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Abstract

In this paper, we propose the test for the location of the tangency portfolio on
the set of feasible portfolios when both the population and the sample covariance
matrices of asset returns are singular. We derive the exact distribution of the test
statistic under both the null and alternative hypotheses. Furthermore, we establish
the high-dimensional asymptotic distribution of that test statistic when both the
portfolio dimension and the sample size increase to infinity. We complement our
theoretical findings by comparing the high-dimensional asymptotic test with an
exact finite sample test in the numerical study. A good performance of the obtained
results is documented.

Keywords: Tangency portfolio, Hypothesis testing, Singular Wishart distribution, Singu-
lar covariance matrix, Moore-Penrose inverse, High-dimensional asymptotics.

1 Introduction

Modern portfolio theory, which was introduced by Harry Max Markowitz in the 1950s, has
been a fundamental concept in investment theory. It aims to find an investment portfolio
that considers the investor’s beliefs regarding risk and return. The optimal portfolio,
known as the tangency portfolio (TP), determines how an investor should allocate their
wealth between risk-free asset and risky assets. TP plays a crucial role in the financial
literature as it is the only portfolio that maximizes the Sharpe ratio and is often used as
the market portfolio in the capital asset pricing model. Therefore, a perfect understanding
of its properties under all real conditions is of great importance for any financial actor.
When constructing a portfolio, investors typically rely on data estimation rather than
specifying all parameters explicitly, introducing estimation uncertainty into the allocation
process. Quantifying this uncertainty is crucial for investors, as their expectations may
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not align with the actual performance of the portfolio. Moreover, communicating these
uncertainties to stakeholders and adhering to regulatory frameworks is easier with analytic
results.

Modern portfolio theory, introduced by Markowitz (1952), marked an early milestone
in the formalization of the asset allocation decision-making process. Over the following
decades, researchers have continued to advance this theory, enhancing methods for port-
folio assessment and management. The extensive body of literature on modern portfolio
theory has extensively investigated the ramifications of estimation uncertainty in a gen-
eral context. Notable studies include the works of Okhrin and Schmid (2006), Bai et al.
(2009), Ledoit and Wolf (2017), and Li et al. (2022), among many others. Research on
the topic of the TP can be traced back to the late 1970s, with contributions from Win-
kler (1973), Klein and Bawa (1976), and Jorion (1986) conducting Bayesian analyses of
the TP. Jobson and Korkie (1980) provided approximations for the mean and variance
of estimated TP weights, while Britten-Jones (1999) derived a statistical test for these
weights. Okhrin and Schmid (2006) furthered this line of inquiry by deriving the asymp-
totic distribution for portfolio weights. Subsequently, Kan and Zhou (2007) characterized
the moments of TP weights assuming normally distributed returns. Bodnar and Okhrin
(2011) developed statistical tests for the composite hypothesis of TP weights, while Kotsi-
uba and Mazur (2016) approximated the density using Taylor expansion. Palczewski and
Palczewski (2014) investigated sampling distributions from the perspective of the mean
squared error loss function. Bauder et al. (2018) used a Bayesian approach to examine the
characteristics of TP weights.1 Muhinyuza et al. (2020) and Muhinyuza (2020) derived a
statistical test for the TP in small and large dimensions to determine the efficiency of a
portfolio. Karlsson et al. (2021) delivered the high-dimensional asymptotic distribution of
the estimated TP weights and developed an asymptotic test for linear combinations of the
elements of the TP. Analytical expressions for the higher-order moments of the estimated
TP weights are obtained by Javed et al. (2021), while Bodnar et al. (2022a) investigated
the distribution of weights for a wide range of portfolios, including the normalized TP
weights, in both small and large dimensions. More recently, Javed et al. (2023) studied
the distributional properties of the estimated TP weights in small and large dimensions
assuming that the asset returns follow a matrix-variate closed skew-normal distribution.2

The above-mentioned papers focus on the case when the number of assets, n, is greater
than the portfolio size, k, and the population covariance matrix is positive definite. In
this setting, the sample covariance matrix is non-singular. However, one can face cases
when the population and/or sample covariance matrices are singular. The case of a singu-
lar population covariance matrix may arise due to the multicollinearity and correlations
of asset returns. Another source of singularity can arise in situations where the sample
size is smaller than the portfolio size, i.e., n < k + 1. This case leads to a singular sam-
ple covariance matrix. These sources of singularity have recently garnered considerable
attention in academic literature, prompting the development of diverse methodologies.

1Let us note that the posterior distribution of the TP weights is proportional to the product of a
(singular) Wishart matrix and (singular) Gaussian vector. The statistical properties of these products
in various scenarios have also been investigated by Bodnar et al. (2013, 2014, 2019a) and Yonenaga and
Suzukawa (2023).

2Bodnar et al. (2019b) delivered the asymptotic distributions for functionals of the sample covariance
matrix and mean vector in the high-dimensional regime under the assumption that the matrix of obser-
vations has a matrix-variate location mixture of normal distributions. These functionals have numerous
important applications, especially for the TP weights.
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Pappas et al. (2010), Gulliksson and Mazur (2020) and Gulliksson et al. (2023) proposed
the mathematical solutions to the mean-variance portfolio problem with a singular popu-
lation covariance matrix. Bodnar et al. (2016, 2017, 2022b) provided statistical analysis of
the mean-variance portfolio weights as well as portfolio compositions under both singular
population and sample covariance matrices. For the TP weights, Bodnar et al. (2019c)
delivered statistical inference in small and large dimensions by considering scenarios when
both the population and sample covariance matrices are singular. Lastly, Alfelt and Mazur
(2022) investigated the mean and variance of the TP weights in the case of positive definite
population covariance matrix and singular sample covariance matrix.

The present paper assumes that the asset returns are independently and identically
distributed and follow multivariate Gaussian distribution with an underlying singular
covariance matrix. Furthermore, it also assumes that the number of observations is less
than the number of assets, i.e. n < k + 1. Under these settings, we contribute to the
existing literature in the following way. First, we deliver the extension of the test on the
existence of the TP on the set of feasible portfolios and provide its distribution under both
null and alternative hypotheses. Second, we give a simple and accurate approximation of
the obtained results in the high-dimensional setting.

The rest of the paper is organized as follows. In Section 2, we establish the test statistic
and its exact distribution under both null and alternative hypotheses. Section 3 focuses
on the asymptotic distribution of the test statistic in the high-dimensional asymptotic
regime. Section 4 provides the results of the numerical study. Finally, Section 5 gives
concluding remarks.

2 Exact test

Let xt = (x1t, . . . , xkt)
′ be a k-dimensional vector of returns of the risky assets at time

point t = 1, . . . , n. Throughout the paper, it is assumed that x1, . . . ,xn are independently
and identically normally distributed with mean vector µ and covariance matrix Σ. Addi-
tionally, it is assumed that Σ is singular with rank(Σ) = rn < n < k+1. Furthermore, let
w = (w1, . . . , wk)

′ be a k-dimensional vector of portfolio weights, where wi is the portion
of the wealth allocated to the i-th asset. The expected return and variance of the portfolio
are denoted by R = w′µ and V = w′Σw, respectively.

The optimal portfolios as proposed by Markowitz’s theory lie on the upper part of
the parabola in the mean-variance space. This parabola is known as the efficient frontier
(EF) and, if Σ is positive definite, is given by

(R−RGMV )
2 = s(V − VGMV ) (1)

where

RGMV =
1′
kΣ

−1µ

1′
kΣ

−11k

and VGMV =
1

1′
kΣ

−11k

(2)

are the expected return and variance of the portfolio with the smallest variance among
the efficient portfolios which is called the global minimum variance portfolio (GMVP).
Here, the symbol 1k stands for the k-dimensional vector of ones. The parameter
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Figure 1: Location of the tangency portfolio on the set of feasible portfolios in the two
cases: Figure 1(a) RGMV ≥ rf and Figure 1(b) RGMV < rf .

s = µ′Rµ with R = Σ−1 − Σ−11k1
′
kΣ

−1

1′
kΣ

−11k

(3)

stands for the slope coefficient of the parabola.
On the other hand, if Σ is singular, the EF is constructed by replacing the inverse

with the Moore-Penrose inverse. Then the EF parameters become

RGMV =
1′
kΣ

+µ

1′
kΣ

+1k

, VGMV =
1

1′
kΣ

+1k

, s = µ′Rµ (4)

with R = Σ+ − Σ+1k1
′
kΣ

+

1′
kΣ

+1k
. Let us note that a number of papers have applied the Moore-

Penrose inverse in the portfolio theory, see for example, Pappas et al. (2010), Bodnar
et al. (2016, 2019c, 2022b). We notice that the relations in (4) can only be used under
the condition that 1′

kΣ
+1k ̸= 0, which is assumed throughout the paper.

If there is a possibility to invest in a risk-free asset, one may choose to put a portion
of his/her investment into a risk-free asset, henceforth, the efficient frontier becomes a
straight line in the mean-variance space passing through the return of the risk-free asset
and tangent to the parabola in (1). This tangent point is also known as the tangency
portfolio (TP), see for example, Ingersoll (1987). The optimality/efficiency of the TP
depends crucially on the relation between the return of the GMVP, RGMV , and the return
of the risk-free asset, rf , as can be seen in Figure 1. The mean-variance efficiency of TP is
then observed when the GMVP return is greater than the return of the risk-free asset, i.e.
RGMV > rf . This can be formulated as a statistical test with the hypotheses expressed
as

H0 : RGMV ≤ rf against H1 : RGMV > rf . (5)
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The rejection of the null hypothesis suggests that the TP lies on the upper part of
the efficient frontier as shown in Figure 1(a). On the other hand, if the null hypothesis
in (5) cannot be rejected as in Figure 1(b), then the investor cannot be certain of the
optimality of the TP, and allocation into the risk-free asset could be considered as a
suitable alternative.

Muhinyuza et al. (2020) and Muhinyuza (2020) constructed the test statistic for testing
the hypotheses in (5) and derived its distribution for both finite and high-dimensional
settings assuming that n > k + 1 and positive definiteness of the population covariance
matrix, Σ. We extend those results for testing (5) in case of n < k + 1 and singular Σ
with rank(Σ) = rn < n by considering the following test statistic

T =

√
n− rn
n− 1

R̂GMV − rf√
1 + n

n−1
ŝ

√
V̂GMV

n

, (6)

where

R̂GMV =
1′
kS

+x

1′
kS

+1k

, V̂GMV =
1

1′
kS

+1k

, ŝ = x′R̂x (7)

with R̂ = S+ − S+1k1
′
kS

+

1′
kS

+1k
are the sample estimators of RGMV , VGMV and s, while

x =
1

n

n∑
i=1

xi and S =
1

n− 1

n∑
i=1

(xi − x)(xi − x)′

are the sample estimators of µ and Σ, respectively.
The following theorem provides distribution of T under both the null and alternative

hypotheses. Note that f sub-indexed by a distribution stands for the density of that
distribution.

Theorem 1. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk(µ,Σ), k > n − 1 and
rank(Σ) = rn < n. Then the density of T is given by

fT (x) =
n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

ftn−rn,δ(y)
(x)fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy (8)

where δ(y) =
√

n
1+n/(n−1)y

SGMV with SGMV =
RGMV −rf√

VGMV
which is the Sharpe ratio of the

GMVP.

Proof. The density function of the test statistic T in (6) is obtained by utilizing the

distributional properties of essential quantities R̂GMV , V̂GMV and ŝ as presented in Bodnar
et al. (2022b). In particular, we make use of the following properties

(P1) R̂GMV |ŝ ∼ N
(
RGMV , (1 +

n
n−1

ŝ)VGMV

n

)
;

(P2) n(n−rn+1)
(n−1)(rn−1)

ŝ ∼ Frn−1,n−rn+1,ns;

(P3) (n− 1)V̂GMV /VGMV ∼ χ2
n−rn ;
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(P4) V̂GMV is independent of (R̂GMV , ŝ).

Now adding and subtracting RGMV on the numerator and dividing both the numerator
and denominator by

√
VGMV of the test statistic in (6), and rearranging it, we get

T =

 R̂GMV −RGMV√
1 + n

n−1
ŝ
√

VGMV

n

+
RGMV − rf√

1 + n
n−1

ŝ
√

VGMV

n

 1√
n−1
n−rn

V̂GMV

VGMV

.

Applying properties (P1), (P3) and (P4) and using the definition of non-central t-distribution,
we obtain that

T |ŝ = y ∼ tn−rn,δ(y) with δ(y) =
RGMV − rf√

1 + n
n−1

y
√

VGMV

n

.

Applying property (P2) and computing the unconditional distribution of T , we arrive at
the statement of Theorem 1.

In Theorem 1, we can observe that the density function of the test statistic T is ex-
pressed as a one-dimensional integral of the product of two well-known univariate density
functions. This formula can be easily computed in many mathematical software such as,
for example, R and Mathematica. From the proof of Theorem 1, it can be also seen that
the test statistic T may be represented as a mixture of a non-central t-distribution with
n − rn degrees of freedom and a non-centrality parameter δ(y). Now having the density
function of T , we can derive the critical value for the test (5) at significance level α. This
result is provided in the next theorem.

Theorem 2. Under the conditions of the Theorem 1, it holds that

sup
VGMV >0,s≥0,RGMV ≤rf

GT,α,tn−rn;1−α (SGMV , s) ≤ PH0:RGMV =rf (T > tn−rn;1−α) = α,

where

GT,α,c (SGMV , s) = P (T > c) =

∫ ∞

c

fT (x)dx

and the symbol tn−rn;1−α stands for the (1 − α) quantile of the t-distribution with n − rn
degrees of freedom.

Proof. Using Theorem 1 and for a given constant c, we have that

GT,α,c (SGMV , s) = P (T > c) =

∫ ∞

c

fT (x)dx

=
n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

c

∫ ∞

0

ftn−rn,δ(y)
(x)fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dydx

=
n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

(∫ ∞

c

ftn−rn,δ(y)
(x)dx

)
fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy

=
n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

(
1− Ftn−rn,δ(y)

(c)
)
fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy,

6



where Ftn−rn,δ(y)
(·) stands for the cumulative distribution function of the non-central t-

distribution with n − rn degrees of freedom and a non-centrality parameter δ(y). Since
1− Ftn−rn,δ(y)

(c) ≤ 1− Ftn−rn,0(c) for all y ≥ 0 and RGMV < rf , we obtain that

GT,α,c (SGMV , s)

≤ n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

(
1− Ftn−rn,0(c)

)
fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy

=
(
1− Ftn−rn,0(c)

) n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy︸ ︷︷ ︸

1

= 1− Ftn−rn ,0(c) = α

with c = tn−rn;1−α. The proof of the theorem is completed.

Theorem 2 delivers us the message that the test of (5) rejects H0 in favour of H1 as
T ≥ tn−rn;1−α. We can also see that the power of the test based on the test statistic T is
given by

GT,α,tn−rn;1−α(SGMV , s) = P (T > tn−rn;1−α)

=
n(n− rn + 1)

(rn − 1)(n− 1)

∫ ∞

0

(
1− Ftn−rn,δ(y)

(tn−rn;1−α)
)
fFrn−1,n−rn+1,ns

(
n(n− rn + 1)

(rn − 1)(n− 1)
y

)
dy.

It is noted that the power function depends on µ and Σ through the quantities SGMV

and s. This fact simplifies considerably the study of the power of the test. In Figure 2,
we present the power of the test as a function of SGMV with fixed s ∈ {1, 5, 10}. We also
set n ∈ {50, 250}, rn = 0.5n and α = 5%. We can observe that the power of the test
increases as s decreases and that the suggested test rejects the null hypothesis for small
values of SGMV .

Since a statistical test and interval estimation are related, we can construct a (1− α)
one-sided confidence interval for the risk-free rate rf . Namely, if rf belongs to this interval,
a conclusion about the investment into the TP can be made. For the upper one-sided
test, this interval is expressed as

I1−α =

R̂GMV − tn−rn;1−α

√
n− 1

n− rn

√
1 +

n

n− 1
ŝ

√
V̂GMV

n
,+∞


while for the lower one-sided test, we have that

Ĭ1−α =

−∞, R̂GMV − tn−rn;α

√
n− 1

n− rn

√
1 +

n

n− 1
ŝ

√
V̂GMV

n

 .

Therefore, it leads us to the conclusion that for all rf /∈ I1−α the TP lies on the EF, while

for rf /∈ Ĭ1−α the TP lies on the lower part of the set of feasible portfolios.
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Figure 2: Power of the test statistic T as a function of SGMV for s ∈ {1, 5, 10}, n ∈
{50, 250}, rn = 0.5n and α = 5%.

3 High-dimensional asymptotics

In this section, we derive the high-dimensional asymptotic distribution of test statistic
given in (6) under both the null and alternative hypothesis. We treat the rank rn of the
population covariance matrix Σ as the actual dimension of the data-generating process.
Furthermore, we assume that rn/n → c ∈ (0, 1) as n → ∞. Let us note that we don’t
assume a relationship between the portfolio dimension k and the sample size n except for
k > n. It means that k can grow to infinity much faster than n, then one can consider,
for example, exponential growth which is of great importance in economics.

In the following theorem, we derive the high-dimensional asymptotic distribution of
the test statistic T given in (6).

Theorem 3. Let x1, . . . ,xn be i.i.d random vectors with x1 ∼ Nk (µ,Σ) , k > n− 1 and
rank(Σ) = rn < n. Let also cn := rn/n → c ∈ (0, 1) as n → ∞. Then

(a) the asymptotic distribution of T is given by

σ−1
T

T −
√
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1
s
)
 D→ N (0, 1)

where

σ2
T = 1 +

S2
GMV

2(1 + s)

(
1 +

s2 + 2s+ c

(1 + s)2

)
.

(b) under the null hypothesis it holds that T ∼ N (0, 1).
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Proof. From the proof of Theorem 1, we have that

T |ŝ = y ∼ tn−rn,δ(y)

with δ(y) =
√

n
1+n/(n−1)y

SGMV . Additionally, it holds that u = n(n−rn+1)
(n−1)(rn−1)

ŝ ∼ Frn−1,n−rn+1,ns.

Consequently, the stochastic representation of T is given by

T
d
=

√
n− rn

ξ

z0 +

√
nSGMV√

1 + rn−1
n−rn+1

u


where z0 ∼ N (0, 1), ξ ∼ χ2

n−rn and u ∼ Frn−1,n−rn+1,ns; moreover, z0, ξ and u are mutually
independently distributed. Now it holds that

T −
√
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1
s
)

=

√
n− rn

ξ

z0 +

√
nSGMV√

1 + rn−1
n−rn+1

u

−
√
n

SGMV√
1 + rn−1

n−rn+1

(
1 + n

rn−1
s
)

=

√
n− rn

ξ
z0 +

SGMV√
1 + rn−1

n−rn+1
u

√n

(√
n− rn

ξ
− 1

)
+
√
n

1−

√
1 + rn−1

n−rn+1
u√

1 + rn−1
n−rn+1

(
1 + n

rn−1
s
)

 ,

where the last expression is obtained by adding and subtracting
√
n SGMV√

1+ rn−1
n−rn+1

u
, factoring

out SGMV√
1+ rn−1

n−rn+1
u
, and rearranging. Let us note that

1−

√
1 + rn−1

n−rn+1
u√

1 + rn−1
n−rn+1

(
1 + n

rn−1
s
)

=
1√

1 + rn−1
n−rn+1

(
1 + n

rn−1
s
) rn−1

n−rn+1

(
1 + n

rn−1
s− u

)
√
1 + rn−1

n−rn+1
u+

√
1 + rn−1

n−rn+1

(
1 + n

rn−1
s
)

From the proof of Theorem 5 in Bodnar et al. (2019c) and the proof of Theorem 4 in
Bodnar et al. (2022b), we have that

ξ

n− rn
− 1

a.s.→ 0,

√
n

(
ξ

n− rn
− 1

)
D→ N

(
0,

2

1− c

)
,

and

u− 1− n

rn − 1
s

a.s.→ 0,

√
n

(
u− 1− n

rn − 1
s

)
D→ N

(
0, σ2

u

)
9



with σ2
u = 2

c

(
1 + 2 s

c

)
+ 2

1−c

(
1 + s

c

)2
, for rn/n → c ∈ (0, 1) as n → ∞. It is also well-known

that

√
n

(
z0√
n

)
D→ N (0, 1) .

Finally, putting all the above together and applying Slutsky’s lemma (see, e.g., Theorem
2.8 in Van der Vaart (2000)), we arrive at the first part of the theorem. By setting
SGMV = 0, we get the second part of the theorem under the null hypothesis. The theorem
is proved.

Having the high-dimensional asymptotic distribution of test statistic in Theorem 3,
we can easily compute the power function of that test. Therefore, it is given by

GT,α,z1−α(SGMV , s) = 1− Φ

z1−α −
√
n SGMV√

1+ rn−1
n−rn+1(1+

n
rn−1

s)

σT

 ,

where z1−α denotes the (1 − α) quantile of the standard normal distribution and Φ(·)
stands for the distribution function of the standard normal distribution.

4 Simulation study

In this section, we compare the power functions of the exact test and the high-dimensional
asymptotic test which are delivered in Theorem 1 and 3, respectively. Let us recall that
both expressions depend on the slope parameter of the efficient frontier, s, and the Sharpe
ratio of the GMVP, SGMV . In what follows, we set s to be equal to 1, i.e. s = 1. The
significance level is taken to be α = 5%. We consider several values for the sample size
such as n ∈ {50, 120, 250, 500} which approximately corresponds to the length of one year,
two years, five years, and ten years of weekly financial data.

In Figures 3-6, we present the results of the simulation study for c ∈ {0.1, 0.4, 0.7, 0.9}.
The dashed black line represents the power function of the exact test, while the power
function of the high-dimensional test is indicated by a solid black line. The power of the
asymptotic test is almost indistinguishable from the exact one. It is remarkable that the
high-dimensional asymptotic test is properly sized for all values of n and the differences
between the two tests are observable only for the case of n = 50 and c = 0.9. We also
note that for c = 0.9, the exact power coincides with the asymptotic power as the sample
size increases.

5 Conclusions

The role of the TP has become indescribable for both researcher and practitioner actors
in finance. Hence, having complete comprehension of the TP properties under possible
conditions is vital for any financial strategist. In this paper, we deal with the test on
the mean-variance efficiency of the TP when both the population and sample covariance
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Figure 3: Powers of the exact test and the high-dimensional asymptotic test as a function
of SGMV based on statistic T for c = 0.1 with s = 1 and α = 5%.
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Figure 4: Powers of the exact test and the high-dimensional asymptotic test as a function
of SGMV based on statistic T for c = 0.4 with s = 1 and α = 5%.
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Figure 5: Powers of the exact test and the high-dimensional asymptotic test as a function
of SGMV based on statistic T for c = 0.7 with s = 1 and α = 5%.
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Figure 6: Powers of the exact test and of the high-dimensional asymptotic test as a
function of SGMV based on statistic T for c = 0.9 with s = 1 and α = 5%.
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matrices are singular. Under these conditions, we deliver the finite sample test statistic
and its distribution under both the null and alternative hypotheses. We also derive the
high-dimensional asymptotic distribution of the considered test statistic under the null
hypothesis as well as for the alternative hypothesis. Through the simulation studies, we
observe a good performance of the derived theoretical results, that is, the high-dimensional
asymptotic test is properly sized for all values of n and the differences between two tests
are observable only for the case of n = 50 and c = 0.9.
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Bodnar, T., Mazur, S., and Podgórski, K. (2017). A test for the global minimum vari-
ance portfolio for small sample and singular covariance. AStA Advances in Statistical
Analysis, 101(3):253–265.
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