By Theorem 3.4 and (3.28), the ChF of Y = X +X⊤ evaluated at an arbitrary

k × k matrix T is given by

(3.30) φY(T) =

∣∣∣∣Ik +
1

2
(T+T⊤)(T+T⊤)

∣∣∣∣−α

.

At the same time, in view of (3.12), the ChF of Γ1−Γ2 evaluated at the same T is given

by

(3.31) φΓ1−Γ2(T) =

∣∣∣∣Ik − 1

2
ι(T+T⊤)

√
2Ik

∣∣∣∣−α ∣∣∣∣Ik +
1

2
ι(T+T⊤)

√
2Ik

∣∣∣∣−α

,

which, after routine algebra, turns into the right-hand-side of (3.30). This proves the

result. □

Remark 3.8. When we take k = 1 in Proposition 1, so that all the matrix variate

distributions turn into univariate distributions, the distributional equality in (3.29) turns

into

(3.32) X
d
=

1√
2
(G1 −G2) ,

where X has a symmetric GAL distribution with the ChF φX(t) = (1 − t2/2)−α and

the {Gi} are IID standard gamma variables with the PDF (2.12). While in the one

dimensional case an analog of (3.32) holds for asymmetric GAL distributions as well (sse

Proposition 4.1.3 in [27]), no such extension appears to be true in the matrix variate

asymmetric generalized Laplace case. It is also worth mentioning that the property

in (3.32) is a generalization of the classical result for the Laplace random variable X

(corresponding to α = 1 in this setting), recently discussed in [14] (see also [29]).

Our next result shows that all linear combinations of the components of MAL distri-

bution are jointly MAL distributed as well (under scaling the MAL random matrix on

the right-hand side).

Corollary 3.3. Let X ∼ MALk,n(α;A,Σ) with α > (k − 1)/2, and let L be a n × q

non-singular matrix of constants such that rank(L) = q ≤ n. Then, we have

XL ∼ MALk,q (α;AL,ΣL) ,

where ΣL = L⊤ΣL.
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Proof. By the assumption and in view of the stochastic representation (3.1) of X, we

have

(3.33) XL
d
= ΓAL+ Γ1/2ZΣ1/2L.

This shows that, conditionally on Γ, we have Γ1/2ZΣ1/2|Γ ∼ MN k,n (0,Γ⊗Σ), so

that by well-known properties of matrix variate normal distributions (see, e.g., Theorem

2.3.10 in [21]), we also have Γ1/2ZΣ1/2L|Γ ∼ MN k,q

(
0,Γ⊗ L⊤ΣL

)
. Since this leads

to the conclusion that XL|Γ ∼ MN k,q (ΓAL,Γ⊗ΣL), the result follows. □

In the special case where the L in Corollary 3.3 is of the form L⊤ = [Iq 0], where 0

is a q× n− q matrix of zeros, we obtain the distribution of the k× q random matrix X1

that appears in the partition X = [X1 X2] of X ∼ MALk,n(α;A,Σ).

Corollary 3.4. Let X ∼ MALk,n(α;A,Σ) with α > (k − 1)/2, and let X = [X1 X2]

and A = [A1 A2], where X1 and A1 are k × q sub-matrices of X and A, respectively.

Then

X1 ∼ MALk,q(α;A1,Σ11),

where the matrix Σ11 is defined in (3.34).

Proof. In the context of Corollary 3.3, take L to be an n×q matrix such that L⊤ = [Iq 0],

where 0 is a q × n − q matrix of zeros, and note that XL = X1, AL = A1, and

ΣL = Σ11. □

Remark 3.9. The results in Corollaries 3.3 and 3.4 where discussed in Sections 3.3 and

3.4 in [35] in the context of matrix variate generalized hyperbolic distributions. Note

that their formulations is somewhat different due to different definitions of scaling by the

covariance matrix (in our definition the scaling random matrix is on the left-hand-side

of Z, while in [35] it was placed on the right-hand-side of Z).

Finally, we consider the distributions of its diagonal blocks in case where a MAL

random matrix X is a k × k square matrix and both, X and Σ, are partitioned as

X =

[
X11 X12

X21 X22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,(3.34)

where X11 and Σ11 are q× q matrices with 1 ≤ q ≤ k− 1. The result below provides the

details.

Corollary 3.5. Let X ∼ MALk,k(α;0,Σ) where k ≥ 2. Then

X11 ∼ MALq,q(α;0,Σ11),

X22 ∼ MALk−q,k−q(α;0,Σ22),

where X11, X22, Σ11 and Σ22 are defined in (3.34).



18 TOMASZ J. KOZUBOWSKI, STEPAN MAZUR, AND KRZYSZTOF PODGÓRSKI

Proof. The result can be proven by showing that the ChFs of X11 and X22 have the

structure given in Theorem 3.4. Indeed, observe that the ChF of X11 evaluated at an

arbitrary q × q square matrix T11 is the same as the ChF of X evaluated at

T =

[
T11 0

0 0

]
.(3.35)

Upon substitution of this T into the ChF (3.15) of X ∼ MALk,k(α;0,Σ), followed by

straightforward algebra, we arrive at

φX(T) =

∣∣∣∣∣Ik +
1

2

[
T11Σ11T

⊤
11 0

0 0

]∣∣∣∣∣
−α

.

However, we have∣∣∣∣∣Ik +
1

2

[
T11Σ11T

⊤
11 0

0 0

]∣∣∣∣∣ =
∣∣∣∣∣
[
Iq +

1
2T11Σ11T

⊤
11 0

0 Ik−q

]∣∣∣∣∣ =
∣∣∣∣Iq + 1

2
T11Σ11T

⊤
11

∣∣∣∣ .
Thus, the ChF of X11 is of the form

φX11
(T11) =

∣∣∣∣Iq + 1

2
T11Σ11T

⊤
11

∣∣∣∣−α

,

so that, in view of Theorem 3.4, we conclude that X11 ∼ MALq,q(α;0,Σ11), as desired.

The proof of the result for X22 is similar. □

4. Vector-valued MAL distributions

Below we provide a few further properties and examples related to vector-valued

MGAL and MAL distributions, which shed light on the inter-relations between these

two classes of multivariate distributions. We consider the case where these correspond

to column vectors of size k × 1.

4.1. Type I. In case of Type I, the ChF of X ∼ MGALk,1(A,Σ, 1, α), where A is a

k × 1 deterministic vector and Ψ is taken to be a 1× 1 matrix (taken to be 1), is of the

form

(4.1) φX(t) =

(
1− ιt⊤A+

1

2
t⊤Σt

)−α

, t ∈ Rk.

This distribution coincides with the multivariate generalized asymmetric Laplace (GAL)

distribution, denoted by GALk(A,Σ, α) in the notation of [27]. The mean vector and

the covariance matrix of such X ∼ GALk(A,Σ, α) are given by

(4.2) E(X) = αA, Var(X) = α
(
AA⊤ +Σ

)
.

In particular, the components of X are uncorrelated (but not independent) if A = 0 and

Σ = σ2Ik for some σ2 > 0. Basic properties of this distribution can be found in [27].
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4.2. Type II. For Type II MAL random matrix of size k×1 the scaling matrixΣ reduces

to a scalar, which we shall denote by σ2. Such a random vector X ∼ MALk,1(α;A, σ
2)

has the stochastic representation

(4.3) X
d
= ΓA+ σΓ1/2Z,

where A is as before, Γ ∼ MGk(α) with α > (k − 1)/2, and Z is a k × 1 column vector

with IID standard normal components, independent of Γ. The ChF of this X is of the

form

(4.4) φX(t) =

∣∣∣∣Ik − ι

2
(tA⊤ +At⊤) +

σ2

2
tt⊤
∣∣∣∣−α

, t ∈ Rk.

Remark 4.1. We note a curious similarity between the above ChF and the one for the

Type I random vector in the special case where the scale matrix Σ in (4.1) is an identity

matrix multiplied by σ2, so that (4.1) takes on the form

(4.5) φX(t) =

∣∣∣∣I1 − ι

2
(t⊤A+A⊤t) +

σ2

2
t⊤t

∣∣∣∣−α

, t ∈ Rk.

[Note that we used a determinant in (4.5), as the expression inside is a scalar.] The only

difference between (4.4) and (4.5) is the positioning of the transposition operator.

We now consider the mean vector and the covariance matrix ofX ∼ MALk,1(α;A, σ
2).

By Corollary 3.1, we have E(X) = αA, which coincides with the mean of Type I matrix

variate Laplace considered above. The same result shows that the variance of X is given

by (3.26) where now A⊤A is a scalar and Σ = σ2, so that the variance of X in (3.26)

becomes

(4.6) Var(X) =
α

2

{
A⊤AIk +K1,k(A⊗A⊤)

}
+ ασ2Ik.

By standard properties of the Kronecker product and commuting operator (see, e.g.,

Corollary 16.3.3 in [24]), we have K1,k(A⊗A⊤) = A⊤A, so that

(4.7) Var(X) =
α

2

{
A⊤AIk +AA⊤}+ ασ2Ik.

4.3. Further notes and examples. Based on the discussion above, it appears that

the two types of MAL distributions have different covariance structures. We illustrate

the effect on the distributions through an example involving three random vectors of

size k = 2, X1, X2, X3, corresponding to Type I MGAL2,1(A, σ
2I2, 1, α), Type II

MAL2,1(α;A, σ
2), and Type I MGAL2,1(A,Σ, 1, α), respectively. Here, the scale ma-

trix Σ of X3 is chosen so that the mean and the covariance of the last two distributions

are matched,

(4.8) Σ =
1

2
A⊥ (A⊥)⊤ + σ2I2 =

1

2

(
a22 + 2σ2 −a1a2
−a1a2 a21 + 2σ2

)
,

where A = (a1 a2)
⊤ and A⊥ = (−a2 a1)⊤. Note that this is a genuine covariance matrix,

as for any x = (x1 x2)
⊤ we have

x⊤Σx =
1

2
(a1x2 − a2x1)

2 + σ2(x21 + x22) ≥ 0.
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Figure 1. Contour plots of bivariate MGAL and MAL distributions

of X1 and X2 in Example 4.1 (top) estimated from 10000 simulated

pairs (bottom). Left Panels: the MGAL distribution, constructed via

standard univariate gamma scaling with α = 1, A = (1 1)⊤, and Σ =

I2. Right Panels: the MAL distribution, constructed via matrix variate

gamma scaling with α = 1, A = (1 1)⊤, and σ2 = 1. The diamond in

the bottom figures marks the mean vector. Its location relative to the

mode illustrates skewness of the distributions.

Example 4.1. We consider a special case where α = σ = 1 and A = (1 1)⊤, which

yields

(4.9) Σ =
1

2

(
3 −1

−1 3

)
.

The three distributions have the same mean vector of (1 1)⊤ and the following covariance

matrices:

Var(X1) =

(
2 1

1 2

)
, Var(X2) = Var(X3) =

(
2.5 0.5

0.5 2.5

)
.

The sample estimate of the densities from these variables based on 10000 simulated

values and the simulated values are shown in Figure 1. The figure only shows the distri-
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butions of X1 and X2, as the distributions of X2 and X3 are actually the same. Indeed,

straightforward algebra, based on (4.1) and (4.4), shows that

φX2
(t1, t2) = φX3

(t1, t2) =

(
1− ι(t1 + t2)−

t1t2
2

+ 3
t21 + t22

4

)−α

.

This observation leads us to further questions concerning the relation between the two

classes of distributions, discussed in the next section.

5. Are MAL distributions also MGAL?

The MAL distributions appear to be more complex than the MGAL since they are

obtained by mean-variance matrix-gamma mixtures of the normal matrices, while the

MGAL are ‘only’ scalar-gamma mixtures. However, Example 4.1 suggests that this

intuition may be wrong, as it shows that at least some of the MAL distributions are also

MGAL. We demonstrate that all k × 1 MAL distributions are actually MGAL.

First, we observe that in the symmetric case where A = 0, for any dimension k ∈ N
we have MALk,1(α;A, σ

2) = MGALk,1(A, σ
2Ik, 1, α).

This is because, by Corollary 18.1.3 in [24], the corresponding ChFs coincide

(5.1)

∣∣∣∣I1 + σ2

2
t⊤t

∣∣∣∣−α

=

∣∣∣∣Ik +
σ2

2
tt⊤
∣∣∣∣−α

, t ∈ Rk.

It is quite remarkable that either matrix or scalar random scaling of a random vector

with IID standard normal components both lead to one and the same distribution. More

precisely, we have the following stochastic identity

(5.2) W 1/2Z
d
= Γ1/2Z,

where W has standard (univariate) gamma distribution with shape parameter α, Γ ∼
MGk(α) with α > (k − 1)/2, and Z is a k × 1 column vector with IID standard normal

components, independent of Γ andW . It follows from this relation that the MAL random

vector on the right-hand-side in (5.2) is infinitely divisible (since the left-hand-side is),

even though the distribution of the random gamma matrix Γ is not infinitely divisible.

Remark 5.1. A question arises whether the relation in (5.2) may be true if Γ1/2 is re-

placed by another k × k random matrix such Y that YY⊤ = Γ. In one particular case

where α = k/2 the answer is affirmative. Indeed, consider Y = X/
√
2, where X is a

k×k random matrix with IID standard normal components. Then, the productXX⊤ has

Wishart distribution with k/2 degrees of freedom, which is the same as MGk(k/2, 2Ik)

distribution, showing that YY⊤ ∼ MGk(α). Then, the relationW
1/2Z

d
= YZ, or, equiv-

alently, (2W )1/2Z
d
= XZ holds by Corollary 1 in [32], since (2W )1/2Z ∼ GALk(0, 2Ik, α).

It is even more remarkable that for any, not necessarily symmetric MAL random

vector, we can find a corresponding MGAL random vector with the same mean and the

covariance matrix, and the two actually have the same probability distribution! In other

words, in the vector-valued case (n = 1) the class of Type II matrix variate generalized

Laplace distributions is a subset of the class of Type I matrix variate generalized Laplace

distributions, as shown in the result below.
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Before we state the result, let us note that in order for X1 ∼ MALk,1(α;A1, σ
2) and

X2 ∼ MGALk,1(A2,Σ, 1, α) to have the same means and covariance matrices, we must

have A1 = A2 and

(5.3) Σ =
1

2

{
A⊤AIk −AA⊤}+ σ2Ik,

where A = A1 = A2. In the special case k = 2, the above matrix reduces to that

given by (4.8), and just like the latter it is always non-negative definite (and positive

definite whenever σ2 > 0), so that it is a valid covariance matrix. To see this, note

that, by the matrix determinant lemma, the characteristic polynomial of the matrix

C = A⊤AIk −AA⊤ is given by

|λIk −A⊤AIk +AA⊤| =
(
λ−A⊤A

)k (
1 +

A⊤A

λ−A⊤A

)
= (λ−A⊤A)k−1λ,

so that C is singular with one-dimensional kernel and the remaining eigenvalues are

non-negative (positive unless A = 0), and all equal to A⊤A.

Theorem 5.1. Let X ∼ MALk,1(α;A, σ
2) with A = (a1 . . . ak)

⊤, α > (k−1)/2, σ2 ≥ 0,

and the ChF given by (4.4). Then, we also have X ∼ MGALk,1(A,Σ, 1, α) with Σ given

by (5.3).

Observe in view of the forms of the ChFs of the Type I and Type II distributions,

the above theorem is equivalent to the algebraic identity stated in the lemma below,

which is of independent interest. Indeed, by taking a = −Aι/2, b = t, and s = σ2

in the result below, the identity in (5.4) is equivalent to the equality of the ChFs of

X ∼ MALk,1(α;A, σ
2) and X ∼ MGALk,1(A,Σ, 1, α) evaluated at t ∈ Rk.

Lemma 5.1. For each a,b ∈ Ck, s ∈ C, we have

(5.4) |Ik + ab⊤ + ba⊤ + sbb⊤| =
(
1 + b⊤a

)2
+ b⊤b

(
s− a⊤a

)
.

Proof. Since the functions of (a,b) on both sides of (5.4) are continuous it is enough to

show the identity for 1 + a⊤b ̸= 0.

An application of Lemma 1.1 of [13] and Corollary 18.1.3 of [24] produce∣∣Ik + ab⊤ + ba⊤ + sbb⊤∣∣ =
(
1 + b⊤(Ik + ba⊤)−1(a+ sb)

) ∣∣Ik + ba⊤
∣∣

=
(
1 + b⊤(Ik + ba⊤)−1(a+ sb)

) (
1 + b⊤a

)
.

Applying the Sherman–Morrison formula (see Corollary 18.2.10 of [24]), we obtain

(Ir + ba⊤)−1 = Ir −
ba⊤

1 + a⊤b
.

By putting the above together we obtain the result. □

Next, we demonstrate that the identity in the above lemma is equivalent to a seemingly

stronger one.
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Corollary 5.1. For s, t, v ∈ C we have

(5.5)
∣∣Ir + vaa⊤ + t

(
ab⊤ + ba⊤

)
+ sbb⊤∣∣ =

= 1 + va⊤a + 2tb⊤a+
(
t2 − vs

) ((
bTa

)2 − a⊤ab⊤b
)
+ sbTb.

Proof. To see that the above is implied by (5.4), we first substitute inthe latter ua for a,

where u ∈ C, leading to∣∣Ir + uab⊤ + ba⊤ + sbb⊤∣∣ = (1 + ub⊤a
)2

+ b⊤b
(
s− u2a⊤a

)
.

Then, we substitute a+b for b in the above expression, so that the left-hand-side becomes

∣∣Ir + u
(
2aa⊤ + ab⊤ + ba⊤

)
+ s

(
aa⊤ + ab⊤ + ba⊤ + bb⊤)∣∣ =

=
∣∣Ir + (2u+ s)aa⊤ + (u+ s)

(
ab⊤ + ba⊤

)
+ sbb⊤∣∣ .

The same substitution in the right-hand-side yields

1+(2u+ s)a⊤a+2(u+s)b⊤a+u2
(
a⊤a+ b⊤a

)2
+sb⊤b−u2a⊤a

(
a⊤a+ 2a⊤b+ b⊤b

)
= 1 + (2u+ s)a⊤a+ 2(u+ s)b⊤a+ u2

(
a⊤a

)2
+ 2u2a⊤ab⊤a+ u2

(
b⊤a

)2
+ sb⊤b−

− u2
(
a⊤a

)2 − 2u2a⊤ab⊤a− u2a⊤ab⊤b =

= 1 + (2u+ s)a⊤a+ 2(u+ s)b⊤a+ u2
(
b⊤a

)2
+ sb⊤b− u2a⊤ab⊤b.

Then 5.5 follows by first replacing a by a/(u + s), ṽ = (2u + s)/(u + s)2, then a by ta

and v = ṽ/t2. □

Remark 5.2. It should be noted that there are MGAL distributions that are not MAL,

so these two classes of distributions do not coincide. This is because of the special

structure of the covariance matrix Σ in (5.3). We can further infer from the above result

which MGAL distributions are MAL and which ones are not. For example, if k = 2 and

X ∼ MGAL2,1(A,Σ, 1, α) is also MAL, where Σ = (σij), then by (4.8) we must have

that X ∼ MAL2,1(α;A, σ
2) and

(5.6) Σ =

(
σ11 σ12

σ12 σ22

)
=

1

2

(
a22 + 2σ2 −a1a2
−a1a2 a21 + 2σ2

)
.

This shows that the entries of the vector A = (a1 a2)
⊤ and the matrix Σ = (σij) must

satisfy the following relations:

(5.7) σ11 =
1

2
a22 + σ2, σ22 =

1

2
a21 + σ2, σ12 = −1

2
a1a2.

Careful analysis of the equations in (5.7) shows that if the matrix Σ = (σij) is diagonal,

then we must have either a1 = a2 = 0 (for σ11 = σ22), a1 = 0 and a2 = ±
√
2(σ11 − σ22)

(for σ11 > σ22), or a2 = 0 and a1 = ±
√

2(σ22 − σ11) (for σ22 > σ11). In all these cases

we also have σ2 = min(σ11, σ22). On the other hand, if σ12 ̸= 0, then the equations in
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(5.7) produce

a21 = σ22 − σ11 +
√
(σ11 − σ22)2 + 4σ12

a22 = σ11 − σ22 +
√
(σ11 − σ22)2 + 4σ12

σ2 =
1

2

{
σ11 + σ22 −

√
(σ11 − σ22)2 + 4σ12

}
.

The signs of a1 and a2 are determined from the last equation in (5.7): if σ12 < 0 then a1

and a2 must have the same sign and their signs must be opposite if σ12 > 0. See Figure 1

for an example of the graphical illustration of such a distribution.

We conclude with a few additional comments and open questions. First, let us note

that all Type I MGAL distributions are infinitely divisible (ID), since their ChFs (2.14)

are valid for any positive α. However, it is unclear if this property is shared by Type

II distributions, since their ChF (3.15) has been defined only for α > (k − 1)/2. It is

unclear whether the expression in (3.15) is a genuine ChF for all α ∈ (0, (k− 1)/2]. Our

results show that this is the case when n = 1, k ∈ N, and arbitrary A. In both cases

the vector-valued MAL distributions are ID. However, the ID of general Type II matrix

valued generalized Laplace distributions is an important open problem. The relation

between the two classes of distributions in the general case of k×n matrices where n > 1

is, at the moment, a completely open question as well.

6. Summary

We considered extensions of the GAL distribution to the matrix variate case, which

arise by mixing matrix variate normal distribution with respect to one of its covariance

matrix parameters. When the distribution of the latter has to do with one-dimensional

scaling of the original normal covariance matrix, and the univariate random scaling factor

is gamma distributed, we obtain what we call Type I matrix variate GAL distribution.

On the other hand, Type II matrix variate GAL is obtained by mixing the normal covari-

ance with respect to matrix variate gamma distribution. While Type I matrix variate

GAL distribution has been studied before (see [39]), there is no comprehensive account

of Type II in the literature, except for their rather brief treatment as a special case of

matrix variate generalized hyperbolic distributions, studied in [35] and [23]. With this

work we filled this gap, and provided an account for basic distributional properties of

Type II matrix variate GAL distributions. In particular, we derived their probability

density function and the characteristic function, and provided stochastic representations

related to matrix variate gamma distribution. We also showed that this distribution is

closed under linear transformations, and studied the relevant marginal distributions. In

addition, we also briefly accouned for Type I and discussed the interconnections with

Type II. We hope that this work will be useful in the areas where matrix variate distri-

butions provide an appropriate probabilistic tool for three-way data sets, which can arise

in a variety of ways across different applications.
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