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Abstract

Multivariate random sums appear in many scienti�c �elds, most no-
tably in actuarial science, where they model both the number of claims
and their sizes. Unfortunately, they pose severe inferential problems. For
example, their density function is analytically intractable, in the general
case, thus preventing likelihood inference. In this paper, we address the
problem by the method of moments, under the assumption that the claim
size and the claim number have a multivariate skew-normal and a Poisson
distribution, respectively. In doing so, we also derive closed-form expres-
sions for some fundamental measures of multivariate kurtosis and high-
light some limitations of both projection pursuit and invariant coordinate
selection.

Keywords. Fourth cumulant, Kurtosis, Poisson distribution, Skew-normal
distribution.

1 Introduction

Let s = x1 + : : : + xN be the sum of the �rst N components appearing in
the sequence of independent and identically distributed p-dimensional random
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vectors fxi, i 2 Ng, where N is a random variable independent of the sequence
and whose support is the set of nonnegative integers. The random vector s is a
random sum, with the convention that s coincides with the p-dimensional null
vector when N = 0. The distributions of random sums are known as compound
distributions and occur in many research areas (Gnedenko and Korolev, 1996;
Kalashnikov, 1997; Klebanov et al, 2006), but have been mainly studied in
actuarial science, where the random vector s, xi and N are the aggregated
claim, the i-th claim size and the claim counts, respectively (Ambagaspitiya,
1999).
Compound distributions pose severe inferential problems: analytic expres-

sions for their densities are not available, in the general case, thus preventing
the use of likelihood methods. The problem has often been addressed by means
of approximations (Lin, 2006), either asymptotic or parametric. Asymptotic
methods are often used to approximate the compound distributions, when the
aggregating variable is expected to be high enough (Klebanov et al, 2006). How-
ever, the asymptotic approach based on stochastically increasing sequences does
not necessarily lead to valid asymptotic normal approximations (Javed et al,
2021). Alternatively, compound distributions can be approximated by properly
chosen parametric distributions, as for example skew-normal distributions and
their generalizations (Eling, 2012) or �nite mixture distributions (Bernardi et
al, 2012). In both cases, the parameters lack a clear interpretation.
In this paper, we address the above mentioned problems by assuming well-

known parametric families for both the claim size and the claim number. The
latter is assumed to be Poisson with mean � > 0, so that P (N = n) = e���n=n!,
n 2 N. The i-th claim size xi is assumed to be multivariate skew-normal
with location parameter � 2 Rp, scale parameter 
 2 Rp, shape parameter
� 2 Rp, denoted by xi � SN (�;
;�). Its probability density function is
f (x; �;
;�) = 2�p (x; �;
;�) ��

�
�> (x��)

	
,where �p (�; �;
;�) is the prob-

ability density function of a p-dimensional normal distribution with mean � and
covariance 
, while � (�) denotes the cumulative distribution function of a uni-
variate, standard normal distribution. The compound distribution is known as
the Poisson-Skew-Normal distribution and has been motivated and investigated
by Loper�do et al (2018). We shall estimate the parameters �, �, 
 and � by
the method of moments. The rest of the paper is structured as follows. Sections
2 and 3 derive the fourth cumulant and the Mardia�s kurtosis of the Poisson-
Skew-Normal model, respectively. Section 4 uses previous section�s results and
those in Loper�do et al (2018) to obtain method-of-moments estimates. Sec-
tion 5 highlights some limitations of projection pursuit and invariant coordinate
selection, when applied to the Poisson-Skew-Normal model. Section 6 contains
some �nal remarks and hints for future research.

2 Fourth cumulant

The (i; j; h; k)�th cumulant of a p-dimensional random vector x = (x1; : : : ; xp)>

with mean � =
�
�1; : : : ; �p

�>
, covariance � = f�ijg and �nite fourth-order
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moments is

�ijhk =
log E

�
exp

�
�t>x

�	
@ti@tj@th@tk

, where � =
p
�1 and t =

0@ t1
:::
tp

1A 2 Rp, i; j; h; k 2 f1; :::; pg .

The scalars �ijhk might be conveniently arranged into the p2 � p2 block matrix

K4;x = E
�
y 
 y> 
 y 
 y>

	
�
�
Ip2 +Cp;p

�
(�
�)� vec (�) vec> (�) ,

where y = x � �, "
" is the Kronecker product, vec (A) is the vectorization
of the matrix A and Cp;p is the p2 � p2 commutation matrix. The matrix
K4;x is commonly referred to as to the fourth cumulant of x and possesss
many and interesting properties (Loper�do, 2015, 2017). In order to remove
linear dependencies, the fourth cumulant of the standardized random vector
z = ��1=2(x � �), where ��1=2 is the unique positive de�nite matrix such
that ��1=2��1=2 = ��1. The fourth cumulant of z is known as the fourth
standardized cumulant of x and is denoted by K4;z.
The following theorem shows that the fourth cumulant of a multivariate

Poisson-Skew-Normal aggregate claim model as a remarkably simple analytical
form.

Theorem 1 Let N be a Poisson random variable with mean �. Also, let s =
x1+...+xN , where x1, ..., xN are p-dimensional skew-normal random vectors
with location parameter &, scale parameter 
 and shape parameter �. If N , x1,
..., xN are mutually independent, the fourth cumulant of s is

K4;s = �


+ �Cp;p (


) + �vec (
) vec> (
) .

Proof. Let the �rst, second, third and fourth cumulants of xi be �1, �2, �3
and �4. Similarly, let the �rst, second, third and fourth cumulants of N be �1,
�2, �3 and �4. The fourth cumulant of s, denoted by K4;s, is

�1�4 + �2
��
Ip2 +Cp;p

�
(�2 
 �2) + vec (�2) vec> (�2)

	
+ �2

�
�3 
 �>1 + �>3 
 �1

+�>1 
 �3 + �1 
 �>3
�
+ �3

n
�2 
 �1�>1 + vec (�2) �>1 
 �>1 + �>1 
 �2 
 �1

+ �1 
 �2 
 �>1 + �1 
 vec> (�2)
 �1 + �1 
 �>1 
 �2
o
+ �4�1�

>
1 
 �1�>1

(Javed et al, 2021). By assumption, N is a Poisson random variable with mean
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�, so that �1 = �2 = �3 = �4 = � and

K4;s

�
= �4 +

�
Ip2 +Cp;p

�
(�2 
 �2) + vec (�2) vec> (�2) + �3 
 �>1 + �>3 
 �1

+�>1 
 �3 + �1 
 �>3 + �2 
 �1�>1 + vec (�2) �>1 
 �>1 + �>1 
 �2 
 �1

+�1 
 �2 
 �>1 + �1 
 vec> (�2)
 �1 + �1 
 �>1 
 �2 + �1�>1 
 �1�>1 .

By assumption, the distribution of xi is SN (&;
;�). The fourth cumulant is
location invariant, so that we can assume without loss of generality that the
location parameter of the skew-normal distribution is a null vector and its �rst
four cumulants are

�1 =

r
2

�
�, �2 = 
�

2

�
��>, �3 =

r
2

�

�
4

�
� 1
�
��> 
 � ,

�4 = 2 (� � 3)
�
2

�

�2
��> 
 ��>, where � = 
�p

1 +�>
�
.

By expressing �1, �2, �3 and �4 by means of � and 
 we obtain

K4;s

�
=

(
2 (� � 3)

�
2

�

�2
+
8

�

�
4

�
� 1
�
+

�
2

�

�2)
� 
 �> 
 � 
 �>+

�
Ip2 +Cp;p

���

� 2

�
��>

�


�

� 2

�
��>

��
+ vec

�

� 2

�
��>

�
vec>

�

� 2

�
��>

�
+

2

�

�

� 2

�
��>

�

 ��> + 2

�
vec

�

� 2

�
��>

�
�> 
 �> + 2

�
�> 


�

� 2

�
��>

�

 �+

2

�
� 


�

� 2

�
��>

�

 �> + 2

�
� 
 vec>

�

� 2

�
��>

�

 � + 2

�
� 
 �> 


�

� 2

�
��>

�
.
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Some algebra leads to

K4;s

�
=
12

�2
� 
 �> 
 � 
 �> +


� 2

�


 � 
 �> � 2

�
� 
 �> 

+ 4

�2
� 
 �> 
 � 
 �>+

Cp;p

�



� 2

�


 ��> � 2

�
��> 

+ 4

�2
��> 
 ��>

�
+ vec (
) vec> (
)� 2

�
vec (
)

�
�> 
 �>

�
�

2

�
(� 
 �) vec> (
) +

�
2

�

�2
� 
 �> 
 � 
 �> + 2

�


 ��> � 4

�2
��> 
 ��> + 2

�
vec (
)

�
�> 
 �>

�
�

4

�2
� 
 �> 
 � 
 �> + 2

�
�> 


 � � 4

�2
�> 
 ��> 
 � + 2

�
� 


 �> � 4

�2
� 
 � 
 �> 
 �>

+
2

�
� 
 vec> (
)
 � � 4

�2
� 
 vec>

�
� 
 �>

�

 � + 2

�
� 
 �> 

� 4

�2
� 
 �> 
 � 
 �>:

The above identity might be simpli�ed by removing redundant terms:

K4;s

�
= 


+Cp;p

�



� 2

�


 ��> � 2

�
��> 



�
+ vec (
) vec> (
)

� 2
�
(� 
 �) vec> (
) + 2

�
�> 


 � + 2

�
� 


 �> + 2

�
� 
 vec> (
)
 �.

Basic properties of the commutation matrix (Kollo and von Rosen, 2005, p. 80)
and the Kronecker product yield the identities

Cp;p

�


 ��>

�
= �


�>, Cp;p

�
��> 



�
= �>


� and �
vec> (
)
� = �
�
vec> (
) .

In turn, the above identities lead to the following one:

K4;s

�
= 


+Cp;p (


) + vec (
) vec> (
) .

3 Mardia�s kurtosis

Mardia (1970, 1974) introduced the following measures of multivariate kurtosis:

�2;M (x) = E

�h
(x� �)>��1 (x� �)

i2�
, 
2;M (x) = �2;M (x)�p (p+ 2) =

X
i;j

�iijj .

The former and the latter are known as Mardia�s kurtosis and Mardia�s excess
kurtosis. They are the best known and most used measure of multivariate
kurtosis (Kollo, 2008). The following theorem shows that they have simple
analytical forms of the Poisson-Skew-Normal model have remarkably simple
analytical forms.
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Theorem 2 Let N be a Poisson random variable with mean �. Also, let s =
x1+...+xN , where x1, ..., xN are p-dimensional skew-normal random vectors.
If N , x1, ..., xN are mutually independent, the Mardia�s kurtosis of s is

�2M (s) =
(�+ 1) (p+ 2) p

�
.

Proof. We use the same notation as in Theorem 1 and its proof. The fourth
cumulant of s is

K4;s = �


+ �Cp;p (


) + �vec (
) vec> (
) .

Let z be the standardization of s:

z = ��1=2 (s� �) , where E (s) = � and cov (s) = �.

The covariance matrix of s is � = �
 (Loper�do et al, 2018), so that z =

�1=2 (s� �) =��1=2. By ordinary properties of fourth cumulants the fourth
cumulant of z, that is the fourth standardized cumulant of s, is

K4;z =
1

�2

�

�1=2 

�1=2

�
K4;s

�

�1=2 

�1=2

�
=
1

�

�

�1=2 

�1=2

�





�

�1=2 

�1=2

�
+

1

�

�

�1=2 

�1=2

�
Cp;p (


)

�

�1=2 

�1=2

�
+
1

�

�

�1=2 

�1=2

�
vec (
) vec> (
)

�

�1=2 

�1=2

�
.

Recall the distributive property of the Kronecker product with respect to the
ordinary matrix product (see, e.g., Kollo and von Rosen, 2005, page 81):

(A
B) (C
D) = AC
BD, where A 2 Rp�Rq, B 2 Rr�Rs, C 2 Rq�Ru, D 2 Rs�Rv.

We apply this property to obtain a simpli�ed expression for the fourth cumulant
of z:

K4;z =
1

�
Ip2+

1

�

�

�1=2 

�1=2

�
Cp;p

�

1=2 

1=2

�
+
1

�

�

�1=2 

�1=2

�
vec (
) vec> (
)

�

�1=2 

�1=2

�
.

The following identity connects the vectorization operator, the Kronecker prod-
uct and the ordinary matrix product (see, e.g., Kollo and von Rosen, 2005, page
89):

vec (ABC) =
�
C> 
A

�
vec (B) , where A 2 Rp�Rq, B 2 Rq�Rr, C 2 Rr�Rs.

We apply this identity to achieve further simpli�cation of the analytical expres-
sion of the fourth cumulant of z:

K4;z =
1

�
Ip2 +

1

�

�

�1=2 

�1=2

�
Cp;p

�

1=2 

1=2

�
+
1

�
vec (Ip) vec

> (Ip) .
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The commutation matrix Cp;p coincides with its inverse, so that Cp;pCp;p =
Ip2 . Moreover, the commutation matrix appears when exchanging the order of
matrices in a Kronecker product:

A
B = Cp;r (B
A)Cs;q, where A 2 Rp � Rq;B 2 Rr � Rs.

These properties of the commutation matrix imply the identity�

�1=2 

�1=2

�
Cp;p = Cp;p

�

�1=2 

�1=2

�
.

This identity, together with further application of the above mentioned distrib-
utive property, leads to the following representation of the fourth standardized
cumulant of s:

K4;z =
1

�

�
Ip2 +Cp;p + vec (Ip) vec

> (Ip)
	
.

The identity tr (Cp;p) = p and ordinary properties of the trace imply that

tr (K4;z) =
p2 + 2p

�
.

The Mardia�s kurtosis of s (Mardia, 1970) is the fourth moment of the Euclidean
norm of z:

�2M (s) = E
�
kzk4

�
= E

�n
(s� �)>��1 (s� �)

o2�
.

Mardia�s excess kurtosis (Mardia, 1974) is just the trace of its fourth standard-
ized cumulant (see, e.g., Loper�do, 2020):


2M (s) = �2M (s)� p (p+ 2) = tr (K4;z) .

With a little algebra, the Mardia�s kurtosis of s is then found to be

�2M (s) =
(�+ 1) (p+ 2) p

�
.

4 Method of moments

In this section we derive method-of-moments estimates b�, b
, b�, b� of the para-
meters �, 
, �, � indexing the distribution of the random sum s = x1+ :::+xN ,
where xi � SN (�;
;�) and N � Po (�). The mean and the variance of s are

� = �

 
� +

r
2

�
�

!
, where � =


�p
1 +�>
�

, and � = �
.

The partial and directional skewnesses of s are

�P1;p (s) =
2&

��
(p+ 2 + &)

2 , �D1;p (s) =
2&

��
(3� &)2 , where & = �>
�

1 +�>
�
.
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The unit norm vector � which maximizes the skewness of a projection of s onto
its direction is proportional to the shape parameter b�:

� =
�

k�k = argmaxu2Sp�1
E

(�
u>s� u>�p

u>�u

�3)
.

The Mardia�s kurtosis of s (Mardia, 1970) is

�2M (s) =
(�+ 1) (p+ 2) p

�
.

Let � be the square root of the ratio of the partial skewness to the total skewness:

� =

vuut�P1;p (s)

�D1;p (s)
=
2 + p+ &

3� & .

A little algebra leads to the identities

� =
�

�
�
r
2

�
�, � =

p (p+ 2)

�2;p (s)� p (p+ 2)
, �>
� =

&

1� & , & =
3� � 2� p
1 + �

,

� =



�
, �>
� =

�>
�

�>�
, �>
� =

3� � 2� p
3� 2� + p , �

>� =
3� 2� + p

(3� 2� + p)�>
� .

Let m and S be the sample mean and the sample variance of the n � p data
matrix X:

m =
1

n

nX
i=1

xi and S =
1

n

nX
i=1

(xi �m) (xi �m)> ,

where x>i is the i-th row of X. Also, let the matrix Z = HnXS
�1=2 denote the

standardized data, whereHn = In�n�11n1>n is the n�n centring matrix, 1n is
the n�dimensional vector of ones, In is the n�dimensional identity matrix, and
S�1=2 is the symmetric, positive de�nite square root of the sample concentration
matrix S�1. The third and fourth standardized moments of X are

M3;Z =
1

n

nX
i=1

zi 
 z>i 
 zi and M4;Z =
1

n

nX
i=1

zi 
 z>i 
 zi 
 zi>,

where z>i is the i-th row of Z. The sample partial and directional skewnesses
(Loper�do, 2015) are

b1;P = vec> (Ip)M3;ZM
>
3;Zvec (Ip) and b1;D = max

u2Sp�1

��
z>i 
 zi>

�
M3;Zzi

	2
.

The sample Mardia�s kurtosis coincides with the trace of the fourth sample
standardized moment Kollo and Srivastava, 2005):

b2;M =
1

n

nX
i=1

�
(xi �m)0 S�1 (xi �m)

�2
= tr (M4;Z) .
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The method-of-moments estimating procedure articulates into the following
steps.

1. Use the sample Mardia kurtosis to derive a moment estimate of �:

b� = p (p+ 2)

b2;M � p (p+ 2) .

2. Use this estimate and the sample variance to estimate 
:

b
 = Sb� .
3. Use the sample partial and directional skewnesses to estimate �:

b� =s b1;P
b1;D

.

4. Estimate � by the direction maximizing the sample skewness:

b� = b�
kb�k = argmaxu2Sp�1

(
1

n

X�
u>xi � u>mp

u>Su

�3)2
.

5. Estimate the norm of the shape parameter � using the estimates of �, 

and �: dk�k =s 3� 2b� + p

(3� 2b� + p) b�> b
b� .
6. Estimate the shape parameter � using the estimates of � and k�k:

b� = b�dk�k.
7. This estimate, together with the estimate of the scatter matrix, leads to
an estimate of �: b� = b
b�p

1 + b�> b
b� .
8. Use the estimate of �, the estimate of b� and the sample mean to estimate
the location parameter �:

b� = mb� �
r
2

�
b�.
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5 Dimension reduction

Fourth-order moments often occur within the frameworks of projection pursuit
and invariant coordinate selection. In the former case, interesting projections
�>x or �>x are sought by either maximizing or minimizing kurtosis, where

� = argmax
u2Sp�1

�2
�
u>x

�
, � = argmin

u2Sp�1
�2
�
u>x

�
,

x is a p-dimensional random vector with positive de�nite covariance matrix and
�nite fourth-order moments, Sp�1 is the p-dimensional unit circle and �2 (X)
is the fourth standardized moment of the random variable X. Kurtosis-based
projection pursuit has been used for cluster analysis (Peña and Prieto, 2001b)
and outlier detection (Peña and Prieto, 2001a).
In kurtosis-based invariant coordinate selecction, interesting projections are

sought by projecting the standardized data onto the eigenvectors of the partial
kurtosis matrix E

�
z>zzz>

�
, as proposed in Tyler et al (2009). As for the

previous method, kurtosis-based invariant coordinate selection has been used
in cluster analysis (Peña et al, 2010) and outlier detection (Archimbaud et al,
2018).
The following theorem highlights a shortcoming of both kurtosis-based pro-

jection pursuit and invariant coordinate selection, when applied to the Poisson-
Skew-Normal model. All projections have the same kurtosis and any p-dimensional
real vector is an eigenvector of the partial kurtosis matrix, since it is proportional
to an identity matrix.

Theorem 3 Let N be a Poisson random variable with mean �. Also, let s =
x1+...+xN , where x1, ..., xN are p-dimensional skew-normal random vectors.
If N , x1, ..., xN are mutually independent, the fourth standardized cumulant of
a projection of s is


2
�
v>s

�
=
3

�
, where v 2 Rp0, and E

�
z>zzz>

�
=
p+ 2

�
Ip.

Proof. In this proof we use the notation of the previous one. As seen in
Loper�do (2017), the fourth cumulant of u>z, where u is a p-dimensional real
vector of unit norm, is


2
�
u>z

�
=
�
u> 
 u>

�
K4;z (u
 u) .

The analytical formula of the fourth standardized cumulant derived in the pre-
vious proof and simple matrix algebra, lead to

�
2
�
u>z

�
= �

�
u> 
 u>

�
K4;z (u
 u) =

�
u> 
 u>

�
Ip2 (u
 u)

+
�
u> 
 u>

�
Cp;p (u
 u) +

�
u> 
 u>

�
vec (Ip) vec

> (Ip) (u
 u) .
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The identity
�
u> 
 u>

�
Ip2 (u
 u) =

�
u>u

�2
is a direct consequence of the

following one: vec (ABC) =
�
C> 
A

�
vec (B), where A 2 Rp � Rq, B 2

Rq � Rr, C 2 Rr � Rs (see, e.g., Kollo and von Rosen, 2005, p. 89).
The identity

�
u> 
 u>

�
vec (Ip) = u>u follows from (A
B) (C
D) =

AC
BD, where A 2 Rp �Rq, B 2 Rr �Rs, C 2 Rq �Ru, D 2 Rs �Rv (see,
e.g., Kollo and von Rosen, 2005, p. 81).
Finally, the identity Cp;p (u
 u) = u 
 u follows from ordinary properties

of the commutation matrix, from the identity vec
�
uu>

�
= u
u and from uu>

being a symmetric matrix. Therefore, the fourth cumulant of u>z is 
2
�
u>z

�
=

3=�, since u>u = 1, by assumption.
The fourth cumulant is invariant with respect to a¢ ne transformations, so

that the fourth cumulant of u>z coincides with the fourth cumulant of any
projection of x: 
2

�
u>z

�
= 
2

�
v>x

�
, where v is any nonnull p-dimensional real

vector. This concludes the �rst part of the proof. The second part of the proof
is very similar, after recalling the identity vec

�
E
�
z>zzz>

�	
= K4;zvec (Ip), as

seen in Loper�do (2017).

6 Conclusions

We investigated the fourth-order cumulants of the multivariate Poisson-Skew-
Normal aggregate claim model, and derived several measures of multivariate
kurtosis. As a main statistical application, we obtained easily computable
method-of-moments estimates, which are particularly useful, given the unavalil-
ability of maximum likelihood estimates. As another statistical application, we
highlighted some limitations of two established dimension reduction techinques:
kurtosis-based projection pursuit and invariant coordinate selection.
A natural question to ask is whether the proposed approach could be ex-

tended to other multivariate claim models. We conjecture that the answer is
positive, encouraged by the results in Loper�do et al (2018). They considered
multivariate claim models de�ned by di¤erent claim number and size, includ-
ing the negative binomial and the Generalized multivariate Laplace model. For
any of them, they obtained closed-form expressions of the third cumulant and
related measures of multivariate skewness.
As an example, consider the multivariate Laplace distribution, a prominent

distribution which models both asymmetry and heavier than Gaussian tails
(Kotz et al, 2001). A p-dimensional random vector y has a multivariate gen-
eralized asymmetric Laplace (GAL), denoted with y � GALp(�;�;�), if its
characteristic function is

�y(t) =

�
1 +

1

2
t>�t� ��>t

���
; t 2 Rp;

where � > 0, � is a p-dimensional vector and � is a p� p nonnegative de�nite
symmetric matrix. The random vector y possesses a stochastic representation
given by

y
d
= ��� + �

1=2
� z0

d
= Gp(��);
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where the symbol " d= " stands for the equality in distribution, �� has a standard
gamma distribution with shape parameter �, z0 � Np(0;�), and Gp(�) is a p-
dimensional Gaussian process with independent increments, Gd(0) = 0, and
Gd(1) � Nd(�;�). Stochastic representations show that GAL distribution
can be represented as a subordinated Gaussian process, or as a location-scale
mixture of normal distribution. For our discussion we need the fourth cumulant
for GAL distributions. For which one can apply a general result about the
fourth cumulant of the process that is obtained by subordination of a Brownian
motion with drift to a random time change. An alternative approach has been
discussed in Hurlimann (2013). Consider a non-negative random variable �s
independent of a Brownian motion Bd and consider

y = Bd(�s):

As a second example of multivariate distribution which is often used to de-
scribe asymmetric and leptokurtic data, consider the Normal inverse Gaussian
distribution. It can be represented as a multivariate Brownian motion Bp with
drift � 2 Rp and covariance matrix � 2 Rp�p when subordinated to the ran-
dom variable z having the generalized inverse Gaussian (GIG) distribution with
parameters � 2 R, � > 0, and  > 0, often denoted with z � GIG(�; �;  ).
When � = �1=2, z has the inverse Gaussian (IG) distribution with parameters
� and  , often denoted with z � IG(�;  ). As a direct consequence, Bp(�) has
the p-dimensional normal inverse Gaussian (NIG) distribution.
As a venue of future research, we hope to generalize the results in this paper

to claim sizes distributed either as multivariate generalized asymmetric Laplace
or multivariate Normal inverse Gaussian.
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