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Abstract The paper focuses on the option price subdiffusive model under the un-
usual behavior of the market, when the price may not be changed for some time
which is quite a common situation in the modern financial markets or during global
crises. In the model, the risk-free bond motion and classical GBM are time-changed
by an inverted inverse Gaussian (IG) subordinator. We explore the correlation struc-
ture of the subdiffusive GBM stock returns process, discuss option pricing techniques
based on the fractal Dupire equation, and demonstrate how it applies in the case of
the IG subordinator.
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1 Introduction

Nowadays, modeling the financial market dynamics using diffusion processes
has become an active research area in financial risk management, asset val-
uation, and derivatives pricing. However, the classical diffusion models like
Black-Scholes-Merton (B-S) and others based on Brownian motion (BM) have
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a normal distribution, independence of returns and are perpetually moving.
These assumptions are inconsistent with empirical properties such as heavy-
tailed and skewed marginal distributions, dependence on squared returns, and,
constant motionless periods (called also trapping events). The trapping events
can be observed, for example, during global crises that negatively affect finan-
cial activity, and some types of risky assets have periods in their dynamics
without changes. Such behavior too is typical for emerging markets with a low
number of transactions, for interest rate markets, and for commodity markets.

To overcome these difficulties one can notice, the constant periods of stag-
nation in financial processes are analogous to the trapping events of the sub-
diffusive particle, therefore, the physical models of subdiffusion (a kind of
anomalous diffusion, see [14]) can be successfully applied to describe financial
data. Subdiffusion in the different physical systems arises from some memory
effect of previous states, as a result of some fractal structure of the background
space, or due to some non-linear interactions inherent in the system, etc. To
model subdiffusion, the time structure of the stochastic process is changed,
and the time-changed process is no longer Markovian Dynamics. (Markovian
Dynamics means each new step in the motion depends only on the present
state and is independent of the previous states.)

The idea of the time-changed process was introduced by [1]. The theory of
subordinated processes is also explored in detail by [15].

The time change can be considered the replacement of calendar time in
the considered process St using some subordinator Gt (non-decreasing process
with stationary, independent increments). The inverse subordinator is used as
a new random ("hitting") time Ht, thus as a studied model we obtain SHt

. The
distributional properties, asymptotic behavior, and the simulation procedures
of the time-change process were considered for different types of subordinators
and their inverse: α-stable, exponential, gamma, Pareto, Mittag-Leffler, and
tempered distributions (see Cont and Tankov [4], Janczura et al. [8], Kumar
et al. [10], Wylomańska et al. [19], Beghin et al. [2] and other).

However, the pricing of derivatives in this framework remains a complicated
and under-researched problem. In the papers, [12, 13] applied the subdiffusive
mechanism of trapping events to describe financial data demonstrating periods
of constant values and introduced the subdiffusive geometric BM and arith-
metic BM. Magdziarz showed that the considered models are arbitrage-free but
incomplete, and obtained the corresponding subdiffusive formulas for the fair
prices of European options. The other technique for European option pricing
was proposed in Donatien and Leonenko [5]. In the PIDE the derivative in the
direction time is replaced by a Dzerbayshan–Caputo (D–C) derivative. The
theory in these papers was detailed for inverse α - stable [12, 13, 5], inverse
tempered stable [13], and inverted Poisson processes [5].

In the paper, we consider the geometric BM model in a subdiffusion regime,
time-changed by an Inverse Gaussian (IG) subordinator. We aim to show, that
the studied subdiffusive model demonstrates long-range dependence of stock
returns and discuss two different ways for option pricing. In addition, we pro-
pose a procedure for evaluating value-at-risk in the studied model. From this
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perspective, our study closes a gap that is of particular interest to investors.
The paper is organized as follows.
For introducing a subdiffusive model for the dynamics of a financial market

we assume that the market consists of at least three components: one riskless
asset Bt, one risky asset with price St, and one derivative security, usually
called call option with price Ct. The dynamics of the first two components in
the subdiffusive framework are presented in the second section. We consider the
IG process as the subordinator and the IIG process as the inverse subordinator
for subdiffusive GBM, describe their properties and features, demonstrate the
simulation for them, and for the subdiffusive GBM stock returns processes.
We explore the correlation structure of the subdiffusive GBM stock returns
process and assume that the stock returns process has long-range dependence
and it is presented in the squared returns. Finally, we mentioned the Fractional
Fokker-Planck equation (FFPE) for IG subordinator as the usual approach
for modeling sub-diffusion in physics. This equation describes the probability
density function w(t) of the sub-diffusive studied stock process and we discuss
how it can be used for risk measuring.

The next section focuses on the third component of the model and dis-
cusses two option pricing techniques. The one technique is very common for
option pricing and can be found as a discounted mathematical expectation
of the option’s payoff function. The other technique is based on the fractal
Dupire equation. Since the form of the D–C derivative depends upon the cho-
sen inverted Lévy subordinator, we demonstrate how it applies to the IG
subordinator. The fourth section contains the numerical illustration for real
financial data.

2 Subdiffusive GBM model with IG subordinator

To build the mathematical model for the dynamics of a financial market first,
we need to assume what kinds of securities evolve on the market and to describe
their dynamics. Assume that the market consists of at least one riskless asset,
usually called bond Bt, a risky asset with price St, usually called the stock,
and one derivative security, usually called call option, or put option, which will
have a certain payoff at a specified date in the future, depending on the values
taken by the stock up to that date.

The idea is to replace the calendar time t in risk-free bond motion and
classical GBM by some stochastic process Ht, which means stochastic clock,
operation time.

The time-changed risk-free bond has a value at time t equal to:

dBHt

BHt

= rdHt, B0 = 1, (1)

and the movement of the underlying risk assets St follows a subdiffusive geo-
metric Brownian motion (GBM):

dSHt

SHt

=

(
µ+

σ2

2

)
dHt + σdBHt , t > 0, (2)
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with solution
SHt

= S0e
µHt+σBHt , t > 0. (3)

In formula (3) the standard diffusive process SHt
is time-changed by some

stochastic process Ht, which is called the inverse subordinator ("hitting time").
The inverse subordinator Ht is defined as

Ht = inf (τ > 0 : Gτ ≥ t)) , (4)

and interpreted as the first time at which Gt hits the barrier t. Thus it is time
of first reaching a certain price, which may not change for some time. The
definition (4) of the inverse subordinator is based on the use of some other
random process called a subordinator Gt.

The subordinator Gt is generally a non-decreasing stochastic process with
stationary independent increments (Lévy process), taking value in R+ and
having Laplace transform in the following form:

E
(
e−uZt

)
= e−tΨ(u), (5)

where Ψ(u) is called Lévy exponent, which can be written in the following
form

Ψ(u) = bu+

∫ +∞

0

(
1− e−ux

)
ν̃(dx). (6)

Here, b ≥ 0 is the drift parameter. If for simplicity, following [8], we assume
b = 0, then ν̃(dx) is an appropriate Lévy measure.

The subordinator Gt in our framework is often called the "waiting" time.
In this paper, we consider the Inverse Gaussian process as a subordinator.

2.1 IG subordinator and its inverse
Inverse Gaussian (IG) subordinator Gt is a nondecreasing Lévy process, where
the increments Gt+s−Gs follow the inverse Gaussian distribution ϱ(δt, γ) with
probabilities density function (PDF) [4]:

g(x, t) =
δt√
2πx3

eδγt−(δ2t2/x+γ2x)/2, x > 0;

and with Lévy measure

ν̃(dx) =
δ√
2πx3

e

(
− γ2x

2

)
dx, x > 0, t > 0. (7)

For γ = δ = 1 we have standard IG distribution in the form

f(x, t) =
t√
2πx3

e

(
− (x−t)2

2x

)
, x > 0, t > 0.

If we find the Laplace transformation of IG Lévy subordinator

E
(
e−uGt

)
= e−tδ(

√
2u+γ2−γ),
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therefore, the Laplace exponent for IG process is given by

ΨIG(u) = δ(
√

2u+ γ2 − γ). (8)

The tail probability for the IG subordinator is in the form [19]:

P (Gt > x)∼
√

2

π

δt

γ2
eγδtx−3/2e−(γ2/2)x, x → ∞,

where f(x)∼g(x) as x → 0 means limx→0
f(x)
g(x) = 1. Notice, that the tail

probability decreases exponentially. Thus all moments of the G(t) process are
finite.

The qth moments for the IG process were found in paper Jørgensen [9]:

EGq(t) =

√
2

π
δ

(
δ

γ

)q−1/2

tq+1/2eδγtKq−1/2(δγt),

where Kq(ω) is the modified Bessel function of the third kind with index q.
Moreover in Jørgensen [9] was shown that if t → ∞, then

E(Gq(t))∼
(
δ

γ

)q

tq. (9)

For standard distribution, for any moment t we have E(G(t))∼t, var(G(t))∼t2.
The algorithm of the simulation of the IG process G(t) for time points

t1 = 1
n , t2 = 2

n , ..., tn = 1 was proposed in some literature (see for example
Wylomańska et al. [19], Cont and Tankov [4]). Since the process G(t) has
independent and stationary increments Fi = G(ti)−G(ti−1) = G(dt)∼ϱ(dt, 1)
for i = 1, 2, ...n and dt = 1

n , so we follow for [19] and generate n i.i.d IG
variables Fi assuming γ = δ = 1. For this, we generate a standard nor-
mal random variable N and a uniform [0, 1] random variable U . Then as-
sign X = N2 and Y = dt + X

2 − 1
2

√
4dtX +X2. According this algorithm if

U ≤ dt
dt+Y return Y ; otherwise return (dt)2

Y . After assigning G(t0) = 0 and
G(ti) =

∑i
j=1 Fj , i = 1, 2, ..., n we obtain G(t1), G(t2), ..., G(tn), which are

simulated values of the IG process at times t1, t2, ..., tn respectively. The tra-
jectory G(t) simulation for the standard IG process is demonstrated below in
Figure 1.

Now we discuss the properties of the inverse subordinator (hitting time)
Ht defined by (4). The inverse to the inverse Gaussian (IIG) process is not
Lévy and has monotonically increasing continuous sample paths. Moreover,
the sample paths of the IIG process are constant over the intervals where
G(t) has jumped. It follows from fact, that the trajectories of G(t) are strictly
increasing with jumps.

The distribution of Ht is not infinitely divisible [19].
The density function h(x, t) of Ht can be put in the following integral form

[18]:

h(x, t) =
δ

π
eδγx−

γ2

2

∫ ∞

0

e−ty

y + γ2

2

(γ sin (δx
√
2y) +

√
2y cos (δx

√
2y))dy. (10)
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Fig. 1. Simulation of the IG process trajectories for γ = δ = 1

For the particular case γ = 0, δ = 1:

h(x, t) =

√
2

πt
e−

x2

2t .

The qth moments for the IIG process may be numerically evaluated for
known t by using the density function h(x, t). However, an explicit expression
for the first and second order was obtained by using the Laplace transformation
in Vellaisamy and Kumar [18].

Moreover, in Jørgensen [9] you can find the following result regarding the
asymptotic behavior of E(Ht) and V ar(Ht). If t → ∞,then

E(H(t))∼

{ (
γ
δ

)
t, γ > 0(

1
δ

√
2t
π

)
t, γ = 0.

(11)

V ar(H(t))∼
(γ
δ

)2
t2 (12)

For standard distribution, for γ = δ = 1 we have E(H(t))∼t, var(H(t))∼t2.
To simulate the approximate trajectory of the inverse subordinator Ht, we

define H∆(t)) with the step length δ as follows [19]:

H∆(t) = [min{n ∈ N : G(∆n) > t} − 1]∆, n = 1, 2, . . . (13)

where ∆ is the step length and G(∆n) is the value of the Inverse Gaussian
process Gt evaluated at n. The simulation of the trajectory Ht for γ = δ = 1
is demonstrated in Figure 2.

For modeling stochastic subdiffusive GBM we propose the next iterative
scheme

xk+1 = xk + µxkH∆(t) + σxk

√
H∆(t)εk, (14)
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Fig. 2. Simulation of the inverse to the IG process trajectories for γ = δ = 1

where ε is white noise with normal standard distribution, H∆(t) follow (13).
The trajectories for the subdiffusion GBM with the inverse to the IG process
is demonstrated in Figure 3.

2.2 Correlation structure for log returns of time-changed GBM
Exploring the dependence structure for stock processes or its stock returns is
an important issue in the study of diffusive and subdiffusive models (see for
example Wylomańska et al. [19], Kumar et al. [10], Casteli et al. [3]).

First, we compute

logSHt = logX0 + µHt + σB
(1)
Ht

;

where SHt
is a stochastic process given by (3).

Then denote τt = Ht −Ht−1 and obtain the stock returns in the form:

X(t) = XHt = log
XHt

XHt−1

= µτt + σ
√
τtB

(1)
1 ; (15)

using the scaling law of Brownian motion.

Proposition 1. Let X(t) is a stochastic process given by (15), then for any
integer k ≥ 0:

1. Stock returns are uncorrelated, for µ = 0:

Cov(X(t), X(t+ k)) = Cov(XHt
, XHt+k

) = µ2Cov(τt, τt+k); (16)

in particular Covµ=0(Xt, Xt+k) = 0.
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Fig. 3. Simulation of the subdiffusive GBM time-changed by inverse IG subordinator

2. There is long-range dependence in the squared returns:

Cov(X2(t), X2(t+ k)) = Cov(X2
Ht

, X2
Ht+k

) =

σ4Cov(τt, τt+k) + µ4Cov(τ2t , τ
2
t+k) + 2µ2σ2Cov(τ2t , τt+k); (17)

in particular Covµ=0(X
2
Ht

, X2
Ht+k

) = σ4Cov(τt, τt+k).

Proof. For the covariance function of the log returns process X(t) (15), we
obtain:

Cov(XHt
, XHt+k

) = Cov(µτt + σ
√
τtB

(1)
1 , µτt+kσ

√
τt+kB

(2)
1 ) =

E[(µτt + σ
√
τtB

(1)
1 − µE(τt)(µτt+k + σ

√
τt+kB

(2)
1 − µE(τt+k)] =

= µ2(E[τtτt+k]− E[τt]E[τt+k]) = µ2Cov(τt, τt+k),

where the second equation follows from the fact that E[Xt] = µE[τt], and the
third from the independence between the two stochastic processes.

The covariance function of the process X2(t) can be computed as

Cov(X2
t , X

2
t+k) = Cov((µτt + σ

√
τtB

(1)
1 )2, (µτt+k + σ

√
τt+kB

(2)
1 )2) =

= σ4Cov(τt, τt+k)+µ4Cov(τ2t , τ
2
t+k)+µ2σ2Cov(τ2t , τt+k)+µ2σ2Cov(τt+k, τ

2
t ),

where from the last expression we immediately get the result.

Thus, if the subordinated process Ht has long-range dependence of its
increments τt, then the same structure is present in the log returns of the
process X2(t) and we have long-range dependence in the squared returns.
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2.3 Fractional Fokker-Planck equation and risk measuring for subdiffusion
The usual model of subdiffusion in physics is the celebrated Fractional Fokker-
Planck equation (see for example [14]). This equation was derived from the
continuous-time random walk scheme with heavy-tailed waiting times and de-
scribes the probability density function w(t) of the sub-diffusive studied stock
process:

∂w

∂t
= Φt[−µ

∂

∂x
+

σ2

2

∂2

∂x2
]w(x, t), (18)

where Φt is the integro-differential operator defined as

Φtf(t) =
d

dt

∫ t

0

M(t− y)f(y)dy,

with the memory kernel M(t) defined via its Laplace transform

M̃(u) =

∫ ∞

0

e−utM(t)dt =
1

Ψ(u)
,

Levy exponent Ψ(u) for IG subordinator can be written as (8), what implicates
that the memory kernel M(t) can be expressed as:

M(t) = L−1

(
1

δ(
√

2u+ γ2 − γ)

)
. (19)

where L−1(f) is the inverse Laplace transform of the f(t) function. Thus, the
formula (18) allows us to find, at least in some particular cases of parameters γ,
δ closed-form formulas for the PDF of the sub-diffusive studied stock process.
In general, approximated solutions w(t) of (18) can be derived by the finite
element method for FFPE (see for example Deng [6]) or by the Monte Carlo
techniques based on the simulation algorithm of the time-changed stock process
(see the section above).

Thus, the possibility of numerical computing probability density function
w(t) for the sub-diffusive studied stock process (with IG subordinator) opens
the way to evaluate value-at-risk (VaR) in this model.

The value-at-risk is a quite useful tool for investors and can be used for
understanding the past and making medium-term and strategic decisions for
the future. On the other side, we can apply VaR for the checking model perfor-
mance. For this, we can use the most important criterion of a risk management
system, namely to check if the regulatory requirements are fulfilled.

VaR can be defined as α-quantile of the profit (loss) function.
Let (Ω,F , P ) be the probability space. The value-at-risk of level α, 0 < α ≤

1 is a probability functional, defined as α-quantile of the profit (loss) function
Y ∈ L(Ω):

V aRα(Y ) = W−1(α) = inf{ y ∈ R : α ≤ W (Y )} , (20)

where W is the distribution function of Y , W−1 is the quantile function of α,
0 < α ≤ 1.



10 N. Shchestyuk, S. Tyshchenko

Let the time horizon coincide with the time to maturity, then the loss(profit)
function of the call option with strike price K is

Y = Y (S) = |S −K|+ − c0,

Then the value-at-risk of level α, 0 < α ≤ 1 for random variable Y is

V aRα(Y ) = V aRα(|S −K|+)− c0 (21)

due to the translation-equivariant property of probability functional VaR.
The cumulative distribution function (CDF) for Y (S) = |S −K|+ is given

[16]:

WY (y) =


y∫

−∞

wS(u+K) du, y ≥ 0

0, y < 0.

(22)

Thus, if the time horizon coincides with the time to maturity, the value-
at-risk of level α, 0 < α ≤ 1 one can find as (21-22), where w(t) is a solution
of (18) with kernel memory (19).

3 Option pricing

Even if sub-diffusions can be successfully applied for modeling illiquidity, op-
tions pricing in this framework remains under-researching.

Recall that in the classical GBM model the fair price of the European call
option is given by the Black-Scholes formula:

C(S,K, T, r, σ) = N(d1)S −N(d2)Ke−rT , (23)

where

d1 =
log S0

K + rT + 1
2σ

2T

σ
√
T

, d2 =
log S0

K + rT − 1
2σ

2T

σ
√
T

(24)

are both functions of five parameters: T,K, S0, r, σ, and Φ(·) is a standard
normal cumulative distribution function.

Consider a time-changed version of the B-S model, where the price of the
bond evolves as (1) and the underlying risky assets follow (2) with IG sub-
ordinator. Now we discuss two approaches to option pricing in the proposed
model with inverse Gaussian subordinator.

Let the evolution of this market up to time horizon T be contained in
the probability space (Ω,F , P ). Here, Ω is the sample space, F contains all
statements, that can be made about the behavior of prices, and P is the
“objective” probability measure. We denote by (Ft), t ∈ [0, T ] the information
about the history of asset prices SH up to time t. (Ft) is also called filtration
and is interpreted as the background information that is available for the
investor. The more time proceeds the more information is revealed to the
investor.
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Proposition 2. The European call option price CH = CH (S,K, T, σ) for a
time-changed version of the B-S model with IG subordinator satisfies

CH =

∫ ∞

0

∫ ∞

0

C (S,K, x, σ)
δ

π
eδγx−

γ2

2
e−Ty

y + γ2

2

(γ sin (ρ(x))+
√
2y cos (ρ(x)))dydx,

(25)
where

ρ(x) = δx
√

2y, (26)

C(S,K, T, σ) is given by (23).

Proof. For the sub-diffusion market described above the usual requirement
for fair option pricing is that arbitrage opportunities do not exist. For this, it
is enough to prove the existence of the equivalent martingale measure. In [12]
was introduced the following measure

Q(A) =

∫
A

exp

{
−γB(SHT

)− γ2

2
SHT

}
dP, (27)

where γ = µ
σ and A ∈ F , and was proved that (2) is a martingale with respect

to Q. Also in [12] was shown that the market model, in which the asset price
is described by (2), is arbitrage-free. The second question is the completeness
of the market model. The Second Fundamental theorem of asset pricing states
that the model is complete if and only if there is a unique martingale measure.
Then, for arbitrage-free and incomplete markets, we apply a common technique
for time-changed processes (see [12],[13], [3], [7]) and find the corresponding
fair price of the European call option written on the time-changed asset as the
discounted expected payoff under measure Q (27):

CH (S,K, T, σ) = ⟨C (S,K,H(T ), σ)⟩ = EQ
(
e−rH(T )(SH −K)+

∣∣∣F0).

Therefore, conditioning on HT , we obtain

CH (S,K, T, σ) =

∫ ∞

0

C (S,K, x, σ)hΨ(x, T )dx (28)

Here, hΨ(x, T ) is the PDF of H(T ) for the subordinator with Levi exponent
Ψ and C(S,K, T, σ) is given by (23).

If we note that hΨ(x, T ) for the considered model is PDF of IGG process
(10) then this ends the proof of formula (25).

Remark 1. In the above equation (28) we can evaluate the subdiffusive call
price C(·) by computing the integral numerically. An alternative consists of
calculating the price by Monte Carlo simulations. The first one simulates the
trajectories for the inverse subordinator on the interval [0, T ] by the approxi-
mation scheme (13). Then, one obtains the fair price as an estimation of the
expected value for simulated prices where the inverse subordinator stands for
calendar time T in (28)

CH(S,K, T, r, σ) = ⟨C(S,K,H(T ), σ)⟩ = 1

n

n∑
i=1

C(S,K,Hi(T ), σ), (29)
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where C(S,K, T, σ) is taken from Black-Scholes option pricing formula (23).

It is worth noticing, that the application of the Monte-Carlo method for
option pricing in subdiffusive models can be seen in the papers [12], [13] for α
stable subordinator.

The second approach to option pricing in the considered model is much
more interesting and based on a fractional version of what is called Dupire’s
equation. Dupire has established a forward partial differential equation for call
options with local volatility. The fractional Dupire’s equation (PIDE) was pro-
posed by [5]. This equation was presented in a very general form and valid for
all invertible Lévy subordinators. In PIDE the derivative with respect to time
was replaced by a convolution-type derivative, called Dzerbayshan–Caputo
(D–C) derivative. (D–C) derivative is a kind of fractional derivative, which is
more advantageous than its classical counterparts due to capturing the past
history. The Dzerbayshan–Caputo (D–C) derivative depends upon the chosen
kind of subordinator and Bernstein functions f(.).

The next proposition is the application of this PIDE to B-S subdiffusion
with IG subordinators.

Proposition 3. The European call option price CH = CH (S,K, T, σ) for a
time-changed version of the B-S model with IG subordinator is a solution of a
fractional PIDE equation:

fDCH(T, k) = −r
∂

∂k
CH(T, k) +

σ2

2

∂2

∂k2
CH(T, k), (30)

where k = lnK and

fDu(t) = δ

∫ t

0

∂

∂t
u(t− s)

(
2Φ

(√
2s

2

)
− 1 +

2e−
s
2

√
2πs

)
ds (31)

is the convolution-type derivative, called the Dzerbayshan–Caputo (D–C) deriva-
tive.

Proof. In [5] was presented a fractional PIDE equation for option pricing
in the fractional jump–diffusion setting. From this PIDE in the Black and
Scholes (B-S) regime, when the Brownian volatility is constant and there are
no jumps, the fraction Dupire PIDE can be rewritten as (30). The generalized
D–C derivative according to the function f is defined as [5]:

fDu(t) = b
d

dt
u(t) +

∫ t

0

∂

∂t
u(t− s)ν(s)ds, (32)

where f is Bernstein function (see for the details [17]), which admits a similar
representation to the Laplace exponent of Lévy process

f(x) = a+ bx+

∫ +∞

0

(1− e−sz)ν̃(dz),

and (a, b, ν̃) is the Lévy triplet of the Bernstein function.
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We can notice, that the term of Bernstein functions goes back to the poten-
tial theory school of A. Beurling and J. Deny and was subsequently adopted by
C. Berg and G. Forst. S. Bochner calls them completely monotone mappings
and probabilists still prefer the term Laplace exponents.

The Dzerbayshan–Caputo (D–C) derivative depends upon the chosen Bern-
stein function f(.). For IG Lévy subordinator the Lévy triplet of the Bernstein
function is (0, 0, ν̃). The Lévy measure ν̃(s) is defined by (7). The tail of the
Lévy measure is given by

ν(s)ds =

(
a+

∫ +∞

s

ν̃(dx)

)
ds = ds

∫ +∞

s

ν̃dx = ds

∫ +∞

s

δ√
2πx3

e

(
− γ2x

2

)
dx

(33)
If we compute the integral in (33), D–C derivative (32) for IG subordinator
can be written as

fDu(t) = δ

∫ t

0

∂

∂t
u(t− s)

(
erf

(√
2s

2

)
− 1 +

2e−
s
2

√
2πs

)
ds, (34)

where erf(.) is the error function, which can be expressed in terms of the
standard normal cumulative distribution function Φ(·). Thus, the proposition
follows.

4 Numerical illustration

We illustrate call option pricing for the subdiffusive model in the Black-Scholes
regime with IG subordinator.

We choose Airbnb, Inc. Class A Common Stock listed on the NASDAQ
stock exchange and use their daily returns during the last two years for model
calibration. All the prices and relative data we take on 24 June 2022. We
fixed the strike price as 100 and observed the prices of options with time to
maturity ranging from the 1st of July 2022 to the 20th of January 2023. Market
parameters are: S0 = 103.51, K = 100, r = 0.168, µ = −0.0015.

To simplify the calculations, we put parameters γ = δ = 1 because this as-
sumption allows getting the desired result regarding the asymptotic behavior of
the hitting time. In this case when t → ∞ it follows E(H(t))∼t, var(H(t))∼t2.
So, we estimate only the σ parameters based on the least squares technique.
We obtain that the value σ = 0.3 is the best to minimize the square error over
the difference between the real option quotes and the estimated ones.

We estimated the prices (29) of call options using Monte Carlo methods
based on the above-described simulation procedure for HT .

The results are presented in the table and in graphic shape, where we
compare the B-S subdiffusive European call options with the classical one and
with the market price.

As we can see from the graphics in Fig. 4, the diffusive option pricing model
shows better results in the short-term period, while the subdiffusive model is
more effective in the long-term perspective.
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Fig. 4. Simulated prices for the diffusive and subdiffusive B-S models

Table 1. Call option prices for strike price K=100 and varying times of maturity

1 Jul 8 Jul 15 Jul 22 Jul 29 Jul 19 Aug 16 Sep 21 Oct 16 Dec 20 Jan
Market 5.60 6.88 8.10 9.25 9.95 12.75 14.72 16.15 19.50 21.30
B-S diff 6.02 7.47 8.65 9.70 10.64 13.09 15.83 18.77 22.83 25.08
B-S subdiff 7.40 8.37 9.51 9.91 11.32 12.72 14.69 15.61 18.11 18.91

To compare numerical results we use absolute relative percentage (ARPE)
and root mean squared error (RMSE):

ARPE =
|C(Tk)− Cmarket(Tk)|

Cmarket(Tk)
(35)

RMSE =

√
1

n
Σn

i=1

(C(Ti)− Cmarket(Ti)

Cmarket(Ti)

)2
(36)

It is worth mentioning, that in econometrics, the root mean squared error
(RMSE) (35) is a key criterion for model selection. The mean squared error
indicates the mean squared deviation between the forecast and the outcome.
It sums the squared bias and the variance of the estimator. The advantage of
the ARPE (36) relative to the RMSE measure is that it gives a percentage
value of the pricing error. Therefore, if we use both these errors it provides
more insight into the economic significance of performance differences.

Upon dividing the RMSE analysis into two distinct periods, a noteworthy
observation emerges: during the initial short period, the diffusive model out-
performs, while in the subsequent long period, the subdiffusive model exhibits
superior performance.

In the framework of the paper, we just illustrate the application of the
studied model and compare option pricing results in a situation when strike
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Table 2. The ARP errors for B-S diffusion, B-S subdiffusion to the market price.

1 Jul 8 Jul 15 Jul 22 Jul 29 Jul 19 Aug 16 Sep 21 Oct 16 Dec 20 Jan Mean
B-S 0.08 0.09 0.07 0.05 0.07 0.03 0.08 0.16 0.17 0.18 0.10
B-S Subdiffusion 0.32 0.22 0.17 0.07 0.14 0.00 0.00 0.03 0.07 0.11 0.11

Table 3. The RMS errors for diffusion and subdiffusion regarding the market price.

1 Jul - 29 Jul 19 Aug - 20 Jan Overall
B-S 0.07 0.14 0.11
B-S Subdiffusion 0.20 0.06 0.15

price K was fixed (in the money), while time to maturity T was changing.
For detailed model performance we need to examine the ARP pricing errors

of the proposed option pricing models in more detail (see paper Lehar et al.
[11]) and consider the pricing errors as a regression on the time to maturity
T (in years), the moneyness of the option, and a binary variable that is set to
unity, if the option is a call and to zero in the case of a put. This can indicate
a level of explanatory value of moneyness, maturity, and the put-call dummy
in the model.

However this model performance and application of a finite difference ap-
proach for solving the fractional Dupire equation is future work beyond the
scope of the present paper.

5 Conclusion

The paper developed a sub-diffusive model with the following features of stock
returns, which are quite well documented in the financial and econometric
literature: i) the stochastic processes have continuous paths with motionless
periods of time; ii) the returns processes are uncorrelated; iii) dependence is
presented in squared returns; iv); the hitting time is defined by inverse to IG
subordinator which is not infinitely divisible. For the model, two option pricing
techniques were discussed. The results of comparing the studied model with
the classical one show that the classical B-S model demonstrates better results
in the short-term period, while the sub-diffusive model is more effective in the
long-term perspective.

Thanks to the proposed approaches, the investor gets tools, that allow him
to take into account the market’s illiquidity.
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