

WORKING PAPER 2/2023 (ECONOMICS AND STATISTICS)

Market Participants or the Random Walk – Who Forecasts Better? Evidence from Micro-Level Survey Data

Tamás Kiss, Kamil Kladivko, Oliwer Silfverberg and Pär Österholm

Market Participants or the Random Walk – Who Forecasts Better? Evidence from Micro-Level Survey Data*

Tamás Kiss# School of Business, Örebro University

Kamil Kladivko[∀] School of Business, Örebro University

Oliwer Silfverberg*
School of Business, Örebro University

Pär Österholm[◊] School of Business, Örebro University National Institute of Economic Research

Abstract

We analyse micro-level data concerning four financial variables in Sveriges Riksbank's *Prospera Survey* to evaluate the accuracy of forecasts provided by professionals active in the Swedish fixed-income market. Our results indicate that for the SEK/EUR and SEK/USD exchange rates, and the five-year government bond yield, none of the market participants that frequently participate in the survey manage to significantly outperform the random-walk forecast. For the central bank's policy rate, the market participants typically have a statistically significant higher forecast accuracy than the random-walk forecast at the three-month horizon; however, at the two- and five-year horizons, the random-walk forecast typically outperform the market participants.

JEL Classification: E47, G17

Keywords: Out-of-sample forecasts, Exchange rates, Interest rates

^{*} Financial support from Jan Wallanders och Tom Hedelius stiftelse (grant number W19-0021) is gratefully acknowledged.

[#] Örebro University, School of Business, 701 82 Örebro, Sweden e-mail: tamas.kiss@oru.se

[∀] Örebro University, School of Business, 701 82 Örebro, Sweden e-mail: <u>kamil.kladivko@oru.se</u>

^{*} Örebro University, School of Business, 701 82 Örebro, Sweden e-mail: oliwer.silfverberg@oru.se

[⋄] Corresponding author. Örebro University, School of Business, 701 82 Örebro, Sweden e-mail: <u>par.osterholm@oru.se</u>

1. Introduction

It is a stylised fact that financial variables, such as interest rates and exchange rates, are difficult to forecast. Early contributions – such as Elliott and Baier (1979) and Meese and Rogoff (1983a, 1983b) – established that it was challenging to outperform a random-walk forecast in terms of forecast precision. Since then, the random-walk forecast has been the benchmark to beat in many studies concerned with forecasting interest rates and exchange rates; see, for example, Engel *et al.* (2015), Ferraro *et al.* (2015), Ren *et al.* (2019), Kunze (2020), Pinchera-Brown and Neumann (2020) and Kladívko and Österholm (2021) for a few fairly recent contributions.

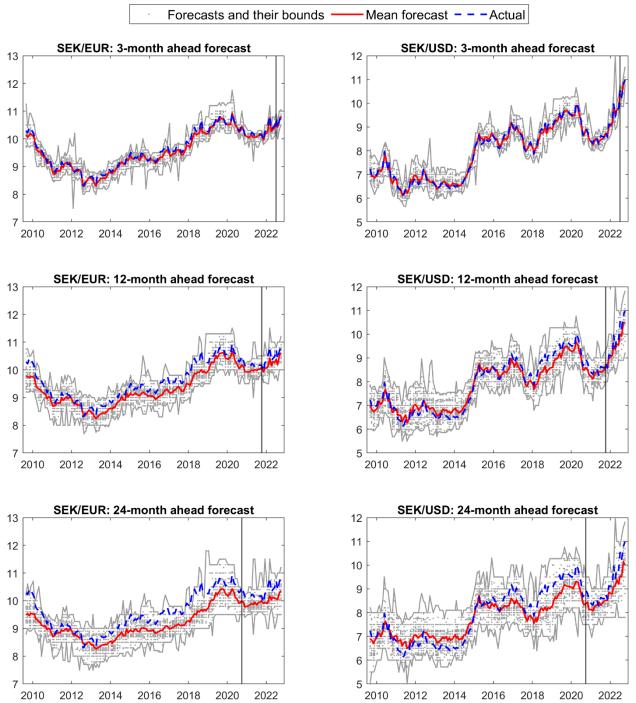
One category of forecasts that one might expect would have reasonably high forecast precision are those provided by professionals working in financial markets. The purpose of this paper is to investigate whether financial-market professionals do indeed have a high ability to forecast financial-market variables. We do this by evaluating micro-level data on forecasts concerning four financial variables in Sveriges Riksbank's *Prospera Survey*. Using these data, we can follow each respondent over time, assess the precision related to their forecasts and compare that to the precision of a random-walk forecast.

In conducting this analysis, we add empirical evidence to the literature studying survey expectations of financial variables. The overwhelming majority of this literature – see, for example, Mitchell and Pearce (2007), Baghestani et al. (2015), Ince and Molodtsova (2017) and Kladívko and Österholm (2021) – have, however, used data that is aggregated over individual forecasters, typically evaluating the mean of the individual forecasts. Using aggregated data means that potentially interesting heterogeneity among the respondents might be hidden. By employing micro-level data instead, we can conduct a richer analysis. For example, we can investigate whether there are respondents who systematically outperform the random-walk forecast even if the mean forecast does not. Our study can be seen as an extension of that conducted by Kladívko and Österholm (2021) on aggregated data from the *Prospera Survey*, where it should be noted that this is the first time that data from this survey are studied at the micro level. We accordingly follow a much narrower path in the literature where micro-level survey expectation data have been evaluated. Examples of such studies include MacDonald and Marsh (1994, 1996), Marsh and Power (1996), Mitchell and Pearce (2007) and Bordalo et al. (2020).

2. Data

We use monthly data on the four financial variables in Sveriges Riksbank's *Prospera Survey: i)* the SEK/USD exchange rate, *iii)* the SEK/EUR exchange rate, *iii)* the central bank's policy rate and *iv)* the five-year government bond yield. All survey data start in September 2009; this is the first time that the respondents active in the Swedish fixed-income market – in the survey denoted *money-market players* – got to answer the survey on a

monthly frequency.¹ The last survey data to be evaluated vary depending on the forecast horizon. For the exchange rates, forecasts are made for three different horizons: 3, 12 and 24 months. For the central bank's policy rate and the five-year government bond yield, the expectations are in addition recorded for the 60-month horizon. The last survey data to be evaluated are accordingly July 2022 for the 3-month horizon, October 2021 for the 12-month horizon, October 2020 for the 24-month horizon and October 2017 for the 60-month horizon.


Individual forecasts of the exchange rates at the 3-, 12- and 24-month horizons for all money-market players who participated in the survey are shown in Figure 1. Forecasts for the five-year government bond yield and the central bank's policy rate at the 3-, 12-, 24- and 60-months horizons are presented in Figure 2. The forecasts for each respondent are shown as grey dots. The minimum and maximum values are shown by solid grey lines and the mean forecast is given by a solid red line. To put these forecasts into a context, the actual value for the variables is also provided; this is given by the dashed blue line.

Looking at Figures 1 and 2, we can observe that forecasts – not surprisingly – become more dispersed with an increasing forecast horizon. It is also worth noting that respondents on average have expected the Swedish krona to appreciate relative to the euro at the 24-month horizon during most of the sample; the trend in the SEK/EUR exchange rate has typically been the opposite though. In a similar manner, it is evident that respondents on average tend to have predicted an increase in the two interest rates; for a non-negligible part of the sample, this did not materialise.

_

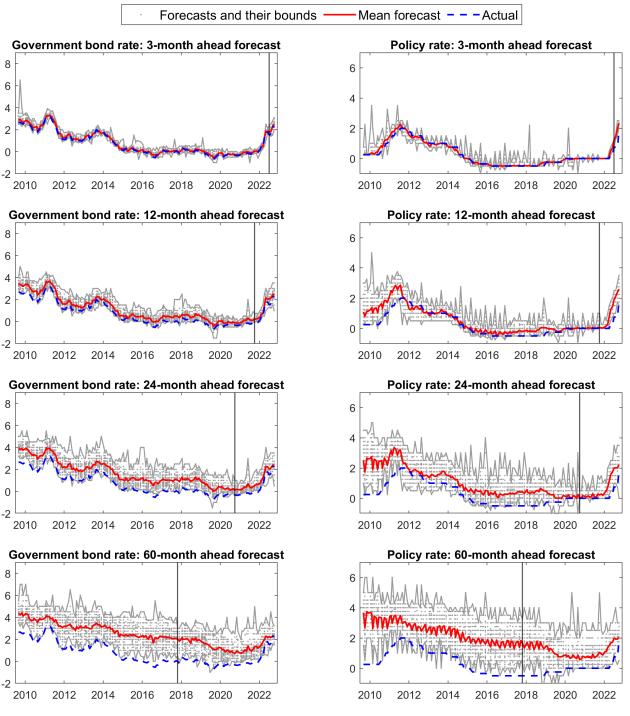

¹ The survey began in 1995 and was then conducted purely on a quarterly frequency. There are five categories of respondents in the survey: money-market players, employee organisations, employer organisations, manufacturing companies and trade companies. Since September 2009, the survey is monthly for money-market players. The other respondents – who do not answer the questions regarding financial variables – still participate in the survey on a quarterly frequency.

Figure 1. Forecasts of the SEK/EUR and SEK/USD exchange rates for each money-market player.

Note: "Actual" shows variable value at the dates when forecasts were made. Black vertical line indicates the last forecast that has been evaluated.

Figure 2. Forecasts of the five-year government bond yield and policy rate for each money-market player.

Note: Percent on vertical axes for both variables. "Actual" shows variable value at the dates when forecasts were made. Black vertical line indicates the last forecast that has been evaluated.

3. Empirical analysis

In order to evaluate the forecast precision of the money-market players, we denote the forecasts as $\hat{y}_{t+h|t}^x$ for each respondent x that participated in the survey at time t, where h is the forecast horizon in months, $h \in \{3,12,24\}$ for the SEK/EUR and SEK/USD exchange rates and $h \in \{3,12,24,60\}$ for the five-year government bond yield and the central bank's policy rate.

The forecast precision is assessed based on the root mean squared forecast error (RMSE). For a given variable, horizon h and money-market player x, the RMSE is given by

$$RMSE_h^x = \sqrt{\frac{1}{N_h^x} \sum_{t \in S_h^x} \left(e_{t+h|t}^x\right)^2}, \tag{1}$$

where $e_{t+h|t}^x = y_{t+h} - \hat{y}_{t+h|t}^x$ is the forecast error, S_h^x denotes the set of survey rounds when money-market player x has made an h-month ahead forecast and N_h^x denotes the number of these forecasts. The set S_h^x is a subset of all forecast rounds evaluated, since no respondent has participated in all survey rounds (see the values of N_h^x in Tables 1 to 4).

The precision of each money-market player's forecast is compared to the precision of a random-walk forecast on the corresponding set S_h^x . The random-walk forecast is given as $\hat{y}_{t+h|t}^{RW} = y_t$, where y_t is the value of the variables in question observed on the close of the business day when the survey was conducted. The RMSE of the random-walk forecast is calculated by using equation (1), with the random-walk forecast error given by $e_{t+h|t}^{RW} = y_{t+h} - y_t$. We also evaluate forecast precision of a mean forecast. The mean forecast at time t is calculated as a simple arithmetic mean over all respondents' forecasts at that point in time. The RMSEs of the mean forecast and its random-walk counterpart is calculated according to equation (1); for this analysis, all forecast rounds are evaluated.

In order to facilitate easy comparisons between the survey forecasts and the random-walk forecast, the relative RMSE (RRMSE) is used. This measure is defined as the ratio of the RMSE of a respondent's forecast and the corresponding random-walk forecast, so that values smaller than unity indicate that the RMSE of the survey data is lower than that of the random-walk forecast.

The RMSEs and RRMSEs for each respondent and horizon are presented in Tables 1 to 4. The tables are organized to show respondents who participated at least 70 percent of the times that the survey was conducted in section A, and respondents who participated between 30 percent and 70 percent of the times in section B. We argue that less weight should be given to the results in section B since they are more likely to be influenced by randomness – that is, a low (high) relative RMSE might be due to being lucky (unlucky) rather than reflecting

forecasting skills. Results for respondents that participated less than 30 percent of the time are not reported at all.² The tables are sorted from lowest to highest relative RMSE in each section.

In the tables, we also present results from the Diebold-Mariano test (Diebold and Mariano, 1995) which has been performed to assess if differences in RMSEs between the survey data and the random-walk forecast are statistically significant. The test statistics have been calculated using Newey-West standard errors (Newey and West, 1987) to account for serial correlation (and heteroskedasticity). A sufficiently negative test statistic indicates that the survey respondent significantly outperforms the random walk; large positive values indicate the opposite.

Turning first to the SEK/EUR exchange rate, it can be seen from section A of Table 1 that none of the individual relative RMSEs is less than one for any of the three horizons. The fact that no respondent has managed to outperform the random walk points to a widespread inability to forecast this exchange rate. In line with relative RMSEs larger than one, all Diebold-Mariano test-statistics are positive; most of them are also significant for the 12- and 24-month horizons, indicating that the random-walk forecast systematically outperforms most survey respondents. For participants that forecasted between 30 and 70 percent of the time – shown in section B – there are three relative RMSEs smaller than one; in these cases, the survey respondents' RMSEs are between 5 and 17 percent lower than those of the random-walk. However, none of them are found to be significantly lower according to the Diebold-Mariano test.

The results for the SEK/USD exchange rate – shown in Table 2 – are qualitatively similar to those for the SEK/EUR exchange rate but with a slightly better performance of the survey respondents. Looking at section A of the table, over all three forecast horizons, a relative RMSE less than one can only be found in seven cases, but none of these is statistically significant. (The largest improvement relative to the random walk is a modest four percent – that is, the relative RMSE is 0.96). However, it is not uncommon that the random walk significantly outperforms the money-market players. Turning to section B of Table 2, there are quite a few respondents that have a relative RMSE lower than one, particularly at the 12- and 24-month horizons, and three of these cases – all at the 24-month horizon – are also statistically significant. As was pointed out above though, these results tend to be based on substantially fewer observations than the results in section A and should accordingly be interpreted with a bit more caution. And we again find that at all horizons, the majority of the relative RMSEs are larger than one.

Concerning the five-year government bond yield in Table 3, it can be noted that there is only one entry in the entire table where the relative RMSE is less than unity (and the difference is insignificant according to the

² Using only a subset of respondents – which are judged to have provided a "sufficient" number of answers – is in line with previous work, such as MacDonald and Marsh (1994), Mitchell and Pearce (2007) and Fritsche *et al.* (2014).

Diebold-Mariano test). Instead, we reject the null hypothesis of equal predictive ability in favour of the random-walk forecast for the majority of respondents at the 3- and 12-month horizon and for all respondents at the two longest horizons. Looking at the time series in Figure 2 suggests that the underperformance of the money-market players is at least partly because they did not foresee the downward trend in the government bond yield that prevailed during the sample.

Finally, turning to the central bank's policy rate in Table 4, we find evidence in favour of the survey respondents. In fact, looking at section A of the table, it can be seen that all money-market players have a relative RMSE smaller than one at the 3-month horizon. The money-market players perform very well relative to the random walk, with improvements as big as 40 percent. In all but three of these cases the difference in forecast performance is also statistically significant according to the Diebold-Mariano test. At the 12-month horizon most respondents also have a relative RMSE less than one but despite some quite low values (with 0.75 being the lowest), none of these are found statistically significant. At the two longest horizons, it seems to be harder to beat the random-walk forecast. All relative RMSEs are larger than one, with results being significant in most cases at the 24-month horizon and in all cases at the 60-month horizon. The results in section B of the table are qualitatively very similar.

Summing up, we find that the money-market players can generate accurate forecasts for the central bank's policy rate in the short run – a result indicating that they have a fairly good understanding of how the Riksbank determines the policy rate at shorter horizons. This is perhaps not particularly surprising given that the Riksbank is one of the most transparent central banks in the world – see, for example, Dincer *et al.* (2022) – and communicates its policy deliberations in quite some detail. Overall though, our results indicate that the money-market players in the *Prospera Survey* have difficulties in outperforming the random walk for most variables and horizons.

At a general level our results echo those of Kladívko and Österholm (2021) who based their analysis on aggregated data from the *Prospera Survey* and found that the mean expectation of the money-market players only beat the random-walk forecast at the 3-month horizon for the central bank's policy rate. Similar results to ours can also be found in Mitchell and Pearce (2007) who established that the respondents in the Wall Street Journal's panel of economists largely were on par with the random-walk forecast when it came to forecasting the Treasury bill rate but that they tended to be outperformed by the random-walk forecast when forecasting the Treasury bond rate. Our findings are also in line with those of Baghestani *et al.* (2015), whose results indicate that some of the short-horizon Blue Chip forecasts of short-term interest rates outperformed the random-walk forecast; forecasts of long-term interest rates, however, did not.

Table 1. RMSEs and Relative RMSEs for the exchange rate SEK/EUR as well as results from Diebold-Mariano tests.

1 abic		nth ahead Fore		ons it	,, the C		th ahead For		исп аз	24-month ahead Forecast						
ID	RMSE	RRMSE	DM	N	ID	RMSE	RRMSE	DM	N	ID	RMSE	RRMSE	DM	N		
Mean	0.26	1.07	1.45	155	Mean	0.56	1.20	1.77°	146	Mean	0.86	1.30	2.57a	134		
mean	0.20	1.07	1.15	100						incan	0.00	1.50	2.57	131		
234	0.26	1.05	0.92	135	237	vviauais pariic 0.50	ipated at least 1.07	0.57	130	235	0.70	1.08	1.06	108		
241	0.26	1.05	0.97	125	235	0.48	1.10	1.19	118	237	0.78	1.19	1.35	118		
229	0.26	1.06	1.82°	140	209	0.56	1.16	1.15	118	248	0.79	1.21	1.73°	118		
235	0.24	1.08	1.46	126	227	0.56	1.17	1.74°	137	247	0.84	1.24	1.98 ^b	115		
244	0.27	1.08	2.10 ^b	140	248	0.56	1.18	1.38	129	241	0.85	1.25	2.53 ^b	108		
237	0.27	1.10	2.10 ^b	139	241	0.56	1.19	1.69°	120	227	0.86	1.29	2.51 ^b	126		
248	0.27	1.10	1.86°	137	247	0.57	1.19	1.69°	124	215	0.87	1.31	2.57 ^b	123		
601	0.27	1.12	2.24 ^b	109	234	0.60	1.21	1.86°	129	228	0.88	1.34	2.61 ^a	123		
227	0.28		2.24° 2.81°	146	229				132	211	0.00		3.19 ^a	99		
209	0.28	1.13 1.14	2.81° 1.67°	127	239	0.60 0.60	1.25 1.25	2.73 ^a 1.68 ^c	112	229	0.94	1.36 1.37		123		
					i					i			3.38a			
224	0.27	1.14	2.53b	126	228	0.62	1.31	2.26 ^b	140	221	0.93	1.38	3.22a	113		
228	0.28	1.15	2.10b	147	215	0.62	1.32	2.41 ^b	135	209	0.92	1.40	2.94a	105		
247	0.27	1.16	2.34 ^b	130	221	0.66	1.38	2.76a	122	224	0.91	1.41	3.21a	105		
201	0.28	1.17	2.99a	108	244	0.66	1.38	3.20a	132	234	0.97	1.44	3.19a	120		
239	0.31	1.25	2.47b	119	224	0.58	1.40	3.84a	119	239	0.96	1.48	2.94a	104		
245	0.31	1.29	3.07a	145	245	0.69	1.45	4.00a	136	244	1.04	1.56	3.75a	120		
215	0.32	1.30	3.62a	144	238	0.75	1.55	3.18a	124	217	1.06	1.57	3.64a	106		
221	0.32	1.34	3.99a	128	217	0.77	1.59	3.76a	117	245	1.07	1.59	4.56a	124		
217	0.33	1.38	3.24a	126	601	0.69	1.66	4.39a	104	238	1.19	1.75	4.51a	118		
238	0.37	1.54	4.27a	127	259	0.77	1.77	3.88^{a}	110							
259	0.46	2.01	5.35a	112												
				E	3. Individi	ials participate	ed between 30 i	and 70 % o	f the tim	es						
233	0.24	1.01	0.06	65	233	0.44	0.83	-1.01	64	208	0.66	0.95	-0.38	42		
242	0.27	1.08	0.90	70	203	0.48	0.95	-0.23	60	242	0.77	1.03	0.25	68		
232	0.26	1.09	1.13	94	246	0.54	1.03	0.23	54	233	0.70	1.05	0.32	63		
204	0.30	1.12	1.82c	80	226	0.50	1.06	0.54	72	226	0.71	1.09	0.62	64		
246	0.26	1.13	1.63	63	201	0.51	1.07	0.55	101	266	0.72	1.09	0.43	55		
203	0.27	1.14	1.23	60	266	0.56	1.07	0.34	55	203	0.69	1.11	0.55	60		
230	0.28	1.14	1.48	91	230	0.54	1.09	0.82	89	230	0.81	1.15	1.28	88		
211	0.28	1.15	1.85°	99	232	0.55	1.11	0.94	89	246	0.76	1.16	1.04	43		
226	0.27	1.16	1.64	72	202	0.53	1.13	0.84	89	252	0.86	1.17	1.53	67		
236	0.28	1.18	1.35	94	204	0.58	1.14	1.28	80	607	0.73	1.21	2.35 ^b	87		
252	0.27	1.18	0.95	67	242	0.60	1.14	0.94	70	204	0.90	1.22	1.97 ^b	80		
266	0.31	1.19	1.48	55	252	0.54	1.15	0.92	70	201	0.81	1.23	1.70°	91		
202	0.31	1.22	2.98^{a}	89	240	0.58	1.19	1.69°	92	236	0.84	1.28	1.92°	76		
218	0.32	1.23	2.37^{b}	73	607	0.48	1.23	2.24^{b}	98	232	0.88	1.29	3.10^{a}	82		
240	0.31	1.27	2.76^{a}	98	218	0.62	1.24	1.74 ^c	71	240	0.87	1.29	2.08^{b}	84		
608	0.30	1.28	3.96a	64	236	0.55	1.24	2.03^{b}	86	218	0.93	1.31	2.75^{a}	70		
207	0.33	1.29	2.77^{a}	88	211	0.60	1.28	2.17^{b}	99	202	0.88	1.37	1.92°	89		
607	0.31	1.32	2.71a	103	604	0.53	1.33	2.29^{b}	67	207	0.97	1.37	2.77^{a}	86		
604	0.29	1.34	2.23^{b}	70	207	0.73	1.44	3.36^{a}	88	205	0.96	1.43	2.24^{b}	88		
602	0.32	1.36	4.58^{a}	81	258	0.71	1.60	3.07^{a}	77	602	1.02	1.55	3.53^{a}	81		
606	0.32	1.37	2.77^{a}	79	205	0.73	1.62	2.61a	94	604	0.85	1.56	4.71a	60		
258	0.34	1.38	2.78^{a}	77	606	0.73	1.71	4.13^{a}	79	259	1.04	1.61	3.48^{a}	64		
205	0.37	1.53	3.56a	97	608	0.72	1.71	7.20^{a}	63	608	1.10	1.73	5.29a	61		
256	0.41	1.83	2.68a	73	256	0.80	1.72	3.24a	73	606	1.11	1.78	4.77a	79		
					602	0.72	1.72	4.29a	81	601	1.13	1.97	5.79^{a}	92		
										258	1.30	2.05	5.87a	42		
										256	1.47	2.14	6.48^{a}	55		
Note: T	ho gover for	Mean corresp	ands to t	ha narf	ormanca	of the moor	forecast ox	or all indiv	riduals							

Note: The row for Mean corresponds to the performance of the mean forecast over all individuals. The numbers in the ID column are identifications of money-market players as used by Prospera. Relative RMSE (RRMSE) is given as the RMSE for each respondent (or the mean forecast) divided by the RMSE of the corresponding random-walk forecast. The Diebold-Mariano test (DM) provides the test's t-statistic calculated using Newey-West standard errors. a, b and c indicate significance of a two-tailed test at 1, 5 and 10 % level, respectively. N denotes the number of forecast errors evaluated.

Table 2. RMSEs and Relative RMSEs for the exchange rate SEK/USD as well as results from Diebold-Mariano tests.

1 abic	3-month ahead Forecast 12-month ahead Forecast 24-month ahead Forecast													3.
ID	3-mon RMSE	RRMSE	DM	N	ID	RMSE	RRMSE	DM	N	ID	RMSE	RRMSE	DM	N
Mean	0.40	1.00	0.08	155	Mean	0.85	0.99	-0.19	146	Mean	1.02	0.98	-0.33	134
TTCarr	0.10	1.00	0.00	155			cipated at leasi			incan	1.02	0.70	0.55	151
245	0.39	0.97	-0.51	145	245	0.85	0.98	-0.34	136	235	1.00	0.96	-0.36	108
234	0.40	0.99	-0.25	135	227	0.86	0.99	-0.30	137	244	1.02	0.98	-0.33	120
228	0.40	1.01	0.30	147	244	0.87	1.01	0.17	132	211	1.06	0.99	-0.25	99
235	0.41	1.02	0.60	126	248	0.87	1.01	0.14	129	217	1.07	1.00	-0.01	106
227	0.42	1.03	0.66	146	241	0.91	1.02	0.53	120	229	1.08	1.00	0.04	123
229	0.43	1.03	1.12	140	237	0.89	1.03	0.41	130	245	1.08	1.01	0.17	124
244	0.42	1.03	1.08	140	229	0.90	1.05	0.91	132	224	1.14	1.02	0.21	105
224	0.44	1.04	0.89	125	235	0.90	1.06	0.79	118	239	1.12	1.05	0.93	104
201	0.46	1.07	1.13	108	239	0.89	1.06	1.13	112	248	1.09	1.06	1.16	118
241	0.42	1.07	1.92°	125	234	0.93	1.07	1.41	129	241	1.18	1.07	1.51	108
248	0.42	1.07	1.35	137	247	0.93	1.07	1.42	124	227	1.10	1.08	1.09	126
247	0.45	1.12	2.15^{b}	130	209	0.93	1.08	0.94	118	247	1.09	1.09	1.65°	115
239	0.48	1.14	1.29	119	601	1.01	1.09	0.93	104	237	1.09	1.10	0.97	118
209	0.47	1.15	2.70^{a}	126	215	0.98	1.11	1.40	135	215	1.20	1.13	1.79°	123
221	0.46	1.16	1.51	128	217	1.01	1.12	0.98	117	234	1.26	1.19	2.18^{b}	120
601	0.48	1.17	1.51	109	224	1.01	1.12	1.43	119	228	1.27	1.20	1.88c	126
217	0.49	1.18	2.51b	126	228	0.99	1.13	1.78c	140	221	1.26	1.24	1.80c	113
238	0.47	1.22	2.39b	127	221	1.01	1.19	1.81c	122	209	1.26	1.27	2.64^{a}	104
237	0.50	1.23	2.85a	139	238	1.01	1.23	2.23b	124	238	1.37	1.29	3.77a	118
215	0.52	1.28	2.69a	144	259	1.06	1.31	3.04a	109					
259	0.63	1.65	4.97a	111										
					B. Individ	uals participai	ted between 30	and 70 %	of the tin	nes				
230	0.37	1.01	0.13	91	203	0.68	0.83	-1.32	60	203	0.69	0.61	-2.58a	60
233	0.41	1.01	0.18	65	266	0.67	0.89	-1.44	55	208	1.01	0.83	-0.99	42
236	0.43	1.03	0.58	94	606	0.76	0.91	-1.06	79	606	0.99	0.83	-1.94°	79
606	0.39	1.04	0.82	79	211	0.74	0.92	-1.17	99	232	0.95	0.85	-2.35 ^b	82
218	0.44	1.05	1.05	73	230	0.75	0.93	-1.49	89	256	1.05	0.88	-1.13	54
232	0.40	1.06	1.57	94	233	0.80	0.93	-1.24	64	226	0.93	0.90	-0.64	64
242	0.42	1.06	1.15	70	232	0.76	0.94	-1.36	88	607	1.02	0.90	-1.49	87
607	0.43	1.07	1.54	103	604	0.89	0.96	-0.63	67	266	1.06	0.93	-0.89	55
211	0.40	1.09	1.61	99	226	0.86	0.99	-0.15	72	230	0.98	0.94	-0.92	88
246	0.45	1.10	1.61	63	201	0.84	1.00	0.03	101	602	1.04	0.94	-0.69	81
203	0.42	1.11	1.25	59	607	0.93	1.00	0.01	98	233	0.97	0.95	-0.43	63
240	0.47	1.12	2.11^{b}	98	218	0.91	1.02	0.48	71	201	0.97	0.98	-0.25	91
266	0.42	1.12	1.18	55	236	0.92	1.04	0.42	86	246	1.08	1.03	0.65	43
226	0.45	1.15	1.83°	72	240	0.91	1.05	0.72	92	604	1.29	1.07	1.61	60
204	0.46	1.16	2.72^{a}	80	256	0.81	1.05	0.46	73	236	1.14	1.09	0.52	76
604	0.46	1.17	1.14	70	608	0.86	1.06	0.85	63	242	1.02	1.10	0.77	68
608	0.43	1.17	4.06a	64	242	0.98	1.11	1.25	70	218	1.06	1.12	1.96°	70
205	0.47	1.19	2.42^{b}	97	202	0.95	1.14	2.00b	84	608	1.13	1.14	1.64	60
252	0.46	1.23	2.35^{b}	67	602	0.87	1.15	1.22	81	240	1.25	1.16	1.60	84
202	0.47	1.24	3.18^{a}	84	252	0.86	1.16	1.43	70	205	1.23	1.20	1.27	89
602	0.47	1.32	3.55^{a}	81	246	1.03	1.18	1.64	54	252	1.09	1.20	1.79°	66
207	0.48	1.33	2.79a	88	204	0.90	1.21	3.10a	80	202	1.19	1.22	2.43b	84
256	0.50	1.35	2.21 ^b	73	207	1.03	1.34	2.17 ^b	88	601	1.37	1.22	1.70°	92
258	0.52	1.43	3.25a	77	205	1.14	1.35	2.35 ^b	94	204	1.30	1.26	3.96a	80
					258	1.11	1.35	2.93a	77	207	1.33	1.27	2.39b	87
					1					258	1.89	1.37	3.32a	42
										259	1.35	1.50	4.16a	63
Note: T	no gover for	Mean corresp	ands to t	ho porf	ormanca	of the mea	n forecast or	ror all indi	rriduale	i				

Note: The row for Mean corresponds to the performance of the mean forecast over all individuals. The numbers in the ID column are identifications of money-market players as used by Prospera. Relative RMSE (RRMSE) is given as the RMSE for each respondent (or the mean forecast) divided by the RMSE of the corresponding random-walk forecast. The Diebold-Mariano test (DM) provides the test's t-statistic calculated using Newey-West standard errors. a, b and c indicate significance of a two-tailed test at 1, 5 and 10 % level, respectively. N denotes the number of forecast errors evaluated.

Table 3. RMSEs and relative RMSEs for the government bond rate as well as results from Diebold-Mariano tests.

1 4010		h ahead Fo		. 11111	3L3 10		h ahead Fo		Tate	as wei		h ahead Fo		60-month ahead Forecast					
ID	RMSE	RRMSE	DM	N	ID		RRMSE	DM	N	ID	RMSE	RRMSE	DM	N	ID	RMSE	RRMSE	DM	N
Mean	0.40	1.07	1.42		Mean	0.96	1.23	2.77a	146		1.63	1.68	6.08a	134	Mean	3.07	1.88	9.28a	99
											70 % of to	he times							
235	0.37	0.99	-0.28	127	235	0.80	1.10	1.41	119	235	1.32	1.45	4.05a	109	221	2.74	1.62	7.79a	90
241	0.37	1.03	0.67	125	238	0.84	1.16	3.07a	124	239	1.55	1.47	5.07a	105	227	2.69	1.65	6.89a	96
227	0.39	1.04	1.46	146	227	0.92	1.19	2.81a	137	227	1.49	1.55	4.82a	126	244	2.75	1.65	6.94a	91
244	0.39	1.04	1.81c	142	244	0.96	1.19	3.18a	133	211	1.45	1.58	4.57a	98	235	2.56	1.70	5.10^{a}	81
201	0.37	1.06	1.33	108	209	0.96	1.22	1.99 ^b	130	238	1.52	1.62	7.01a	118	238	2.76	1.70	7.40^{a}	88
229	0.40	1.07	1.53	139	239	0.95	1.22	3.04a	113	244	1.58	1.62	6.32a	121	207	3.04	1.78	5.32a	70
245	0.40	1.07	1.15	145	224	0.99	1.23	3.24^{a}	124	229	1.62	1.63	6.09^{a}	123	248	3.03	1.78	6.46a	85
238	0.36	1.08	1.67°	127	245	0.98	1.23	2.19b	136	217	1.66	1.66	4.70a	106	229	2.91	1.79	7.98^{a}	92
234	0.40	1.09	1.45	135	215	0.97	1.25	2.88^{a}	135	234	1.69	1.69	6.18^{a}	120	211	2.91	1.82	7.92^{a}	88
215	0.41	1.15	1.96°	144	229	0.96	1.27	3.35a	131	224	1.69	1.70	6.08^{a}	110	234	3.17	1.95	10.76a	90
209	0.42	1.17	1.58	135	234	1.00	1.28	2.97a	129	215	1.74	1.79	5.43a	123	230	3.25	1.96	11.91a	88
217	0.46	1.18	2.39b	124	221	1.08	1.34	3.34^{a}	124	221	1.65	1.80	6.55^{a}	115	247	3.32	2.03	6.68a	84
224	0.42	1.20	3.44a	130	247	1.00	1.34	2.55 ^b	123	247	1.72	1.84	4.59a	114	215	3.26	2.06	6.99^{a}	90
247	0.43	1.21	2.31 ^b	129	248	1.07	1.34	2.68^{a}	129	248	1.83	1.84	5.29a	118	241	3.19	2.08	8.79a	79
248	0.46	1.21	2.88^{a}	137	241	1.01	1.36	3.03a	120	228	1.91	1.93	5.59a	127	228	3.53	2.12	9.09^{a}	94
239	0.43	1.22	2.69a	120	217	1.10	1.40	2.89a	116	241	1.85	1.93	6.45a	109	245	3.74	2.27	9.14a	93
228	0.46	1.24	2.07b	147	228	1.14	1.44	3.23a	140	245	1.93	1.97	6.34a	124	237	4.30	2.63	14.12a	84
221	0.49	1.25	4.41a	131	601	1.19	1.55	3.05a	104	601	2.06	2.23	5.91a	93					
237	0.50	1.32	2.30b	139	237	1.32	1.67	3.52a	130	237	2.41	2.48	6.32a	118					
601	0.46	1.36	2.92a	109															
							3. Individuai					~							
232	0.38	1.05	1.13	92	201	0.81	1.11	1.68°	101	201	1.34	1.35	3.25a	91	205	2.28	1.48	5.58a	65
246	0.48	1.05	1.46	62	240	0.91	1.11	1.19	88	202	1.35	1.45	2.40b	61	218	2.56	1.57	3.88a	63
205	0.37	1.07	1.37	97	205	0.84	1.17	2.18 ^b	94	240	1.59	1.46	3.01a	80	249	3.12	1.57	9.91a	32
230	0.44	1.08	1.47	91	246	1.15	1.17	1.84°	53	246	1.84	1.50	2.35 ^b	42	201	2.51	1.60	5.55a	64
203	0.44	1.09	1.24	60	607	0.90	1.21	2.36b	98	205	1.30	1.51	3.51a	89	240	2.86	1.66	4.14a	66
204	0.38	1.10	1.20	71	202	0.66	1.24	1.42	67	218	1.34	1.56	3.52a	84	202	2.38	1.67	3.63a	35
240	0.42	1.13	2.00b	94	230	1.03	1.26	2.99a	89	607	1.44	1.58	4.30a	87	204	2.51	1.69	2.90a	64
218 202	0.42 0.33	1.16 1.17	1.60 1.52	87 68	204 232	0.88	1.27 1.27	2.91 ^a 3.28 ^a	71 87	204 230	1.55 1.65	1.63 1.64	3.50 ^a 7.70 ^a	70 88	239 217	2.30 3.18	1.69 1.70	4.60 ^a 6.43 ^a	41 54
242	0.35		2.03b	69	211	0.93	1.27	3.83a	98	203	1.82	1.67	5.39a	60	203		1.78	10.18a	
226	0.33	1.18 1.19	2.03° 2.37b	54	211	0.97	1.29	3.01 ^a	96 85	232	1.62	1.74	6.71a	81	233	3.17 3.21	1.78	6.56a	60 58
211	0.44	1.19	2.79 ^a	98	203	1.21	1.36	2.96a	60	266	1.89	1.79	6.29a	55	607	2.27	1.78	4.89a	55
606	0.42	1.20	2.75 ^a	79	226	1.13	1.36	2.85a	54	604	1.70	1.79	4.77a	60	263	3.81	1.79	10.70a	30
233	0.42	1.20	2.75 ^a	67	604	1.15	1.36	3.19a	67	233	1.70	1.85	5.16a	64	246	3.58	1.79	2.98a	38
207	0.43	1.25	2.79 ^a	88	266	1.16	1.39	2.92a	55	207	1.68	1.88	7.00a	87	266	3.36	1.91	9.19 ^a	49
266	0.48	1.25	1.24	55	233	1.17	1.42	3.78a	65	226	1.96	1.90	5.29a	54	226	3.33	1.92	10.99a	51
602	0.40	1.25	2.19 ^b	81	602	0.84	1.42	4.88a	81	208	2.34	1.93	7.39a	42	210	4.15	1.96	4.35a	36
236	0.45	1.31	2.12 ^b	61	207	0.99	1.44	4.15a	88	608	1.57	2.09	6.95a	63	608	2.42	2.04	3.53a	36
607	0.44	1.32	2.59a	103	236	1.16	1.48	3.63a	61	236	2.09	2.19	9.90a	61	208	3.99	2.10	24.80a	42
608	0.42	1.33	3.34a	64	606	1.03	1.48	3.41a	79	606	1.94	2.31	5.93a	79	232	3.24	2.10	7.83a	68
604	0.51	1.56	3.91a	67	608	1.00	1.58	4.87a	64	225	2.64	2.42	5.27a	45	242	3.66	2.17	4.65a	45
					225	1.51	1.66	3.47a	45	242	2.11	2.46	5.29a	69	236	3.51	2.21	13.26a	59
					242	1.20	2.06	3.27a	69	602	1.81	2.48	5.61a		225	4.04	2.30	13.37a	45
															604	3.30	2.47	15.43a	49
															602	3.49	2.48	5.59a	57
															606	3.71	2.48	8.20^{a}	65
															224	3.35	2.50	6.89^{a}	67
															601	3.78	2.81	9.86a	63

Note: The row for Mean corresponds to the performance of the mean forecast over all individuals. The numbers in the ID column are identifications of money-market players as used by Prospera. Relative RMSE (RRMSE) is given as the RMSE for each respondent (or the mean forecast) divided by the RMSE of the corresponding random-walk forecast. The Diebold-Mariano test (DM) provides the test's t-statistic calculated using Newey-West standard errors. a, b and c indicate significance of a two-tailed test at 1, 5 and 10 % level, respectively. N denotes the number of forecast errors evaluated.

Table 4. RMSEs and relative RMSEs for the central bank's policy rate as well as results from Diebold-Mariano tests.

3-month ahead Forecast 12-month ahead Forecast 24-month ahead Forecast 60-month ahead Forecast																			
ID		RRMSE	DM	N	ID		RRMSE		N	ID		RRMSE	DM	N	ID	RMSE	RRMSE		N
Mean	0.12	0.57	-2.81a		Mean	0.47	0.85	-0.89		Mean	1.15	1.42	2.83a	134		2.89	2.22	8.03a	99
Tyrearr	0.12	0.57	-2.01	133	ivican	0.47							2.03	137	ivican	2.07	2.22	0.03	
215	0.12	0.60	-2.31b	144	238	0.41	0.75	auais pari -1.23	играгеа 124	239	70 % of the 0.95	1.09	0.68	106	235	2.08	1.63	5.29a	81
229	0.12	0.60	-2.48 ^b	140	209	0.41	0.73	-1.23	135	209	0.95	1.09	1.43	100	233	2.54	1.05	6.68a	94
234	0.12	0.62	-2.46 ^a	135	237	0.47	0.84	-0.90	130	238	1.02	1.27	1.43 1.80°	118	218	2.46	1.93	4.03a	71
217	0.12	0.63	-2.05b	127	224	0.47	0.87	-0.90	124	235	0.97	1.27	1.67°	109	238	2.48	2.00	6.92a	88
237		0.63	-2.55 ^b	139	!	0.47	0.87	-0.90	129	244		1.39	2.39 ^b	124	229	2.40	2.05	7.71a	92
	0.14		-2.55° -2.45b	147	234 239			-0.65	114	221	1.14				229	2.72	2.03	6.70a	92 97
228	0.12	0.64 0.65	-2.43 ^a	137	!	0.51 0.49	0.88 0.88	-0.72	120	234	1.18	1.41	3.43 ^a 2.38 ^b	115 121	221	2.72	2.09	8.02a	90
248 224	0.13 0.13	0.66	-2.75 ^b	130	241 235	0.49	0.89	-0.73	119	224	1.20 1.12	1.45 1.47	2.56 ²	112	240	2.97	2.14	4.69a	69
201		0.67	-2.25 ^b		221	0.54	0.69	-0.57	124	229	1.12		3.38a	123	211	2.85			90
238	0.14	0.67	-2.25° -2.09b	108 129	221	0.50	0.91	-0.57	132	215	1.22	1.47	3.05a	123	248	2.85	2.16 2.21	8.16 ^a 7.59 ^a	85
	0.14				!					!		1.51			!				
209	0.14	0.69	-2.27b	140	215	0.51	0.94	-0.41	135	228	1.26	1.53	3.08a	127	228	2.89	2.22	6.18a	94
241	0.13	0.69	-2.05 ^b -2.29 ^b	125	227	0.54	0.94	-0.33	137	227	1.26	1.54	3.07a	126	234	3.00	2.31	7.85a	93
244	0.15	0.71		144	244	0.55	0.96	-0.27	136	211	1.34	1.57	3.74a	99	241	2.94	2.36	9.30a	80
239	0.15	0.73	-1.89°	121	228	0.56	0.98	-0.09	140	217	1.26	1.57	3.37a	107	230	3.19	2.41	8.67a	88
227	0.16	0.74	-2.43b	146	247	0.54	0.98	-0.14	124	241	1.33	1.59	4.02a	109	224	2.91	2.43	6.73a	70
247	0.13	0.74	-2.21b	130	217	0.57	0.99	-0.04	118	237	1.32	1.66	3.28a	118	215	3.05	2.44	5.93a	90
221	0.16	0.75	-2.06 ^b	131	259	0.47	1.05	0.21	114	247	1.30	1.67	2.77a	115	247	3.10	2.46	6.25a	85
235	0.15	0.75	-1.68°	127	248	0.64	1.10	0.52	129	248	1.52	1.81	4.41a	118	245	3.64	2.77	8.08a	92
601	0.14	0.75	-1.51	109	245	0.65	1.24	1.23	136	245	1.68	2.06	5.44a	124	237	3.77	2.90	16.10a	85
245	0.18	0.88	-0.55	145	601	0.57	1.26	1.83°	104	601	1.59	2.15	6.90a	93					
259	0.14	0.93	-0.68	113	<u> </u>					<u> </u>									
			1					1 1		:	nd 70 % o								
252	0.09	0.46	-2.50b	67	204	0.48	0.74	-1.31	71	202	0.78	0.97	-0.20	89	607	1.97	1.67	5.50a	54
233	0.15	0.58	-2.43b	67	252	0.45	0.82	-0.68	71	205	0.79	1.05	0.30	89	608	1.94	1.75	2.87a	34
202	0.13	0.60	-2.41 ^b	89	202	0.50	0.83	-0.98	89	204	1.07	1.23	1.41	71	205	2.09	1.81	4.27a	66
207	0.12	0.62	-2.73a	88	226	0.51	0.85	-0.79	72	259	0.73	1.25	0.88	81	604	2.90	1.90	12.15a	50
211	0.13	0.63	-2.32b	99	207	0.48	0.87	-0.69	88	226	1.16	1.29	1.77 ^c	64	249	3.12	1.91	4.96a	32
230	0.14	0.65	-2.28 ^b	91	233	0.61	0.87	-0.69	65	207	1.10	1.32	1.88°	88	203	2.71	1.95	12.48a	60
240	0.16	0.65	-2.12 ^b	98	254	0.61	0.87	-0.75	52	246	1.38	1.33	1.53	42	207	2.61	1.99	4.32a	68
608	0.11	0.65	-2.28 ^b	63	240	0.57	0.89	-0.54	92	604	1.17	1.33	2.87a	61	202	2.78	2.03	4.39a	63
232	0.15	0.66	-2.61a	95	201	0.44	0.90	-0.56	101	252	1.07	1.42	1.29	70	246	3.21	2.05	2.61a	37
225	0.14	0.69	-2.26 ^b	47	205	0.44	0.90	-0.67	94	254	1.35	1.42	3.08a	40	225	3.39	2.11	10.87a	47
258	0.13	0.69	-1.82c	67	211	0.57	0.94	-0.33	99	208	1.57	1.43	2.70a	42	233	3.05	2.14	8.47a	58
203	0.16	0.71	-2.51b	60	232	0.53	0.94	-0.39	90	240	1.34	1.46	2.61a	84	204	2.30	2.18	3.23a	66
607	0.11	0.71	-2.04 ^b	102	230	0.64	0.95	-0.24	89	203	1.51	1.50	3.08a	60	252	2.55	2.20	3.12a	50
204	0.15	0.72	-1.53	71	242	0.54	0.95	-0.27	71	230	1.44	1.53	3.01a	88	602	3.04	2.23	6.90a	58
266	0.15	0.72	-2.58a	55	236	0.62	1.01	0.06	86	233	1.52	1.56	3.50a	64	210	3.73	2.27	8.55a	36
218	0.14	0.73	-1.83°	95	607	0.42	1.03	0.34	97	607	1.09	1.56	4.71a	86	217	3.05	2.28	6.81a	56
254	0.15	0.74	-1.48	52	266	0.68	1.04	0.19	55	242	1.21	1.57	2.73a	69	208	3.73	2.38	15.58a	42
226	0.15	0.77	-1.69°	72	203	0.75	1.05	0.33	60	608	1.14	1.64	3.84ª	62	232	3.19	2.41	8.54a	68
205	0.15	0.84	-1.51	97	256	0.64	1.07	0.38	73	218	1.23	1.65	2.67a	92	242	3.16	2.42	4.89a	45
602	0.13	0.90	-1.09	82	258	0.64	1.09	0.38	67	256	1.40	1.68	3.62a	55	266	3.49	2.44	8.52a	49
236	0.19	0.91	-0.69	94	608	0.48	1.09	0.64	63	232	1.44	1.71	4.28a	86	263	3.59	2.46	9.03a	35
606	0.15	0.92	-0.52	79	218	0.60	1.14	0.66	93	266	1.70	1.71	3.31a	55	239	1.94	2.50	4.15a	43
256	0.20	0.95	-0.79	73	604	0.60	1.14	1.21	68	201	1.36	1.73	4.10^{a}	91	601	3.48	2.53	16.74 ^a	63
604	0.19	0.95	-0.63	71	225	0.75	1.24	1.52	47	225	1.83	1.75	3.76a	47	226	3.34	2.57	10.39a	51
242	0.19	1.04	0.34	71	606	0.64	1.37	1.18	79	258	1.30	1.77	4.64a	51	606	4.00	2.78	11.00a	65
246	0.54	2.09	0.95	62	246	0.86	1.44	1.25	53	602	1.31	1.92	5.42a	81	201	3.41	2.81	7.87a	64
					602	0.57	1.55	3.02^{a}	81	236	1.73	2.08	6.12^{a}	76	236	3.60	2.82	19.49a	59
										606	1.72	2.17	4.76a	79					

Note: The row for Mean corresponds to the performance of the mean forecast over all individuals. The numbers in the ID column are identifications of moneymarket players as used by Prospera. Relative RMSE (RRMSE) is given as the RMSE for each respondent (or the mean forecast) divided by the RMSE of the corresponding random-walk forecast. The Diebold-Mariano test (DM) provides the test's t-statistic calculated using Newey-West standard errors. a, b and c indicate significance of a two-tailed test at 1, 5 and 10 % level, respectively. N denotes the number of forecast errors evaluated.

4. Conclusions

The analysis conducted in this paper suggests a general inability of market participants to outperform the random-walk forecast for the exchange rate variables and the five-year government bond yield, where none of the money-market players that frequently participate in the survey manage to significantly outperform the random-walk forecast at any horizon. The only variable and horizon where the money-market players succeed in significantly outperforming the random walk is the central bank's policy rate at the 3-month horizon.

At a general level our results hence echo those of Kladívko and Österholm (2021) who based their analysis on aggregated data. Using micro-level data in this paper does, however, show that the inability to outperform the random-walk forecast is not only found at the aggregate level – it is clear that no respondent is forecasting well. Accordingly, the weak performance of survey-based forecasts is not a by-product of aggregation, but a feature of the underlying micro-level data. Similarly, where the money-market players succeed at an aggregate level, it also applies widely across respondents. It seems that the general conclusion from the literature concerned with forecasting interest rates and exchange rates – namely that it is difficult to consistently outperform the random walk (Rossi, 2013; Bauer, 2017) – is something that basically all money-market players in the *Prospera Survey* experience.

References

- Baghestani, H., Arzaghi, M. and Kaya, I. (2015), "On the Accuracy of Blue Chip Forecasts of Interest Rates and Country Risk Premiums", *Applied Economics* 46, 113-122
- Bauer, M. (2017), "Bridging the Gap: Forecasting Interest Rates with Macro Trends", Federal Reserve Bank of San Francisco Economic Letter, 2017-21.
- Bordalo, P., Gennaioli, N., Ma, Y., and Shleifer, A. (2020), "Overreaction in Macroeconomic Expectations", *American Economic Review*, 110, 2748-82.
- Dick, C. D., MacDonald, R. and Menkhoff, L. (2015), "Exchange Rate Forecasts and Expected Fundamentals", *Journal of International Money and Finance* 53, 235-256.
- Diebold, F. X. and Mariano, R. S. (1995), "Comparing Predictive Accuracy", *Journal of Business and Economic Statistics* 13, 253-263.
- Dincer, N., Eichengreen, B. and Geraats, P. (2022), "Trends in Montary Policy Transparency: Updated Trends", *International Journal of Central Banking* 18, 331-348.
- Elliott, J. W. and Baier, J. R. (1979), "Econometric Models and Current Interest Rates: How Well Do They Predict Future Rates?", *Journal of Finance* 34, 975-986.
- Engel, C., Mark, N. C. and West, K. D. (2015), "Factor Model Forecasts of Exchange Rates", *Econometric Reviews* 34, 32-55.
- Ferraro, D., Rogoff, K. and Rossi, B. (2015), "Can Oil Prices Forecast Exchange Rates? An Empirical Analysis of the Relationship between Commodity Prices and Exchange Rates", *Journal of International Money and Finance* 54, 116-141.

- Fritsche, U., Pierdzioch, C., Rülke, J.-C. and Stadtmann, G. (2014), "A Note on Forecasting the Euro: Do Forecasters Have an Asymmetric Loss Function?", *International Economic Journal* 28, 333-343.
- Fritsche, U., Pierdzioch, C., Rülke, J.-C. and Stadtmann, G. (2015), "Forecasting the Brazilian Real and the Mexican Peso: Asymmetric Loss, Forecast Rationality, and Forecaster Herding", *International Journal of Forecasting* 31, 130-139.
- Ince, O. and Molodtsova, T. (2017), "Rationality and Forecasting Accuracy of Exchange Rate Expectations: Evidence from Survey-Based Forecasts", *Journal of International Financial Markets, Institutions, and Money* 47, 131-151.
- Kladívko, K. and Österholm, P. (2021), "Do Market Participants' Forecasts of Financial Variables Outperform the Random-Walk Benchmark?", *Finance Research Letters* 40, 101712.
- Kunze, F. (2020), "Predicting Exchange Rates in Asia: New Insights on the Accuracy of Survey Forecasts", *Journal of Forecasting* 39, 313-333.
- MacDonald, R. and Marsh, I.W. (1994), "Combining Exchange Rate Forecasts: What is the Optimal Consensus Measure?", *Journal of Forecasting* 13, 313-332.
- MacDonald, R. and Marsh, I.W. (1996), "Currency Forecasters Are Heterogeneous: Confirmation and Consequences", *Journal of International Money and Finance* 15, 665-685.
- Marsh, I. W. and Power, D. M. (1996), "A note on the performance of foreign exchange forecasters in a portfolio framework", *Journal of International Money and Finance* 20, 605-613.
- Meese, R. A. and Rogoff, K. (1983a), "Empirical Exchange Rate Models of the Seventies. Do They Fit Out-of-Sample?", *Journal of International Economics* 14, 3-24.
- Meese, R. A. and Rogoff, K. (1983b), "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?", In: Frankel, J. A. (ed.), *Exchange Rates and International Macroeconomics*, University of Chicago Press, Chicago.
- Mitchell, K. and Pearce, D. K. (2007), "Professional Forecasts of Interest Rates and Exchange Rates: Evidence from the Wall Street Journal's Panel of Economists", *Journal of Macroeconomics* 29, 840-854.
- Pinchera-Brown, P. and Neumann, F. (2020), "Can We Beat the Random Walk? The Case of Survey-Based Exchange Rate Forecasts in Chile", *Finance Research Letters* 37, 101380.
- Pojarliev, M. and Levish, R. M. (2008), "Do Professional Currency Managers Beat the Benchmark?", Financial Analysts Journal 64, 18-32.
- Ren, Y., Wang, Q. and Zhang, X. (2019), "Short-Term Exchange Rate Predictability", Finance Research Letters 28, 148-152.
- Rossi, B. (2013), "Exchange Rate Predictability", Journal of Economic Literature 51, 1063-1119.
- Ruelke, J. C., Frenkel, M. R. and Stadtmann, G. (2010), "Expectations on the Yen/Dollar Exchange Rate Evidence from the Wall Street Journal Forecast Poll", *Journal of the Japanese and International Economies* 24, 355-368.